
On Calculi for Context-Aware Coordination

Pietro Braione and Gian Pietro Picco

Dipartimento di Elettronica e Informazione, Politecnico di Milano
P.za Leonardo da Vinci, 32, I-20133 Milano, Italy

[braione,picco]@elet.polimi.it

Abstract. Modern distributed computing demands unprecedented lev-
els of dynamicity and reconfiguration. Mobile computing, peer-to-peer
networks, computational grids, multiagent systems, are examples of do-
mains exhibiting a continuously changing system configuration. In these
settings, the context where computation occurs is not only dynamically
changing, but also affecting the components’ behavior in a fundamental
way, by enabling or inhibiting some of their actions.
In this paper we are concerned with formal specification. Process calculi
are a common choice for specifying concurrent and distributed systems.
Unfortunately, context representation is rarely addressed explicitly. A
few approaches provide limited expressiveness, in that they force the
specifier to exploit a predefined and partial notion of context.
This paper is a first step in laying the formal foundation for a process cal-
culi specification style that: i) fosters a coordination approach by sharply
separating the process behavior from computational context defined by
system changes; ii) enables the specifier to define her notion of context
and the rules governing how it affects the application process behavior.

1 Introduction

Modern distributed computing demands unprecedented levels of dynamicity and
reconfiguration. Mobile computing scenarios modify the physical topology of
the system, and make communication transient and opportunistic. Mobile code
changes the software fabric of a distributed computing system into a fluid one, by
allowing program fragments to travel across hosts. Multiagent systems, computa-
tional grids, and peer-to-peer networks are other examples of domains where the
physical or logical structure of the system is continuously under reconfiguration.

The hallmark of these scenarios is that the context where computation occurs
is no longer fixed as in traditional distributed computing. A mobile host often
accesses only services that are provided by hosts in range. Mobile agents may
use only the resources available on the host they reside on. Queries in a peer-
to-peer system return results that depend on the current set of connected peers.
Interestingly, context not only defines the allowed scope for interaction, but also
affects the components’ behavior in a fundamental way, by enabling or inhibiting
some of their actions. A message can be reported by a soldier to the commander
of a patrol only if the communication medium ensures an adequate level of
secrecy. The result of a computation carried by a swarm of mobile agents can be

2 Pietro Braione and Gian Pietro Picco

computed only when they are all co-located on the same host. A particular music
file can be downloaded from a peer only if no closer one offers an equivalent file.

Dealing with a changing computational context is the fundamental challenge
of mobility and, in general, modern distributed computing. As noted in [1], a
coordination perspective is helpful in addressing this challenge, in that it allows
to separate sharply the details of a component’s internal behavior, concerned
with application issues, from the details of the surrounding computational con-
text, represented through coordination abstractions. Essentially, a coordination
perspective allows context to emerge as a first-class element, and be treated
accordingly. However, the complexity of the issues involved requires the use of
formal thinking when tackling the design of systems in this environment.

Process calculi are a common way to formally describe concurrent, distributed
systems, and have recently been used successfully for specifying the semantics
of coordination models and languages. Unfortunately, these calculi only rarely
address directly (i.e., with appropriate abstractions) the modeling of a changing
computational context. Moreover, in these few cases the specifier is constrained
by a (rather rigid) notion of context built-in the calculus. For instance, the
Ambient calculus [2] assumes space organized in hierarchical locations, and the
context perceived by a process is determined by its position in the space tree.
The resulting approach is undoubtedly elegant, in that the space structure is
naturally mirrored by the very syntactic structure of terms. On the other hand,
it forces a priori a space structure that may not be suitable for the specification
task at hand. As an example, the inherently graph-based nature of mobile ad hoc
networks and peer-to-peer systems can hardly be reduced to a hierarchy, and so
are cases where physical or logical space areas (and hence contexts) overlap.

The specification of middleware and languages assuming alternative notions
of space and context becomes then cumbersome—as we experienced directly.
Our initial goal was in fact to formalize the Lime middleware [3] using process
calculi. It was our intent that this formalization would allow us to evaluate this
specification style against a real coordination middleware, and elicit the trade-
offs against the state-based style of the original Mobile Unity formalization of
Lime [4]. We soon discovered that describing the Lime semantics using a “raw”
process calculus leads to a cumbersome specification, precisely because contex-
tual information gets buried in technical details. Proper abstractions are required
to simplify both the development and the understanding of the specification.

The contribution of this paper is a first step in laying the formal foundation
for a process calculi specification style that: i) fosters a coordination approach
by sharply separating the process behavior from computational context defined
by system changes; ii) enables the specifier to define her notion of context and
the rules governing how it affects the application process behavior. Hence, de-
coupling and flexibility in representing context are our driving motivations, with
the goal of obtaining a formalism expressive enough to be used to model a real
middleware. Process calculi is the formal tool we use to shape our ideas.

Our approach is based on reactive systems (rs), a kind of process calculi in-
spired by Berry and Boudol’s Chemical Abstract Machine (CHAM) [5]. In a rs

On Calculi for Context-Aware Coordination 3

the elementary computational steps are described as transitions (the chemical
reactions) causing the rewriting of terms representing the current configuration
of the system, expressed as a multiset of components (the chemical solution).
Any such transition is interpreted as an interaction between a number of compo-
nents which come in contact. The difficulty of representing a dynamic, subjective
behavior in rss stems from the fact that interactions are not disciplined: every
computational context may host any interaction.

