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Abstract. Code mobility greatly improves the flexibility of the architec-
ture of a distributed application. However, currently available platforms
do not exploit fully the potential of mobile code. For instance, remote
dynamic linking of code is often restrained to a well-known site, and
applications are prevented from manipulating their own code base.
In this paper, we use the notion of transiently shared tuple space, origi-
nally introduced in the Lime coordination model, to overcome these lim-
itations. We allow tuples to contain classes, and tuple spaces become the
code base associated to the loading mechanism in the mobile code run-
time support. Transient sharing allows for location transparent retrieval
of classes, and accommodates changes determined by the reconfiguration
of the system, e.g., due to mobility. In doing this, we effectively define a
new coordination approach that deals uniformly with code and data.
The presentation is completed by a proof-of-concept prototype, built by
extending an existing Java-based mobile code toolkit.

1 Introduction

Code mobility [7] is increasingly considered among the options available to the
designer of distributed applications. Mobile code enables run-time component
relocation, hence decoupling a component from the location where it is executed.
This separation provides several advantages, notably the potential for a better
use of communication resources and the enhanced flexibility of the overall system.

Technologies supporting mobile code differ in the mechanisms provided and
in the relocation styles supported1. However, code mobility is typically exploited
to download code from a well-known source, that acts as a code repository, thus
providing the ability to extend at run-time a remote executing unit. This solution
has proven its validity in several domains, among which the downloading of Web
applets from a server to a browser is probably the most popular and best known.

Nevertheless, this solution can be overly limiting in scenarios that are less
stable and predictable, like those defined by mobility, and where it is not possible
(or not practical) to expect to know statically the location where a code fragment

1 For a survey of technologies, architectures, and applications of code mobility see [7].



will be found at run-time. Moreover, most of the middleware exploiting mobile
code keeps it behind the scenes. Code relocation happens only as an indirect
effect of some system event, like the need to resolve a class that is not found
locally. Applications are almost never enabled to manage directly their code
base, e.g., by explicitly adding or removing code fragments. Nevertheless, this
latter capability is often useful to define code caching schemes.

In this paper, we explore an approach to deal with mobile code that: i) does
not depend on the presence of one or more code repositories dispersed in the
network, rather it enables applications to localize and retrieve code with various
degrees of location transparency; ii) allows applications to manage explicitly the
code fragments that are being relocated within the system.

To achieve this goal, we adopt a coordination perspective rooted in the idea
of transiently shared tuple space introduced by Lime [15, 13], a middleware that
adapts Linda to the domain of physical and logical mobility. In Lime, Linda’s
notion of a global and persistent tuple space is replaced by a transiently shared
tuple space that contains the union of the tuple spaces belonging to the mobile
units currently in range, and whose content is dynamically rearranged according
to mobility. In this work, we explore the opportunities that arise when the Lime
notion of transiently shared tuple space is coupled with mobile code mechanisms.
The result is a coordination infrastructure that treats code and data in a uniform
way, and enables the coordination of agents not only through the exchange of
information, but also by direct manipulation of the agent behavior.

To prove the feasibility of our ideas we implemented a proof-of-concept proto-
type that extends the mobile code toolkit µCode [14] with the ability to dynam-
ically load classes in a location transparent way from a transiently shared tuple
space. Nevertheless, it is not our intent to present here a final, full-fledged solu-
tion or system. Instead, by eliciting the synergies between coordination models
and mobile code, and by showing an implementation path towards their realiza-
tion, our ultimate goal is to spur further research about this topic.

The paper is structured as follows. Section 2 discusses the motivations of the
work we present. Section 3 gives a brief overview of the Lime model. Section 4
discusses the advantages and opportunities disclosed by coupling a transiently
shared tuple space with mobile code. Section 5 reports about the design and
implementation of our prototype. Section 6 places our paper in the context of
related work. Finally, Section 7 discusses ongoing and future work on the topic
of this paper, together with some brief concluding remarks.

2 Motivation

Currently available support for mobile code is mostly limited to variations of the
well-known class loading mechanism provided by Java2. In Java, the class loader
is programmable, and allows for redefinition of most of the logic determining
2 Since Java-based mobile code systems are by far the most common, and the systems

considered in this paper are Java-based, we often use class instead of code fragment,
although a lot of what follows is applicable also to systems that do not rely on Java.



how a class is retrieved at name resolution time. Systems exploiting mobile code
typically specialize the Java class loader by defining alternative ways to retrieve
classes, e.g., by downloading them from a specified site. This code on demand [7]
approach is the one originally used to support Java applets in Web browsers and
is increasingly being exploited also in middleware, e.g., for dynamic downloading
of stubs in Java/RMI and Jini. Moreover, it is being exploited in mobile agent
platforms, to allow an agent to travel with only a subset of the classes needed,
and dynamically download the others on demand.

