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Abstract—Wireless sensor networks offer unprecedented op-
portunities to monitor natural ecosystems. However, despite the
growing number of applications (e.g., forest fire detection, wildlife
monitoring), the deployment challenges posed by the real-world
natural environment still hinder the widespread adoption of this
technology. In particular, the unpredictability of the low-power
wireless channel in the presence of vegetation requires costly
trial-and-error pilot campaigns to understand where and how to
place the wireless nodes. In this paper, we propose a technique
based on remote sensing for accurately estimating low-power
radio signal attenuation in forest environments. We leverage
airborne Light Detection and Ranging (LiDAR) instruments and
related automatic data analysis systems to determine local forest
attributes (e.g., tree density) that, once factored into a specialized
radio path loss model, enable accurate estimation of the received
signal power. Our approach is i) automatic, i.e., it does not
require in-field campaigns, and ii) fine-grained, i.e., it enables per-
link estimates. Our validation from deployments in a real forest
shows that the error of our per-link estimates of the received
signal power is around ± 6 dBm—the accuracy of RSSI readings
from the radio transceiver.

Keywords—Low-power wireless communication, wireless sensor
networks, remote sensing, LiDAR, IEEE 802.15.4.

I. INTRODUCTION

The last decade witnessed a surge of applications where
low-power wireless communication is employed to monitor
natural ecosystems. In most cases, wireless sensor networks
(WSNs) are deployed to either study a given environment [1]
or habitat [2], or to protect it by detecting hazards such as
forest fires [3]. Recently, however, low-power wireless has
been employed also as a means to detect proximity among
the wildlife that dwells in the natural environment [4], [5].

To these scenarios, low-power wireless communication
brings unprecedented flexibility. However, it also brings a great
deal of complication, due to the fact that its performance,
critical to system operation, are strictly dependent on the
specific environment. For instance, in the former case of a
WSN with fixed nodes, its planning (number and position of
nodes) must take into account the target environment and its
effect on network performance. However, a similar issue arises
also in the aforementioned proximity detection studies where
the animal-borne low-power wireless nodes act as a “proximity
sensor”, recording beacons exchanged among nodes. Again,
the distance at which detection may occur strongly depends on
the environment, and changes based on the movement patterns
of the animal; knowledge about its impact is key to enable a
correct scientific inference from proximity data.

These problems are exacerbated in the forest environment,

our focus in this paper, where the heterogeneous vegeta-
tion creates local effects that amplify complexity. This long-
standing issue is a barrier to environmental scientists willing
to adopt WSN technology, leaving them with the sole option
of engaging in effort-demanding pilot deployments [6]–[8].

Indeed, despite the large literature on radio propagation in
the presence of vegetation, the problem of deriving accurate
estimates for low-power wireless is still largely unsolved.
The majority of existing approaches rely on distance as the
main parameter affecting performance, implicitly assuming a
homogeneous environment in the target area. However, it is
well-known that this assumption does not hold in general for
low-power wireless [9]. In the case of forests, vegetation and
its heterogeneity (in species and/or density) are the dominant
factor determining performance, as confirmed empirically by a
few studies. Marfievici et al. [7] report significant differences
among species, assessed by directly immersing the same WSN
deployment (i.e., same nodes and topology) in different forests.
Liu et al. [8] observe, in a single large-scale deployment, that
despite the regular placement of nodes, the irregularity of the
forest makes the radio signal propagation irregular, and the
network behavior largely unpredictable.

These aspects are only partly accounted for in existing
radio propagation models tailored to forests, which carry two
main limitations:

1) they assume a priori knowledge of vegetation attributes,
whose estimation process remains often undefined, and
in practice is commonly performed by means of costly
in-field observations—therefore, the problem is simply
moved to a different layer;

2) the estimation of vegetation attributes is typically coarse-
grained, spanning relatively large areas; in principle,
instead, a fine-grained estimate on a per-link basis would
be desirable, given the high level of variation observed in
the forest environment.

In this paper, we propose a solution to both problems
based on remote sensing, a technology already applied to
forest monitoring. Remote sensing systems, typically satellite-
based or airborne, acquire data (e.g., images) over wide areas
and, through signal processing techniques, enable fine-grained,
automatic estimation of tree and forest attributes. Here, we
focus on a specific technology, Light Detection and Ranging
(LiDAR), whose characteristics we concisely summarize in
Section II. The use of LiDAR data allows us to:

1) estimate forest attributes through automatic data analysis,
therefore removing the need for in-field campaigns;

2) derive estimates that are very precise, to the point of



identifying, e.g., the position of each individual tree and
its diameter. We exploit this rich information to enable
fine-grained estimates on a per-link basis, i.e., accounting
for the presence of trees on each link.