In this work, we generalize the notion of rs into a new class that we call
contextual reactive systems (crs). In these systems, it is possible to specify the
computational context under which a class of interactions is allowed, and the
contexts under which it is not. This allows to inhibit some behaviors according
to the features of the context under which they should have been performed.

Our treatment of crss relies on categories. Capturing the fundamental prop-
erties at this high level of abstraction allows to concentrate on the core concepts
without being distracted by the technicalities of a specific calculus. Moreover,
it enables the definition of families of concrete calculi sharing the same abstract
nature. To make the presentation more concrete, however, we show how the cat-
egorical framework can be instantiated in a process calculus, and demonstrate
its effectiveness by formalizing some fragments of the Lime middleware [3].

This paper is organized as follows. Section 2 introduces a categorical for-
malization of reactive systems, and a simple Linda-like calculus that serves the
twofold purpose of illustrating how a reactive system can implemented by a
calculus, and of serving as a reference example. Section 3 highlights the limita-
tions of reactive systems when dealing with context. Section 4 contains the main
contribution of this paper as a formalization of the notion of crs. Section 5
shows how crss can be used in a process calculus and discusses the advantages
of our approach. Section 6 provides an example by illustrating a fragment of
a formalization of Lime. Section 7 elaborates on the findings of this paper, by
suggesting relationships with other approaches, as well as avenues for future
research. Finally, Section 8 ends the paper with some brief concluding remarks.

2 Reactive Systems

The definition of reactive system assumed in this paper is a category-theoretic
one, slightly adapted from Leifer [6] and from Sassone and Sobociński [7].

Definition 1 (Reactive system). A reactive system (rs) is a (C, I,R,D)
quadruple, where C is a category, I ∈ Ob C, R ⊆

⋃
x∈Ob C

C(I, x) × C(I, x), and
D ≤ C is composition-reflecting, i.e., D0 D1 ∈ MoD =⇒ Di ∈ MoD, i = 0, 1.

We analyze each point of this definition. The morphisms in C are called
the contexts of the system. Among them, the ground contexts denote processes.
Ground contexts generalize the terms of a calculus, while all the other contexts
generalize the “terms with a hole” obtained by replacing exactly one subterm
of a calculus’ term with a special symbol −, the hole. Replacing the hole with
a compatible subterm is abstractly modeled, in the categorical framework, by

4 Pietro Braione and Gian Pietro Picco

morphism composition: C C ′ corresponds to the term C[C ′/−]. The objects of C
serve the purpose to disciplinate composition, just like a sorting discipline is used
to disciplinate substitution in a term algebra. Ground contexts are distinguished
in the categorical framework by imposing that their source object is I , i.e., each
of them belongs to some hom-sets C(I, x). I is not necessarily initial.

R is the set of the elementary rules. An elementary rule is a pair (l, r) of
ground contexts, where l is named the redex and r the contractum of the rule.
Elementary rules express the basic interactions for some simple, paradigmatic
configurations. They are extended to form composite rules. The extension is
performed as in the λ-calculus: When a redex appears as a subterm of another
term, in some cases it may be reduced to its contractum leaving the containing
term (the context) unchanged. This idea is captured in the category-theoretic
framework by defining the subcategoryD ≤ C of reactive contexts, which specifies
the contexts under which a rule may fire, and the following relationship:

Definition 2 (Reaction relationship). The reaction relationship, →, is de-
fined as follows:

a → a′ ⇐⇒ ∃ (l, r) ∈ R, D ∈ MoD . a = Dl ∧ a′ = Dr.

This relationship contains all the rules (both elementary and composite) of the
rs, hence R ⊆→⊆

⋃
x∈Ob C

C(I, x)×C(I, x). Restricting the context under which
elementary rules can fire to a predefined class of “evaluation contexts” is a tech-
nique dating back at least to Plotkin [8], where it was used to impose evaluation
disciplines over λ-calculi. In process calculi, reactive contexts are instead used to
forbid the computation of “switched off” processes, e.g. processes under a prefix.
Composition-reflectivity is necessary to ensure some basic properties to rss.

Example. To make our formulation of rss more concrete, we introduce a pro-
cess calculus1 describing a data-based coordination system inspired by Linda.
Processes are sequential compositions of primitive actions. They execute con-
currently and coordinate themselves by exchanging tuples through a global data
space. The calculus’ terms are generated by the abstract syntax in Table 1, where
v is a value in the set V = {v0, v1, . . .}, c a coordination primitive (in or out), P
a process, T a tuple, and C a configuration. Infinite behaviors can be represented
by processes in the form recX.P , where X is a process variable and P a process
containing one guarded occurrence of X . We also require that all the occurrences
of process variables in a term generated by P are bound by some rec. We define
structural congruence ≡ as the smallest congruence on terms such that:

C1 |C2 ≡ C2 |C1 (C1 |C2) |C3 ≡ C1 | (C2 |C3)
C | 0 ≡ C recX.P ≡ P [recX.P/X]

Structural congruence equates terms which differ syntactically and neverthe-
less denote a same configuration. The operational semantics of the calculus is
presented in Table 1: the rules are self-explanatory, and are not commented.

1 The calculus is a slight modification of the one found in [9].

On Calculi for Context-Aware Coordination 5

Syntax:

C ::= P
˛

˛ T
˛

˛ C |C
P ::= 0

˛

˛ X
˛

˛ c.P
˛

˛ recX.P
T ::= 〈v〉
c ::= in(v)

˛

˛ out(v)

Semantics:

in(v).P | 〈v〉 → P (2.1)

out(v).P → P | 〈v〉 (2.2)

C → C′

C |P → C′ |P
(2.3)

C → C′

C |T → C′ |T
(2.4)

D ≡ C C → C′ C′ ≡ D′

D → D′
(2.5)

Table 1. Syntax and semantics of the LRS system.