Unfortunately, in its most common incarnations this approach has at least
two relevant drawbacks. First of all, the local code base, i.e., the set of classes
locally available, is usually accessible only to the run-time support, and hence
it remains hidden from the applications. Moreover, remote dynamic linking of
code is usually limited to a well-known site acting as a centralized remote code
base. In the following, we analyze these two limitations in more detail.

Lack of Dynamic Access to the Code Base. Usually, applications can intervene
on the code base only statically, e.g., by specifying the value of the CLASSPATH
environment variable. As a consequence, an application cannot query or modify
at run-time the set of classes available locally or at a remote site. Nevertheless,
this capability turns out to be useful in several situations. For instance, it would
open up the ability for dynamic reconfiguration. The current code base could
be inspected by a system administrator operating remotely, or even by a mo-
bile agent co-located with the application, and upgraded with code fragments
containing new functionality, or replacing obsolete ones.

Moreover, it would enable applications to define code caching schemes. Some
amount of caching is already provided in Java-based systems, where the redefined
class loader typically maintains a class cache to avoid unnecessary retrieval and
definition of class objects already loaded. Nevertheless, the cache is typically
filled only at name resolution time, after the bytecode retrieval and class object
definition. Again, there is no way to explicitly and dynamically modify the cache
content, e.g., by pre-loading classes that are known to be needed in the future.

As an example, imagine a monitoring agent installed on a remote host, e.g., to
perform network management. A reasonable design for these systems is to place
in the agent the core functionality for reporting data back to a centralized man-
agement station and to perform local recovery from some common anomalous
situations, and let the agent retrieve on demand the code needed for handling ex-
ceptional situations. However, what if the management station determines that
network is about to become partitioned, e.g., due to congestion? Access to the
agent’s code base would allow the management station to upload additional rou-
tines on the agent, to cope with the anomalous situation during the period of
disconnection, before the latter actually occurs. Similarly, class caching could be
beneficial in situations where only weak connectivity is available. For instance,
a server communicating with a PDA over an increasingly noisy wireless link
may decide to proactively push some of the application classes into the PDA’s
class cache, instead of letting the PDA download them when needed, and hence
possibly during a likely disconnection.



Location-based Dynamic Linking. The other relevant drawback of current ap-
proaches to mobile code lies in the pairwise nature of the remote dynamic linking
process. As we mentioned, missing classes are usually downloaded from a well-
known site. For Web browsers, the site is the Web server from which the page
was downloaded. For Java/RMI, it is the Web server whose URL is specified as
a code base in the stubs associated to either the source or the target object of a
remote method invocation. For mobile agent platforms, it is typically either the
source of migration or a centralized code repository like in Aglets [11], Mole [16],
or JumpingBeans [6], to cite some among the best known Java-based systems.

Granted, this simple mechanism already allows for unprecented levels of flex-
ibility in deploying the code of a distributed application. Still, it appears to be
a limitation in several situations, e.g., when the code repository is not available,
when its location cannot be determined in advance, and generally in applications
characterized by a high degree of dynamic reconfiguration.

An example is provided by the field of code mobility itself. One of the ad-
vantages often claimed in the literature for mobile code is the ability to support
disconnected operations [7, 9]. In situations where communication with another
machine over a network link should be minimized, e.g., because the commu-
nication link is noisy, subject to disconnections, expensive, or insecure, mobile
code can be exploited to allow the sender to ship application code to the tar-
get machine, where it can perform processing on behalf of the sender during
disconnection. This idea is brought to an extreme by mobile agents, which al-
low a whole executing unit (e.g., a thread) to roam autonomously in the network
without the need for connectivity towards its sender. Clearly, the aforementioned
schemes for dynamic downloading, that are indeed surprisingly a very common
choice in mobile code and mobile agent platforms, actually hamper the use of
these systems for supporting disconnected operation.

Another setting where location transparent class loading is likely to be key
is provided by mobile computing and in particular by mobile ad hoc networks
(MANET) [12], which bring network reconfiguration to an extreme by assuming
that the fixed infrastructure is totally absent. The fluidity of the MANET en-
vironment is such that network functions like routing must be provided by the
mobile hosts themselves. Similarly, the application layers usually favor a peer-
to-peer architecture over a client-server one, since it is usually difficult to pick
a stable spot to place a server. Essentially, the mobile hosts can count only on
those resources that are present in the system at a given moment—and code is
no exception. As a possible application of location transparent code mobility,
imagine a scenario in the automotive application domain, where cars on a high-
way are part of a MANET. Mobile code could be exploited to propagate in an
epidemic way upgrades to car maintenance or monitoring routines, while cars
are in range, or even while they are passing in opposite directions.