Our approach is described in Section III. The starting point
is an existing path loss model [10], itself an extension of
the common log-normal one, that i) takes explicitly into
account the impact of trees on communication, and ii) assumes
that the latter occurs at trunk level—a common choice in
several of the aforementioned WSN deployment scenarios.
The model in [10] relies on a vegetation index (VD) that
depends on the average tree density and diameter throughout
the area of interest, that are assumed to be known a priori. Our
first contribution is the definition of a processing chain that,
based on LiDAR data, automatically and accurately estimates
these forest attributes. However, we show that, based on these
attributes, significantly better estimates of the received signal
power can be achieved. Instead of averaging these attributes
over a macro-area, we perform a fine-grained analysis where
the impact of trees is ascertained only around each individual
link, therefore enabling more accurate, per-link estimates. In
particular, this allows us to determine whether a link enjoys a
clean line of sight, and therefore a free space path loss model
is a better fit, or instead it is obstructed by trees.

The accuracy of our approach in general, and of per-link es-
timates in particular, is evaluated in Section IV based on small-
scale WSN deployments where we gather RSSI (Received
Signal Strength Indicator) traces in an area where both LiDAR
data and human-derived ground truth are available. Our results
show that the accuracy we obtain with our per-link approach
is significantly superior to existing approaches, including the
model in [10], automatically tuned with our LiDAR-based
approach. Specifically, accuracy is largely within ±6 dBm—
the accuracy of RSSI readings from the radio transceiver.

The paper is completed by a concise survey of the state of
the art in Section V, followed in Section VI by a discussion
of opportunities for future work on the topic of this paper.

II. BACKGROUND: REMOTE SENSING SYSTEMS

Remote Sensing (RS) systems acquire data and images over
wide areas of the globe by means of sensors, usually mounted
on satellites or airplanes, which measure the electro-magnetic
radiation reflected by the surface under investigation. From this
indirect measure, different properties of the reflecting objects
can be derived, depending on the type of system and its
specific characteristics [11]. By processing RS data a wealth
of information about the target surface can be conveniently
retrieved since i) signal and image processing techniques
enable automatic and scalable analysis, and ii) the cost of data
and information extraction procedures is limited w.r.t. ground
campaigns. RS is exploited for several applications including
forest analysis, for which the systems commonly used are
Light Detection and Ranging (LiDAR) and optical instruments.

LiDAR is an active system where the source of radiation
(i.e., laser pulses) is generated by the system itself. A laser
scanner, usually mounted on an airplane, transmits pulses
with a nadir-looking geometry (i.e., towards the scene under
investigation). Each pulse hits objects (e.g., trees) at different
heights during its propagation, generating a reflection (called

return) at every hit, that backpropagates towards the scanner.
The time elapsed between the transmission of the pulse and the
reception of its reflected component is converted into a distance
estimate. By exploiting this mechanism, shown in Figure 1,
LiDAR represents objects in a three-dimensional space. The
representation can be very precise in both the horizontal and
vertical directions, allowing one to retrieve information about
shape, size, and position of trees. Indeed, LiDAR data has
been extensively used for the estimation of forest structural
parameters both at stand level (i.e., by considering groups of
trees) [12], [13] and single-tree level [14], [15] (e.g., trunk
diameter estimation). The precision of the representation is
strictly dependent on the spatial density of the emitted laser
pulses. The most accurate estimates of forest parameters are
achieved with high-density LiDAR data (i.e., >5 points/m2).

In contrast, optical instruments represent only the horizon-
tal structure of forests, providing little information about the
vertical one. Moreover, being passive systems operating in the
optical frequency bands, they are strongly affected by acqui-
sition conditions (i.e., lighting, atmosphere, topography and
geometry) affecting the reliability of information extraction.
Optical images (i.e., multispectral and hyperspectral images)
can be an alternative to LiDAR data, since their lower precision
is compensated by a lower cost. Further, the two technolo-
gies can be seen as complementary. The spectral information
provided by optical systems is related to the material and
nature of the objects themselves and, depending on the spatial
and spectral resolution, may allow us to identify forest areas,
classify tree species, or quantify the amount of green leaves in
the canopy [16], [17]. The work in [18] explores the joint use
of the two technologies, studying the tradeoffs between cost
of data and accuracy of the forest parameter estimation.