Let us now see how the specification of LRS maps onto our definition of
reactive systems. Elementary rules are represented by the semantic rules (2.1)
and (2.2) in Table 1. Contexts are all the congruence classes of “terms with (at
most) a hole”. Reactive contexts are all the congruence classes of terms in the
form − |C. Composite rules are expressed by the semantic rules (2.3) and (2.4)
in Table 1, by recursion over the subclass of reactive contexts containing all the
(congruence classes of) terms having the form − |P and − |T .

The categorical definition of rs evidences some of its relevant features. First,
while a context denotes a locus, i.e., an incomplete entity able to host another
entity, a reactive context denotes a computational locus, i.e., a locus able to
host an entity with a behavior and let it compute. Second, rules can be applied
orthogonally under reactive contexts, i.e., any reactive context may host any
reaction—with a correct composition typing. Hence, a reactive context can nei-
ther limit nor extend the internal behaviors of the entities it hosts. Third, by the
very definition of composite rule, a reactive context is unaffected by the internal
behaviors of the entities it hosts. We can summarize the last two observations
by saying that computations in a rs are pure with respect to their context. As
we describe in the rest of the paper, this orthogonality between reaction and
context is the most relevant obstacle towards the decoupling and expressiveness
we demand, and is lifted by our definition of contextual reactive systems.

3 Motivation

In the computing scenarios we target, computation is affected by the context2

surrounding it (e.g., communication parties in range, set of services available,
mobile agents co-located on the same host), and such context is dynamically and

2 It is worth noting how here we use the term context to refer to a concept that is
different from the one defined for reactive systems.

6 Pietro Braione and Gian Pietro Picco

continuously changing. In these scenarios, the interactions between the compo-
nents of an application often depend on the current configuration of the context.

Unfortunately, in some cases these situations are not easily modeled by means
of a rs. We illustrate the issue with a simple example. A shared tuple space is
used by printers to advertise their presence, and by processes to send them
their jobs. A high-level print primitive is available to processes, whose effect is to
automatically direct the job to the best printer among those currently advertised.
Assuming, for the sake of simplicity, that only low-quality raw printers and high-
quality PostScript printers are available, a possible configuration is:

〈pr:ps〉 | 〈pr:raw〉 | print(txt).0,

which contains two advertisements and a process which prints a job and then
terminates. Our goal is to specify the semantics of print using a rs. In the first
place, we must formalize how print generates jobs for both low-quality and high-
quality printers. This can be done by rules in the form:

print(txt).P | 〈pr:raw〉 → P | 〈job,txt,raw〉

print(txt).P | 〈pr:ps〉 → P | 〈job,txt,ps〉

But how can we ensure that print generates jobs only for the PostScript printer, in
the presence of both printers? We should forbid redexes as print(txt).P | 〈pr:raw〉
to fire when they are placed in the same configuration with a tuple 〈pr:ps〉.
Nevertheless, if we consider all the “contexts with a tuple” − | 〈. . .〉 as reactive,
this cannot be achieved since rss allow any interaction to occur unrestrained
under any reactive context. In the previous example with one printing processes
and two advertisements, the system may perform one of two different transitions:

〈pr:ps〉 | 〈pr:raw〉 | print(txt).0 → 〈pr:ps〉 | 〈pr:raw〉 | 0 | 〈job,txt,raw〉

〈pr:ps〉 | 〈pr:raw〉 | print(txt).0 → 〈pr:ps〉 | 〈pr:raw〉 | 0 | 〈job,txt,ps〉

which are obtained by composing respectively the first and the second elementary
rule with the reactive contexts − | 〈pr:ps〉 and − | 〈pr:raw〉.

This simple example evidences a characteristic of rss that is central to the
theme of this paper: It is not possible to forbid the reduction of a redex based
on the properties of the context it is immersed in.

Besides being a limiting factor towards the ability to express computations
that depend on the configuration of the physical context, this kind of issue is
frequently found in many aspects of coordination languages. For instance, similar
problems arise when modeling the semantics of probe operations and reactive
programming [9]. Moreover, they also arise in modeling the semantics of Lime,
as pointed out in Section 6. We characterize the problem more precisely by
considering an extension of LRS with the bulk operation ing, which atomically
removes all the tuples matching a specified value v. Removal of an unlimited
number of matching tuples can be specified3 through an infinite number of rules

3 For the sake of simplicity we assume that, if no matching tuple is available, the
process fails by becoming inert.

On Calculi for Context-Aware Coordination 7

in the form ing(v).P |
∏

n〈v〉 → P . Nevertheless, we cannot ensure that ing always
removes all the matching tuples in a configuration. In fact:

Claim. There is no extension of LRS capable of expressing the semantics of ing.