Nevertheless, even in scenarios where connectivity is permanent and a code
repository is always available, alternatives are often preferrable. An application
executing at a given site and needing a class to proceed with execution, may
actually find it on a site close by or even on the same site, simply because other



application components already downloaded it. Similarly, a mobile agent may
find out that a needed class is present at a site nearby and either fetch it, or
move to that site and link it locally, if fetching is somehow prevented. Linking
from a statically determined location is simply too rigid a scheme.

In this work, we provide a way to expose the code base of the executing
units belonging to a distributed application, and to couple it with a location
transparent class loading mechanism supporting the linking of mobile code. We
achieve this goal by building upon an existing coordination model and system
called Lime, towards which we now turn our attention before describing in detail
our approach in the remainder of the paper.

3 Lime: Linda in a Mobile Environment

The Lime model [15, 13] defines a coordination layer for applications that ex-
hibit logical and/or physical mobility, and has been embodied in a middleware
available as open source at http://lime.sourceforge.net. Lime borrows and
adapts the communication model made popular by Linda [8].

In Linda, processes communicate through a shared tuple space, a multiset of
tuples accessed concurrently by several processes. Each tuple is a sequence of
typed parameters, such as <"foo",9,27.5>, and contains the actual information
being communicated. Tuples are added to a tuple space by performing an out(t)
operation. Tuples are anonymous, thus their removal by in(p), or read by rd(p),
takes place through pattern matching on the tuple content. The argument p is
often called a template, and its fields contain either actuals or formals. Actuals
are values; the parameters of the previous tuple are all actuals, while the last two
parameters of <"foo",?integer,?float> are formals. Formals act like “wild
cards” and are matched against actuals when selecting a tuple from the tuple
space. For instance, the template above matches the tuple defined earlier. If
multiple tuples match a template, selection is non-deterministic.

Linda characteristics resonate with the mobile setting. Communication is
implicit, and decoupled in time and space. This decoupling is of paramount
importance in a mobile setting, where the parties involved in communication
change dynamically due to migration, and hence the global context for operations
is continuously redefined. Lime accomplishes the shift from a fixed context to a
dynamically changing one by breaking up the Linda tuple space into many tuple
spaces, each permanently associated to a mobile unit, and by introducing rules
for transient sharing of the individual tuple spaces based on connectivity.

Transiently Shared Tuple Spaces. A mobile unit accesses the global context only
through a so-called interface tuple space (its), permanently and exclusively at-
tached to the unit itself. The its, accessed using Linda primitives, contains tuples
that are physically co-located with the unit and defines the only context avail-
able to a lone unit. Nevertheless, this tuple space is also transiently shared with
the itss belonging to the mobile units currently accessible. Upon arrival of a



new unit, the tuples in its its are merged with those, already shared, belonging
to the other mobile units, and the result is made accessible through the its of
each of the units. This sequence of operations, called engagement, is performed
as a single atomic operation. Similarly, the departure of a mobile unit results in
the disengagement of the corresponding tuple space, whose tuples are no longer
available through the its of the other units.

Transient sharing of the its is a very powerful abstraction, providing a mobile
unit with the illusion of a local tuple space containing tuples coming from all the
units currently accessible, without any need to know them explicitly. Moreover,
the content perceived through this tuple space changes dynamically according
to changes in the system configuration.

The Lime notion of a transiently shared tuple space is applicable to a mobile
unit regardless of its nature, as long as a notion of connectivity ruling engagement
and disengagement is properly defined. Figure 1 shows how transient sharing may
take place among mobile agents co-located on a given host, and among hosts in
communication range. Mobile agents are the only active components, and the
ones carrying a “concrete” tuple space; mobile hosts are just roaming containers
providing connectivity and execution support for agents.

Controlling Context Awareness. The idea of transiently shared tuple space re-
duces the details of distribution and mobility to changes in what is perceived as
a local tuple space. This view is powerful as it relieves the designer from specifi-
cally addressing configuration changes, but sometimes applications may need to
address explicitly the distributed nature of data for performance or optimization
reasons. For this reason, Lime extends Linda operations with location param-
eters, expressed in terms of agent or host identifiers, that restrict the scope of
operations to a given projection of the transiently shared tuple space.

The out[λ](t) operation extends out by allowing the programmer to specify
that the tuple t must be placed within the tuple space of agent λ. This way, the
default policy of keeping the tuple in the caller’s context until it is withdrawn
can be overridden, and more elaborate schemes for transient communication can
be developed. The semantics of out[λ](t) involve two steps. First, the tuple t is
inserted in the its of the agent calling the operation, like in a normal out. If the
agent λ is currently connected, t is atomically moved into λ’s its. Otherwise, the

Interface Tuple SpaceHost-Level Tuple Space

Federated Tuple Space

migrate

Mobile Agents
Mobile Host

Fig. 1. Transiently shared tuple spaces encompass physical and logical mobility.



“misplaced” tuple t remains within the caller’s its unless λ becomes connected.
In this case, t migrates to λ’s its as part of the engagement process.

Location parameters are also used to annotate the other operations to allow
access to a slice of the current context. For instance, rd[ω, λ](p) looks for tuples
matching p that are currently located at ω but destined to λ.

Reacting to Changes in Context. In the dynamic environment defined by mobil-
ity, reacting to changes is a big fraction of application design. Therefore, Lime
extends the basic Linda tuple space with a notion of reaction. A reaction R(s, p)
is defined by a code fragment s specifying the actions to be performed when
a tuple matching the pattern p is found in the tuple space. Details about the
semantics of reactions can be found in [15, 13]. Here, it suffices to note that two
kinds of reactions are provided. Strong reactions couple in a single atomic step the
detection of a tuple matching p and the execution of s. Instead, weak reactions
decouple the two by allowing execution to take place eventually after detection.
Strong reactions are useful to react locally to a host, while weak reactions are
suitable for use across hosts, and hence on the federated tuple space.

4 Transiently Shared Tuple Spaces as Code Bases

Coordination through Lime allows agents to access the global data space pro-
vided by the coordinated agents with varying degrees of location transparency,
and yet to ignore the details of the system configuration. Nevertheless, similarly
to other tuple space approaches, Lime tuple spaces are exploited to contain
data, which are typically used either to provide the information necessary for
coordination, or to store directly the information of interest for the application.

Instead, in this work we explore a very simple twist to the notion of tuple
space. Essentially, we ask ourselves: What can we accomplish by allowing a Lime
tuple space to contain classes, and by exploiting it as the code base associated
to a class loading mechanism?

While the idea is very simple, its implications are far reaching. To begin
with, one of the problems we highlighted in Section 2, namely, the need for
abstractions that expose the code base to the application code, finds a natural
solution. An agent can now manipulate its own code base through the primitives
defined on Lime tuple spaces, since tuples containing classes can be treated just
as ordinary data tuples, e.g., allowing class retrieval through pattern matching.
Moreover, since a Lime tuple space is permanently and exclusively associated
with its agent, when the latter moves its code base migrates along with it. Hence,
tuple spaces provide a natural way to represent the code and state associated to
a mobile agent, and to deal with the relocation of both in a uniform way.

However, transiently shared tuple spaces push the advantages one step fur-
ther. Since, as we described, a Lime agent can share its tuple spaces with those
belonging to other agents in range, each agent will have access to a code base that
is potentially much bigger than its own. Transient sharing effectively stretches
the boundaries of an agent code base to an extent possibly covering the whole



system at hand. Hence, the agent code base effectively becomes distributed,
and its content dynamically and automatically reconfigured according to host
connectivity and agent migration, according to the semantics of Lime.

This use of transiently shared tuple spaces solves the other problem men-
tioned in Section 2. A proper redefinition of the class loader, like the one we
describe in Section 5, can operate on the Lime tuple space associated to the
agent for which the class needs to be resolved, and query it using the operations
provided by Lime. Thus, the class loading mechanism can now resolve class
names by leveraging off of the federated code base to retrieve and dynamically
link classes in a location transparent fashion, e.g., through a rd, or use location
parameters to narrow the scope of searches, e.g, down to a given host or agent.