Proof (Sketch). Let us assume by contradiction that we can, i.e., that there is
no rule a → a′ where a ing(v) prefix is consumed and at least one 〈v〉 tuple
is not. Let us define two functions ι and τ yielding respectively the number of
processes in a with shape ing(v).P , and the number of tuples in a with shape
〈v〉. (These functions can be defined by induction.) Then, if ι(a′, v) = ι(a, v)−1,
it must be τ(a′, v) = 0. Let us consider any rule a → a′ of the calculus, such as
ι(a′, v) = ι(a, v) − 1, and let us compose it with the reactive context − | 〈v〉. We
obtain a composite rule a′′ → a′′′ such as ι(a′′′, v) = ι(a′′, v)−1 and τ(a′′′, v) > 0.
This contradicts our assumption. ut

4 Contextual Reactive Systems

In the previous section we pointed out that the impossibility of inhibiting some
reductions of a rs based on the properties of the context surrounding the redex
hampers the style of modeling coordination constructs we are targeting. In this
section we will define a new class of rss overcoming this issue.

4.1 Fundamentals

To understand the spirit of our solution, let us focus on extending LRS with ing,
as discussed earlier. The problem we identified is that an elementary rule of ing is
allowed to fire under any reactive context, including those containing additional
matching tuples that hence ing cannot remove. In principle, one could solve the
issue by simply removing from D all the reactive contexts containing one or
more tuples. The obvious disadvantage of this solution is its lack of generality:
all the other elementary rules, which in principle are not affected by the presence
of tuples, must be modified accordingly. In essence, the whole calculus must be
revised to add a single primitive. In this paper, we seek instead for a more
flexible solution that limits the removal of the undesired contexts (i.e., those
with matching tuples) only to the elementary rules for ing, and leaves the rest
of the system unaffected.

In essence, the fundamental idea behind our approach is to lift the property
of orthogonality between reactions and contexts characterizing rss, and allow
instead elementary rules to be extended only by some (i.e., not necessary by
any) of the reactive contexts in D. Composite rules can still be obtained by
recursively extending a core set of elementary rules with a set reactive contexts,
which belong to the part of the configuration left unaffected by the transition.
The important difference with rss, however, is that each elementary rule is now
associated to its own specific subset of reactive contexts: these are the only ones
the rule can be composed with. These intuitions are formally captured by the
following definitions, analogous to those enunciated for rss.

8 Pietro Braione and Gian Pietro Picco

Definition 3 (Contextual reactive system). A contextual reactive system
(crs) is a (C, I,R,D,DJl, rK) quintuple, such as (C, I,R,D) is a rs, and DJl, rK
is a function mapping any elementary rule (l, r) ∈ R to a composition-reflecting
subcategory of D.

Definition 4 (Reaction relationship for contextual reactive systems).
The reaction relationship, →, is defined as follows:

a → a′ ⇐⇒ ∃ (l, r) ∈ R, D ∈ Mo (DJl, rK) . a = Dl ∧ a′ = Dr

As with reactive systems, R ⊆→⊆
⋃

x∈Ob C
C(I, x) × C(I, x).

crss differ from rss only for the presence of a function DJl, rK, which cap-
tures the association between elementary rules and their allowed reactive con-
texts, represented by a subcategory of D. Accordingly, the definition of → now
constrains D to belong to DJl, rK, therefore forbidding all the other contexts
from being composed with the elementary rule. In crss, different elementary
rules may have different contextual constraints.

Interestingly, the class of crss strictly contains that of rss. Indeed, the latter
are obtained from the former by imposing that DJl, rK = D for all the (l, r) ∈ R—
i.e., as the crss where any elementary rule can be applied under any reactive
context. Clearly, crss are more expressive, in that the computational locus is
now able to influence which interactions can or cannot be performed by the
components hosted in it. In a sense, reactive contexts are elevated to a first-class
status, and this greatly simplifies the specification task, as discussed in the next
section. On the other hand, in our formulation of crss an internal transitions
performed by a group of components still does not affect the surrounding context.

4.2 Elementary Reactive Contexts

The reactive contexts of a rs can usually be expressed as the composition of a
number of simpler, non-decomposable contexts. For instance, in the LRS system
of Table 1, every reactive context is built by repeatedly composing in parallel
either terms T , denoting tuples, or terms P , denoting processes. Hence, the set4

D of the reactive contexts of LRS is generated by all the contexts in the form
− |P or − |T . This characteristic is fundamental for enabling a specification of
rss using a rewrite system. Hence, in this section we define formally the notion
of elementary context for a rs, and then see how this can be extended to crss.

Let us define, for any X ⊆ D, X? as the minimal set such that X ⊆ X?,
and such that D0, D1 ∈ X? =⇒ D0 D1 ∈ X?, whenever D0 D1 is defined. The
? operator is a closure on D, which we call composition closure. The following
definition is standard in universal algebra:

Definition 5 (Elementary reactive context). An (irredundant) basis for
D is a minimal generating set for D w.r.t. the closure operator ?, i.e., a subset
B ⊆ D such that B? = D, and such that B′ ⊆ B ∧ B′? = D =⇒ B′ = B.
The elements of a basis B for D are called elementary (reactive) contexts.

4 To improve readability, we use the definitions D
def

= MoD and DJl, rK
def

= Mo (DJl, rK).

On Calculi for Context-Aware Coordination 9

When D has a basis, any reactive context can be finitely decomposed on it, i.e.,
if D ∈ D then D = Bn−1 . . . B1 B0, for some Bi ∈ B, i = 0 . . . n − 1.