Nevertheless, the use of transiently shared tuple spaces needs not be confined
to the innards of the class loading mechanism. The coordinated agents can be
allowed to manipulate directly the tuple spaces holding classes, and represent-
ing code bases. In this case, the potential of combining transiently shared tuple
spaces and mobile code is fully available for coordination, as Lime operations
on the transiently shared tuple space are now available to manipulate the feder-
ated code base. Hence, not only can an agent proactively query up to the whole
system for a given class, but it can also insert a class tuple into the code base of
another agent by using the out[λ] operation, with the semantics of engagement
and misplaced tuples even taking care of disconnection and subsequent reconcili-
ation of the federated code base. This new class can then be used by the receiving
agent to execute tasks in previously unknown ways, or even to behave according
to a new coordination protocol. Blocking operations acquire new uses, allowing
agents to synchronize not only on the presence of data needed by the compu-
tation, but also on the presence of code needed to perform, or augment, the
computation itself. Lime reactive operations add even more degrees of freedom,
by allowing agents to monitor the federated code base and react to changes with
different atomicity guarantees. Reactions can be exploited straightforwardly to
monitor the federated code base for new versions of relevant classes. Replication
schemes can be implemented where a new class in an agent’s code base is im-
mediately replicated into the code base of all the other agents. The content of
an agent’s code base can be monitored to be aware of the current “skills” of the
agent. The possibilities become endless.

Essentially, by exploiting the notion of transiently shared tuple space for
code mobility we are defining an enhanced coordination approach that, besides
accommodating reconfiguration due to mobility and providing various degrees
of location transparency, enables a new form of coordination no longer limited
to data exchange, but encompassing also the exchange of fragments of behavior.

5 Enhancing a Mobile Code Toolkit with
Location Transparent Class Loading

To understand what it takes to bring transiently shared tuple spaces into an ex-
isting mobile code system, we implemented a proof-of-concept prototype, whose



design and implementation3 is the subject of this section. The prototype ex-
tends the functionality of an existing mobile code toolkit by coupling its class
loading mechanism with a transiently shared tuple space, and by identifying an
appropriate interface for managing the resulting federated code base.

The toolkit we chose to extend is called µCode [14], and is available at
http://mucode.sourceforge.net. The availability of the toolkit as open source
was one of the factors driving the choice, together with more pragmatic reasons
like the expertise of one of the authors as a developer for both Lime and µCode,
and the fact that the two systems have already been shown to work seamlessly
together. Nevertheless, the approach followed here can most likely be adapted
to other systems, as discussed later in this section.

We now review briefly the salient characteristics of µCode, and then discuss
how transiently shared tuple spaces holding classes have been integrated into it.

5.1 µCode

µCode [14] is a lightweight and flexible toolkit for code mobility that, in con-
trast with most of similar platforms, strives for minimality and places a lot of
emphasis on modularity. µCode revolves around three fundamental concepts:
groups, group handlers, and class spaces.

Groups are the unit of mobility, and provide a container that can be filled
with arbitrary classes and objects (including thread objects) and shipped to a
destination. Classes and objects need not belong to the same thread. Moreover,
the programmer may choose to insert in the group only some of the classes
needed at the destination, and let the system exploit remote dynamic linking for
downloading the missing classes from a target specified at group creation time.

The destination of a group is a µServer, an abstraction of the run-time sup-
port. In the destination µServer, the mix of classes and objects must be extracted
from the group and used in some coherent way, possibly to generate new threads.
This is the task of the group handler, an object specified by the programmer at
group creation time, which is instantiated in the destination µServer where its
operations are automatically invoked. Any object can be a group handler. Pro-
grammers can define their own specialized group handlers and, doing so, define
their own mobility primitives.

During group reconstruction, the system needs to locate classes and make
them available to the group handler. The classes extracted from the group must
be placed into a separate name space, to avoid name clashes with classes re-
constructed from other groups. This capability is provided by the class space.
Classes shipped in the same group are placed together in a private class space,
associated with that group. However, these classes can later be “published” in
a shared class space associated to a µServer, where they become available to all
the threads executing in it, as well as to remote ones.

Class spaces play also a role in the resolution of class names. When a class
name C needs to be resolved during execution of a thread t managed by a µServer

3 The implementation is included in the public distributions of Lime and µCode.



S, the redefined class loader of µCode is invoked to search for C’s bytecode by
performing the following steps: i) check whether C is a ubiquitous class, i.e. a
class available on every µServer (e.g., system classes); ii) search for C in the
private class space associated with t in S; iii) search for C in the shared class
space associated with S; iv) if t is allowed to perform dynamic download, retrieve
C from the remote µServer specified by the user at migration time, and load C;
v) if C cannot be found, throw a ClassNotFoundException.

Moreover, µCode provides higher-level abstractions built on the core con-
cepts defined thus far. These abstractions include primitives to remotely clone
and spawn threads, ship and fetch classes to and from a remote µServer, and a
full-fledged implementation of the mobile agent concept.

5.2 Providing Transiently Shared Class Spaces in µCode

We now discuss in detail the design of our prototype, by highlighting the design
choices we made, and the extensions that were required to µCode. Notably, no
modification was required to Lime.

Generalizing the Addressing of Dynamic Link Sources. µCode supports dy-
namic linking using a traditional scheme where the address host:port of the
µServer holding the class is somehow known. Hence, we need to change this
address format into one supporting a location transparent scheme. In our proto-
type, this is achieved by using Uniform Resource Identifiers (URI) [1] instead of
arbitrary strings, thus effectively generalizing the way the dynamic link source
is specified. The old µCode format becomes now a URI mucode://host:port,
while a URI starting with lime://, together with the appropriate addressing
scheme we describe below, exploits Lime for identifying a location transparent
link source, or an appropriate portion of the federated code base.

Incidentally, this effectively decouples the mechanism used to retrieve the
missing classes, and thus opens up additional possibilities for dynamic class
loading, e.g., loading it from an HTTP connection, or through coordination
infrastructures other than Lime.

Generalizing µCode Class Spaces. Class spaces were introduced in µCode with
the intent of providing the programmer with more flexibility in dealing directly
with mobile code, inspired by considerations similar to those presented in Sec-
tion 2 and 4. By leveraging off transiently shared tuple spaces, we essentially
provide a generalization of the class space concept by stretching its boundaries
to cover potentially the whole system.

The private class space is unchanged in our prototype, as it is necessary for
providing a separate name space for loading classes during group reconstruction.
Instead, the shared class space is now defined by a Lime transiently shared tuple
space whose tuples may contain classes, in bytecode form, and hence represents a
sort of class tuple space. By borrowing ideas from the Lime model, we can define
the following kinds of class tuple spaces, capturing varying degrees of sharing:



– Agent class tuple space (lime://<lime agent id>/<tuple space name>).
Classes are searched only in the class tuple space of the agent whose Lime
identifier is provided. Note that it is different from the private class space,
that is not a tuple space and remains hidden from the rest of the system.

– µServer class tuple space (lime://<lime host id>/<tuple space name>).
Classes are searched only in the transiently shared tuple space generated by
the agents currently hosted by the µServer.

– Federated class tuple space (lime://*/<tuple space name>).
Classes are searched in the whole transiently shared tuple space.

In the classification above, the format of the URI for each kind of class tuple
space is provided. This address can be used to restrict the scope of searches when
a class resolution needs to retrieve a missing class through remote dynamic
linking. Alternatively, applications may query and manipulate the class tuple
space by using Lime operations, by treating class tuples as normal data tuples.

Storing Classes in a µServer. The shared class space of µCode provided a way
to “publish” to the rest of the system some of the classes belonging to a group,
and originally in its private space. We now provide this functionality in a much
more powerful fashion by using transiently shared tuple spaces.

Nevertheless, shared class spaces also provided a persistency root for classes
that was useful in several situations, e.g., to implement class caching schemes.
This capability would now be lost, due to the transient nature of the shared tu-
ple space containing the classes: only those classes associated to a running Lime
agent would remain available. The solution is to associate a transiently shared
tuple space to the µServer. The semantics of Lime forces the LimeTupleSpace
object representing a transiently shared tuple space to be permanently and exclu-
sively associated to the agent that created it. The µServer must then become also
a Lime agent. This is achieved straightforwardly by letting the class MuServer
implement the lime.ILimeAgent interface.

Placing Classes into Tuples. In our scheme, mobile code is transferred by re-
trieving a tuple containing the class bytecode. A design issue is then how to
embed code into a tuple. A straightforward solution is simply to place the byte
array containing the bytecode in one of the tuple fields, and use the others
to provide information used to match the tuple (i.e., at least the class name),
like in <String name, byte[] bc>4. Different applications may associate dif-
ferent information to the class bytecode, e.g., a version number, certificates, or
application-dependent information, and hence define different tuple formats.

Redefining the Class Loader. Last but not least, the loading strategy of the
class loader embedded in µCode must be changed to encompass searches in the
transiently shared tuple space.

4 The API of the prototype actually defines a MarshalledClass helper class, to over-
come the Java limitation about using scalar types (like byte[]) in tuple fields.



public class DistributedClassSpace extends ClassSpace {
public boolean containsClass(String className, String uri);

public void removeClass(String className, String uri);

public Class getClass(String className, String uri);

public void getClassByteCode(String className, String uri);

public void putClassByteCode(String className, String uri);

public int addClassListener(String name, String uri,

ClassListener listener, short mode);

public void removeClassListener(int id);

}

Fig. 2. The class DistributedClassSpace. Exception declarations and overloaded
methods are omitted for the sake of clarity.