The existence of a basis is relevant as it enables us to express the compos-
ite rules of a rs by induction. rss are usually specified by means of a logic,
whose axioms are the elementary rules, and whose inference rules describe how
composite rules are constructed by composing a (not necessarily elementary)
rule with an elementary context. As an example, in LRS these inference rules
are rule (2.3) and (2.4) for parallel composition in Table 1. On the other hand,
composite rules are formally defined as the composition of an elementary rule
with a (not necessarily elementary) reactive context. For rss the two approaches
yield the same result, but for crss this symmetry is less obvious, because ev-
ery elementary rule has its own allowed set of reactive contexts, determined by
DJl, rK. Hence, it makes sense to wonder whether every DJl, rK has a basis. Not
surprisingly, the answer is yes, assumed that D has one. Perhaps a little more
surprising is the fact that every DJl, rK has exactly the basis one would expect,
namely, the projection of the basis of D on DJl, rK. This is stated formally by
the following proposition, which we prove correct.

Proposition 1. Let B be a basis for D, and let us define BJl, rK
def

= DJl, rK∩B,
for each (l, r) ∈ R. Then, BJl, rK is a basis for DJl, rK.

Proof. We begin by proving that BJl, rK generates DJl, rK. B obviously generates
DJl, rK, so every context in DJl, rK can be decomposed on B. But DJl, rK is
composition-reflecting, thus every component of this decomposition must also
be in DJl, rK. This proves that every context in DJl, rK can be decomposed on
DJl, rK∩B = BJl, rK, i.e., that DJl, rK ⊆ (BJl, rK)?. Being BJl, rK ⊆ DJl, rK, thus
(BJl, rK)? ⊆ (DJl, rK)? = DJl, rK, we proved that (BJl, rK)? = DJl, rK.

Now we prove by contradiction the irredundancy of BJl, rK. Let us assume
the existence of B′ ⊂ BJl, rK, such as B′? = DJl, rK. This means that for some
B ∈ DJl, rK ∩ B is B /∈ B′. But B′ generates DJl, rK, of which B is a member,
thus B = Bn−1 . . . B1 B0, with Bi ∈ B′. This implies that B′′ = B − {B} ⊂ B
generates D, thus contradicting the assumption that B is a basis for D. ut

Note that the intersection of a basis for an algebra with the carrier of one of its
subalgebras does not, in general, yield a basis for the subalgebra. Composition-
reflectivity of DJl, rK is the crucial hypothesis yielding this property. This result
suggests that expressing composite rules by induction in a crs is not harder than
expressing them in a rs, notwithstanding the proliferation of sets of contexts.
This will be the object of the next section.

5 Specifying Contextual Reactive Systems

In this section we move from the abstract, categoric-theoretic setting where we
defined crss to a process calculi notation suitable for specification. We focus on
configurations in the form of flat (non-structured) parallel composition of terms.
Albeit we omit a formal definition of flat crs, we remark that all the calculi in
this paper are flat, and that flat systems always have a basis for D.

10 Pietro Braione and Gian Pietro Picco

5.1 Basics

A transition systems is usually specified by means of a logic whose sentences
express the existence of a (possibly labelled) transition from one state to another.
Sentences are built by means of recursive application of inference rules to a set
of axioms. Incarnations of this basic principle have been formalized in literature,
e.g., by transition systems specifications [10] and rewriting logic [11].

Since rss differ from crss only due to the presence of the DJl, rK function,
the important issue to be dealt with in crss concerns how composite rules are
defined. In a rs specification, appropriate inferences are introduced in the form

a → a′ B ∈ B

B a → B a′
,

i.e., extending rules with elementary contexts. In a crs, we must attain more
strictly to the categorical definition of composite rule and write the inference as

(l, r) ∈ R D ∈ (BJl, rK)?

D l → D r
,

because we have no immediate way to recursively extend DJl, rK to composite
rules. For this reason, we define a different specification scheme, which evidences
how the specification of an elementary rule is associated with the corresponding
specification for its DJl, rK set. This scheme has the form:

{B . P(B, L, R)}? L → R . P ′(L, R)

On the right hand side is the elementary rule scheme L → R, while on the left
hand side is a set scheme {B . P(B, L, R)}. The two schemes can be constrained
by two predicates P and P ′, respectively. The schemes are instantiated by si-
multaneous substitution of all their metavariables. This produces an elementary
rule l → r on the right, and a set of elementary contexts on the left. This set is
closed with respect to context composition, yielding the set (BJl, rK)? = DJl, rK.
Juxtaposition of the set scheme and of the rule scheme stands for their compo-

sition, formally defined as DJl, rK (l → r)
def

= {D l → D r . D ∈ DJl, rK}. This
yields the set of all the composite rules generated by the elementary rule l → r.
When the elementary rules generated by a given scheme can be applied under
any reactive context, we will omit to write the set scheme.

Specifications expressed with this notation are not very readable, since BJl, rK
does not bear an intuitive interpretation. Hence, we now present some notational
improvements that simplify the specification task and, at the same time, shed a
different light on the essence of crss.

5.2 Inhibitors and Enablers

Let us reconsider the printer example presented in Section 3. We are now able
to define a rule for printing on a raw printer, which does not fire if a PostScript
printer is present:

{− | 〈v〉 . v 6= pr:ps}? print(txt).P | 〈pr:raw〉 → P | 〈job,txt,raw〉 | 〈pr:raw〉

On Calculi for Context-Aware Coordination 11

The set scheme can be rewritten more compactly in terms of its complement.

Definition 6 (Inhibiting Elementary Context (Inhibitor)). Let us define,

for any set X ⊆ B, the set Xc def

= B − X. Then, IJl, rK
def

= (BJl, rK)c represents
the set of inhibiting elementary contexts (inhibitors), or anticatalysts, of the
elementary rule (l, r).

Using inhibitors, we can rewrite the previous rule as:

{− | 〈pr:ps〉}c? print(txt).P | 〈pr:raw〉 → P | 〈job,txt,raw〉 | 〈pr:raw〉.

This rule yields the same crs as the previous one, since (IJl, rK)c? = (BJl, rK)?.
Nevertheless, we argue that the latter is in many cases, including those we illus-
trated in Section 3, simpler and more intuitive than the former, in that describing
what must not be present in the configuration at hand, rather than what may.
This because, in practice, primitives are affected only by a well defined and re-
stricted class of entities, which are precisely those that must not be present,
while those that may be present are, indeed, ininfluent.

In the elementary rule scheme for print we considered earlier, we can observe
the presence of an invariant part, the tuple 〈pr:raw〉. This tuple appears both
in the redex and in the contractum of the rule: its presence is necessary for the
rule to fire, but the state transition preserves it. In a sense, the tuple represents
a portion of the rule context that is nonetheless necessary to its execution. This
is a rather common situation, that we can capture formally as follows.

Definition 7 (Maximal Invariant Context). We informally define the max-
imal invariant context (mic) of a rule l → r as the reactive context D such that
l = D l′ and r = D r′ for some pair of ground contexts l′, r′, and such that the
new rule l′ → r′ is minimal, i.e. does not preserve in its contractum any of the
entities appearing on its redex.

Minimality can be formalized as the requirement that l′ and r′ are relatively
prime, i.e., their decompositions on B have no elementary context in common
besides the −. The mic of the rule for print is − | 〈pr:ps〉. It is composed of a
single elementary context, although in general the mic of a rule may contain
more than one. For uniformity, rather than exploiting directly the mic in the
specification we prefer to deal with its elementary contexts:

Definition 8 (Enabling Elementary Context (Enabler)). The enabling
elementary contexts (enabler), or catalysts, of a rule are all the elementary
contexts belonging to the rule’s mic.

When enablers and inhibitors are both put in evidence, a specification becomes:

{I ∈ B . P(I, L, R)}c? {|E ∈ B . P ′(I, L, R)|}; L → R . P ′′(L, R)

with the constraint that the rules defined by the scheme L → R . P ′′(L, R)
must be minimal. The multiset scheme {|E ∈ B . P ′(I, L, R)|} specifies the
enablers, and the semicolon operator (;) applied on a multiset of contexts, yields
the composition of all the contexts in the multiset5. Using this notation, the

5 This definition is unambiguous if E0 E1 = E1 E0 when both exist. For the systems
we are considering this is precisely commutativity of parallel composition.

12 Pietro Braione and Gian Pietro Picco

example rule for the print operation becomes:

{− | 〈pr:ps〉}c? {| − | 〈pr:raw〉|}; print(txt).P → P | 〈job,txt,raw〉,

where the semicolon exponent is, in this case, pleonastic.
Enablers and inhibitors are similar: both determine how a behavior is affected

by the surrounding environment. Nevertheless, they have different effects on the
rule they are associated to. Inhibitors specify the set of elementary contexts that
must not be present in a rule’s context: their presence disables the firing of the
rule. On the other hand, enablers define the set of elementary contexts that must
be present in the context of a rule for it to fire. The next section discusses how
these abstractions can be used effectively to model a real middleware.

6 An Example: Formalizing Lime

In this section we set out to specify the LiCS system, a subset of the Lime

coordination middleware [3]. We first summarize informally its main features,
and then show how it can be given a formal semantics effectively by using a crs.

In LiCS processes and tuples are organized in agents, the units of mobility.
Agents may be members of groups. Group membership defines the set of tuples
accessible to an agent. The tuples of an agent are transiently shared throughout
the group the agent is member of: an in on the tuple space may return a local
tuple as well as one belonging to another agent in the group. An agent joins a
group through an engagement procedure, and leaves it through a disengagement.
As the agent disengages, all its tuples become unavailable to the group. Insertion
of a tuple in the tuple space is performed through a modified version of out,
annotated with the name of a destination agent. If source and destination are
engaged in the same group, the tuple is immediately delivered. Otherwise, it is
retained at the source and tagged with the name of its destination; these tuples
are said to be misplaced. Misplaced tuples are delivered as soon as the source
and the destination agents become engaged in the same group.

The syntax of terms is shown at the top of Table 2. The A term denotes the
existence of an agent in a configuration, and has the form g :: a, where a is the
name of the agent and g is the name of the group it belongs to. The special name
ε is used to indicate disengaged agents, i.e., agents that are not members of any
group. Tuples and processes are qualified with the agent they belong to. Tuples
also report, after the @ symbol, the name of their destination agent6. The out

operation is annotated with the name of the destination agent. The engagement
en and disengagement den operations, together with in, complete the calculus.

The semantics of the calculus is reported in the rest of Table 2. An evident
difference with conventional calculi is that the specification is split in two parts:
behavioral rules and the (enabling and inhibiting) contexts constraining their ex-
ecution. Structural congruence on terms is defined as for LRS, with the equation
C | 0 ≡ C replaced by C | a :: 0 ≡ C ⇐= C ≡ C ′ | g :: a.