The strategy we adopted is similar to the original one, in that ubiquitous
classes are searched first, followed by classes in the private space. Nevertheless,
the steps of searching into the shared class space and possibly attempting a
remote dynamic linking are now collapsed into a single one. In fact, the shared
class space is now stretched to encompass possibly the whole system, and the
dynamic link source parameter specifies a scope for searching the class that
ranges from the class tuple space of a single agent, finer-grained than the original
shared class space, up to the whole federated tuple space5.

The actual implementation of class retrieval is straightforward, and relies on
parsing the URI to determine the parameters to be passed to the Lime operations
performing the actual query on the class tuple space.

5.3 Hiding Lime

As we mentioned earlier, the possibility for coordinated agents to access directly
the tuple spaces containing the classes is the alternative that leaves more degrees
of freedom to the application, and that leverages the most of the uniform access
provided by the coordination infrastructure to the application code and state.

Nevertheless, for other applications it might be reasonable to shield the co-
ordination infrastructure behind a set of interfaces that hide the details of how
classes are retrieved. This latter alternative is surely more constrained. On the
other hand, it decouples the API used to access the federated code base from
the coordination infrastructure that enables it.

In our prototype, we leveraged off of the class space concept already provided
by µCode. The class DistributedClassSpace, shown in Figure 2, specializes
mucode.ClassSpace and redefines the methods that originally allowed to query
the local class space (e.g., getClass) to perform the same query on the federated

5 Searches can also be restricted to the hosting µServer (i.e., without considering the
spaces of co-located agents), by specifying a URI containing the Lime agent identifier
associated to the µServer.



code base using the URI scheme we defined previously. This is the class that holds
a reference to the actual transiently shared tuple space containing the code base.

Moreover, DistributedClassSpace is equipped also with the ability to react
to the insertion of a class in the class space. This is accomplished by registering
a class listener, implemented using a Lime (weak) reaction. The mode parameter
allows to specify whether the listener should fire only once, or remain registered
to detect the appearance of other classes, until explicitly deregistered.

5.4 Other Considerations

The approach we followed for coupling transiently shared tuple spaces with
µCode was to specialize some of µCode classes. The task was simplified by
the fact that all of the relevant classes, including the class loader, were already
publicly accessible—a condition unlikely to hold true in the majority of mobile
code systems. Nevertheless, a small number of minor changes, e.g., to allow ac-
cess to class features originally declared as final, indeed required access to the
source code.

In principle, the approach we followed can be applied also to other sys-
tems, e.g., mobile agent platforms. Several are available, and many are also open
source. For instance, this is the case of the Aglets system, whose latest release ac-
tually provides a CacheManager class as part of the run-time support, that could
be exposed to the user to provide functionality similar to µCode class spaces,
and extended with a design similar to the one described in Section 5.3. For ap-
plications that do not rely on mobile agents, a custom class loader containing
an application-specific loading strategy could also be developed.

As for Lime, no modification was required but a couple of points need further
elaboration. First, we relied on an extension of Lime, contained in the current
public distribution, that provides the ability to invoke probe operations like inp
and rdp on the whole federated tuple space. In the original Lime model, the use
of probes was limited only to the transiently shared tuple space of a given host
or agent, in the attempt to retain the atomicity guarantees of probe invocation
and yet allow for a practical and efficient implementation. The aforementioned
extension strikes a different balance between the two aspects, by lifting the atom-
icity requirement. Hence, a probe may now execute on the whole federated tuple
space, but its (distributed) execution is not atomic, and is then allowed to miss
some tuples that might have appeared in the tuple space while the probe was
executing. This extension is actually the initial step of a broader ongoing effort
by the authors of Lime to weaken the atomicity requirements of the model.

Moreover, the Lime implementation currently requires that threads accessing
a tuple space must implement an ILimeAgent interface. This means that applica-
tion threads that want to exploit the mechanisms described here must comply to
this requirement, e.g., by subclassing from StationaryAgent or MobileAgent,
or by directly implementing the interface. This is not likely to be a big obstacle
for most applications, and surely it was not for the simple applications we used
to test our proof-of-concept prototype. However, further experience with our ap-



proach may lead us in a different direction, e.g., requiring modifications to the
Lime implementation to lift this constraint during accesses to a class loader.

6 Discussion and Related Work

The idea of placing code in a tuple space is already present in the Linda model,
where the eval primitive allows for a code fragment to be inserted in the tuple
space, and eventually evaluated to produce a new tuple. Other approaches, e.g.,
PoliS [5] allow tuple spaces to contain rules that, when fired, can modify the
tuple space. However, these and other approaches enhance the coordination in-
frastructure by introducing behavior into it, under the form of tuples containing
some form of “active” code that is able to modify the tuple space by itself.