6 To improve readability, this is left out when irrelevant.

On Calculi for Context-Aware Coordination 13

Syntax:

C ::= A
˛

˛ P
˛

˛ T
˛

˛ C |C A ::= ε :: a
˛

˛ g :: a
P ::= a :: 0

˛

˛ a :: X
˛

˛ a :: c.P
˛

˛ a :: recX.P T ::= a :: 〈v〉@a
c ::= in(v)

˛

˛ out[a](v)
˛

˛ en(g)
˛

˛ den

Rules:

a :: in(v).P | a :: 〈v〉 → P (6.1)

E
;
1 a :: in(v).P | a′ :: 〈v〉 → P (6.2)

E
;
2 a :: out[a′](v).P → a :: P | a :: 〈v〉@a′ (6.3)

I
c?
1 E

;
3 a :: out[a′](v).P → a :: P | a :: 〈v〉@a′ (6.4)

E
;
1 a :: out[a′](v).P → a :: P | a′ :: 〈v〉@a′ (6.5)

a :: den.P | g :: a → a :: P | ε :: a (6.6)

I
c?
2 E

;
4 a :: en(g).P | ε :: a |

Y

Ta

ai :: 〈vi〉@ a → a :: P | g :: a |
Y

Ta

a :: 〈vi〉@a

. a′ :: 〈vi〉@a ∈ Ta =⇒ g :: a′ ∈ Ag (6.7)

D ≡ C C → C′ C′ ≡ D′

D → D′
(6.8)

Contexts:

E1 = {| − | g :: a, −| g :: a′ . a 6= a′|} E2 = {| − | ε :: a|}

E3 = {| − | g :: a|} E4 = {| − | g :: a′ . g :: a′ ∈ Ag|}

I1 = {− | g :: a′} I2 =
{− | g :: a′ . g :: a′ /∈ Ag } ∪

{− | a′ :: 〈v〉@a . g :: a′ ∈ Ag}

Table 2. Syntax and semantics of the LiCS system.

The first two rules define the semantics of in. Rule (6.1) defines input of local
tuples, i.e., belonging to the same agent a that issued the operation. Rule (6.2)
specifies an in withdrawing the tuple from the tuple space of a different agent a′,
by virtue of transient sharing. In this case, LiCS prescribes that the two agents
a and a′ must be members of the same group. This requirement is captured7 by
the enabling context E1. The out primitive is described by three rules. Rule (6.3)
defines the semantics of an out issued by a disengaged agent: the emitted tuple
is retained locally. Rule (6.4) specifies an out issued by an engaged agent for
a destination agent currently not engaged in the same group. Notably, the two
rules are exactly the same: the different semantics is entirely captured by the
contexts associated to the rules. In the first case, the enabler E2 requires that

7 The two rules could be collapsed in a one by removing the predicate in E1. We chose
to model them separately to highlight the fact that one is local and the other remote.

14 Pietro Braione and Gian Pietro Picco

the agent is disengaged. In the second case, an enabler and an inhibitor are
combined to express that the agent must be engaged in g, and the destination
agent a′ must not be engaged in the same group. Finally, rule (6.5) specifies
the immediate delivery of the tuple when the source and destination agent are
both engaged in g. Again, this rule is very similar to the other two, and actually
leverages the enabler E1 previously used by rule (6.2).

This first fragment of the semantics of LiCS evidences the significant advan-
tages brought by our approach. The specification of behavior is sharply decoupled
from the specification of the context where it may occur. This greatly simplifies
the understanding of the specification, because it allows to grasp more directly
the similarity between rules. In many cases it even elicits the fact that two rules
with different semantics are in reality the same behavior applied in two differ-
ent contexts (as with out), or two different behaviors taking place in the same
context (as with E1). A specification with a traditional calculus is bound to
bury these fundamental aspects in a direct representation of context, and hence
obfuscates irremediably the true meaning of the semantic rules.

The specification of LiCS is completed by the semantics of engagement and
disengagement. Disengagement is performed simply by changing the agent’s
group name in rule (6.6). Engagement must also perform delivery of misplaced
tuples to the agent a joining the group. Rule (6.7) relies on the definition of
the sets Ta, containing all the misplaced tuples in the system that are destined
to a, and Ag , containing the names of all the agents engaged in g. The redex
describes a situation where a is currently disconnected and the system contains
several misplaced tuples destined for it. The contractum shows a engaged in g
and containing all misplaced tuples. The predicate specifies that the misplaced
tuples in Ta must belong to some agent in g. The enabler E4 ensures that all the
terms representing the agents currently engaged are present, with the twofold
purpose of ensuring that the tuples in Tg effectively belong to some agent in g,
and that all of them are involved in the engagement procedure. The inhibitor
I2 forces two global constraints: Ag must contain all the agents in g, and Ta

must contain all the misplaced tuples in the g with the engaging agent a as
destination. This prevents the rule from firing in contexts where some agents
and/or tuples are “left behind” during engagement.

The specification of engagement is arguably more complex and less intuitive
than the one for the other operations. However, some observations are notewor-
thy. First, engagement is the most complex portion of the original Lime model,
both in terms of semantics and actual middleware implementation. Then, it is
not surprising to see such complexity reflected in the specification. Second, deal-
ing with misplaced tuples and their reconciliation essentially involves dealing
explicitly with state—something process calculi are notoriously not very good
at. Third, without the level of abstraction provided by explicitly separating con-
text, the specification would have been much more complicated and awkward.
This is best understood by observing that the problem solved by the inhibitor
I2 (i.e., ensuring that the rule fires in a context with all the agents and all
their misplaced tuples) is very similar to the problem of implementing ing we

On Calculi for Context-Aware Coordination 15

discussed in Section 3. In our approach, the problem of ensuring that all of the
necessary context is present and of preventing firing in all of the “partial” context
configurations finds a natural and elegant solution in the use of inhibitors.