Instead, our work takes a different viewpoint where the tuples contain “pas-
sive” code that cannot be activated by itself and modify the tuple space, rather
it is exploited directly by the applications, or indirectly through the class loading
mechanism, to augment the functionality of the coordinated agents. Interestingly,
in principle the two perspectives are complementary and could be rejoined. Thus,
for instance, it could be conceivable to have eval tuples or PoliS rules contain
only a subset of the code specifying the active behavior, and let the missing
portion be linked dynamically into the tuple by retrieving it from the current
content of the tuple space, be it transiently (like in Lime) or permanently shared
(like in Linda, PoliS, and other existing approaches).

Existing Java-based tuple space systems surprisingly do not leverage much of
mobile code, although they allow Java objects to be contained in tuple fields. For
instance, both TSpaces [10] and JavaSpaces [17] allow the coordinated agents to
access a remote tuple space using a client-server paradigm. However, TSpaces
assumes that the classes for the objects contained in a tuple being transferred be-
tween an agent and the tuple space server are found at the latter, thus essentially
relying on the default loading strategy of Java6. Instead, JavaSpaces provides a
more elaborate scheme that is nonetheless location-based. Classes are annotated
with the URL of a codebase, usually constituted by a Web server hosted by each
JavaSpaces client. This latter mechanism is exploited by Jini [18] to implement
a discovery and lookup service, by storing in the tuple space objects represent-
ing service proxies. Upon a service request, a reference to these service objects is
passed to the client, which can access the service remotely. Since this mechanism
is implemented on top of RMI, dynamic linking is triggered when some of the
stubs needed for remote invocation are missing on either the client or the server.

With our approach, we are able to provide a similar functionality—and more.
First of all, we are able to relocate code separately from objects, and also in-
dependently from the immediate need of remote dynamic linking due to name
resolution. Moreover, transiently shared spaces eliminate the need to know the
location of a lookup server, by allowing queries that are intrinsically location
transparent. Actually, the peer-to-peer perspective adopted by Lime, opposed
6 A location-based scheme similar to the one described later for JavaSpaces was posted

in the TSpaces mailing list, but apparently never made it into the official distribution.



to the client-server architecture exploited by Jini, allows any client to host its
own code base and services without the need to register with a lookup server
or to rely on a centralized code base, and thus yields an architecture that is
inherently more amenable to reconfiguration.

In this presentation, we did not consider security issues, since our focus is
in examining the potential of the novel idea of coupling transiently shared tuple
spaces and mobile code. In our approach security issues are potentially exac-
erbated by the fact that now agents are allowed to manipulate each others’
code base, and can potentially do this on a system-wide basis. Nevertheless, the
mechanisms commonly used for sandboxing in Java-based systems, coupled with
well-known techniques based on certificates and public keys should cover most of
the needs. Moreover, recent proposals of secure extensions for Lime [4] or other
tuple space models [2] are likely to be adaptable to our approach.

Similarly, in this paper we did not address scalability issues. The ability to
issue class retrieval requests potentially spanning the whole system surely adds
expressive power, but may lead to poor performance. Again, we expect these
problems to be dealt with at another level, i.e., by modifying the underlying
model and system supporting transiently shared tuple spaces, Lime in this case.
As we briefly mentioned earlier, ongoing work by the authors of Lime and by
other researchers (e.g., [4, 3]) aims at lifting some of the atomicity assumptions of
the model, in an attempt to provide a more efficient and scalable implementation.

7 Conclusions and Future Work

Currently available systems do not explore fully the potential of code mobility,
in that they support linking schemes where code is dynamically retrieved from
a well-known location, and they do not expose the code base to applications. In
general, the expressiveness of the abstractions currently available to deal with
mobile code is poor if compared to the potential that code mobility may unleash.

In this paper, we presented a different perspective by coupling the idea of
transiently shared tuple space, originally introduced in the Lime model, with
the mechanisms supporting mobile code. The result is an enhanced model of
coordination where the code base, that is indeed exposed to applications, is
virtually shared across the whole system and where mobile code is dealt with
both in a location aware and location transparent fashion. The fact that code
can be treated as data enables the use of the existing coordination primitives and
supports a unified treatment of the code and state necessary to coordination.

Future work on this topic will focus on the development of applications and
middleware based on the concepts described in this paper, to assess the im-
plications of this model. In particular, an ongoing effort is currently aiming at
implementing a Jini-like discovery and lookup service that leverages off of the
peculiarity of our coordination infrastructure.
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