7 Discussion

To our knowledge, none of the works in the lively field of calculi for distributed
systems takes a perspective similar to ours. From a strictly technical point of
view, the closest approach is described in [9], which gives a semantics for a
Linda-like calculus with reactive programming constructs. However, all the rules
are specified directly, with the allowed contexts explicitly mentioned in the rule
schemes. This solution yields a rs somewhat similar to a crs, although the
authors do not strive towards a general framework, and hence the resulting
model suffers from the drawbacks we discussed at the beginning of Section 4.1.

Since our study is at an early stage, the opportunities for further research
are many, and we cite only some here. Firstly, the formal properties of crss
are largely to be assessed. We are currently investigating if desirable operational
congruences can be obtained by extending the technique in [6], which builds
labelled transition systems with bisimulations as congruences from some classes
of rss. Extending them to crss to obtain operational congruence is apparently
harder, since congruence in a crs may be broken not only because new behav-
iors may arise by augmenting the context, but also because old ones may be
disabled. We conjecture that the extension of this technique is likely to resem-
ble transition systems with negative premises [12]. Secondly, we want to address
arbitrary models of space, beyond flat (as in LiCS) or hierarchical (as in the Am-
bient calculus) ones. Examples are spaces with adjacency, or multiple coexisting
descriptions, e.g., combining physical and logical notions of space. Reflecting the
space structure in the syntactic structure of the calculus terms, as done in Am-
bients, is no longer feasible. We are therefore studying how to represent spatial
information in a flat system. Finally, our long-term goal is to define an effective
and usable specification framework. In this context, a crs logic is a viable op-
tion to increase expressiveness and improve decoupling of the operational and
the context-related parts of the specification. Formalization of other coordination
models and middleware will be a necessary step to validate our approach.

8 Conclusions

In modern distributed computing the modeling of a dynamically changing con-
text is becoming of paramount importance. Unfortunately, process calculi, a
common formal tool for describing concurrent and distributed systems, do not
provide specialized abstraction to deal effectively with context. In this paper, we
set the grounds for contextual reactive systems (crs), a generalization of the well-
known reactive systems where the representation of context is sharply decoupled
from the one of processes. We maintain that the abstraction characteristics of
our framework facilitate the specification chore and improve the understanding

16 Pietro Braione and Gian Pietro Picco

of the resulting specification. Evidence for our hypothesis is provided in this
paper by defining suitable process calculi abstractions based on our categorical
formulation of crss, and by presenting as an example the formalization of a
subset of Lime, a coordination middleware for mobile computing.

Acknowledgements. The work described in this paper was supported by the
project NAPI, funded by Microsoft Research Cambridge, and partially supported
by the projects SAHARA, VICOM and IS-MANET, funded by the Italian gov-
ernment. The authors would like to thank Alessandra Cherubini for her com-
ments on early drafts of this paper.

References

1. Roman, G.C., Murphy, A., Picco, G.: Coordination and Mobility. In Omicini, A.,
Zambonelli, F., Klusch, M., Tolksdorf, R., eds.: Coordination of Internet Agents:
Models, Technologies, and Applications. Springer (2000) 254–273

2. Cardelli, L., Gordon, A.: Mobile ambients. In Nivat, M., ed.: Proc. of the 1st

Int. Conf. on Foundations of Software Science and Computation Structures (FoS-
SaCS’98). Volume LNCS 1378., Springer (1998) 140–155

3. Murphy, A., Picco, G., Roman, G.C.: Lime: A Middleware for Physical and Logical
Mobility. In Golshani, F., Dasgupta, P., Zhao, W., eds.: Proc. of the 21st Int. Conf.
on Distributed Computing Systems (ICDCS-21). (2001) 524–533

4. Murphy, A., Picco, G., Roman, G.C.: Lime: A Coordination Middleware Support-
ing Mobility of Hosts and Agents. Technical report, Politecnico di Milano (2003)
Submitted for publication. Available at www.elet.polimi.it/~picco.

5. Berry, G., Boudol, G.: The Chemical Abstract Machine. Theoretical Computer
Science 96 (1992) 217–248

6. Leifer, J., Milner, R.: Deriving bisimulation congruences for reactive systems. In
Palamidessi, C., ed.: Proc. of the Int. Conf. on Concurrency Theory (CONCUR
2000). LNCS 1187, Springer (2000) 243–258

7. Sassone, V., Sobociński, P.: Deriving Bisimulation Congruences: A 2-Categorical
Approach. In Nestmann, U., Panangaden, P., eds.: Proc. of the 9th Int. Wksp. on
Expressiveness in Concurrency (EXPRESS’02). Volume 68 of Electronic Notes in
Theoretical Computer Science., Springer (2002)

8. Plotkin, G.: Call-by-name, call-by-value and the λ-calculus. Theoretical Computer
Science 1 (1975) 125–159

9. Busi, N., Rowstron, A., Zavattaro, G.: State- and event-based reactive program-
ming in shared dataspaces. In Arbab, F., Talcott, C., eds.: Proc. of the 5th Int.
Conf. on Coordination Models and Languages (COORDINATION’02). LNCS 2315,
Springer (2002) 111–124

10. Groote, J., Vaandrager, F.: Structured operational semantics and bisimulation as
a congruence. Information and Computation 100 (1992) 202–260

11. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science 96 (1992) 73–155

12. Groote, J.: Transition system specifications with negative premises. Theoretical
Computer Science 118 (1993) 263–299