In this work we consider only LiDAR due to the high
level of detail it provides w.r.t. forest structural description
(both horizontal and vertical); the possibilities opened by its
integration with optical data is part of our planned future work.

III. APPROACH

Several models for radio propagation through vegetation
have been proposed, both mechanistic [19] and empirical [10],
[20]–[23], as discussed in Section V. The work we describe
here is based on the empirical model in [10], as it shares our
focus on communication at the trunk level. This model is an
extension of the log-normal path loss model, where its parame-
ters are expressed as a function of local forest attributes, based
on a large set of measurements in forests with different species.

Fig. 1. Airborne LiDAR acquisition mechanism.



However, this model (and most of the literature) assumes that
vegetation is uniform in the area where radio attenuation must
be estimated—an overly optimistic assumption that leads to
imprecise estimates of the connectivity among individual links.

In the rest of this section we illustrate our remote sensing
approach, based on LiDAR data and signal processing tech-
niques. We overcome the two limitations above by:

1) estimating the model coefficients via automatic forest
attribute extraction, which can be reliably performed over
large areas without in-field campaigns;

2) providing fine-grained, per-link analysis of radio signal
attenuation, greatly improving the overall accuracy of the
resulting estimates, as shown quantitatively in Section IV.

A. Radio Signal Propagation in a Forest

The widely adopted log-normal path loss model [24]

PL[dB] = PL(d0 ) + 10 · n · log
(
d

d0

)
+Xσ (1)

describes both the logarithmic decay of the average signal
power as a function of the distance d from a transmitter and
the random variation of the received power around the average.
The level of attenuation in the signal power is modeled as a
function of three main parameters: i) PL(d0 ), the path loss at
a known reference distance d0 in the far field; ii) n, the path
loss exponent representing the attenuation rate w.r.t. distance;
iii) σ, the standard deviation of a zero-mean Gaussian random
variable X representing the variation around the average.

These parameters are strictly dependent on the environment
at hand. Their value is difficult to determine in general due to
the wide variability of the characteristics of the environment
itself. In our case, trees are known to cause scattering, reflec-
tion, diffraction and absorption phenomena, depending on the
radio frequency, the size of trunks, branches and leaves, and
the path interception materials. Therefore, these parameters are
usually estimated empirically, by curve fitting on large amounts
of measurements collected in the target location [23].

Azevedo et al. [10] observed a linear relation between the
path loss model parameters and the local vegetation character-
istics. For instance, for our frequency of interest f = 2.4 GHz,
the parameters of the log-normal path loss model take the form:

PL(d0 ) = − 0.82 ·VD + 40.1

n = 0.1717 ·VD + 2.2043 (2)
σ = 4.4

where path loss parameters are expressed as a linear function
of a vegetation index VD defined exclusively as a function of
detailed local vegetation attributes. Indeed, VD is defined as

VD = TD ·D (3)

where TD [trees/m2] is the average density of trees, and
D [cm] is the average diameter of their trunks.

This is a significant advancement w.r.t. the problem of pre-
dicting the impact of vegetation on wireless communication.
However, one key piece of information enabling the practical
application of this model is missing in [10]: how to estimate
the vegetation index VD reliably and cheaply. This is precisely
what we address next, as one of the contributions of our work.

B. Determining Forest Attributes with LiDAR

We estimate the average diameter D and density TD of
trees in an automatic fashion by processing high-density raw
LiDAR data. The latter are actually LiDAR returns, which can
be visualized as three-dimensional point clouds. An example
is shown in Figure 3a, where each point represents the height
at which the forest trees or ground were hit by the laser pulse.

These raw LiDAR data points are processed automatically,
yielding a map in which each individual tree is represented,
along with its attributes of position and trunk diameter. The
processing, shown in Figure 2, unfolds through three main
phases, described next:

1) pre-processing: it extracts a digital Canopy Height Model
(CHM), i.e., a high resolution raster dataset that maps the
tree height as a discrete surface;

2) single-tree identification: the crown of each tree is deter-
mined by properly segmenting the CHM raster image;

3) estimation of forest attributes: the position and dendro-
metric attributes (i.e., height, crown radius, and trunk
diameter) of each tree are determined.

Preprocessing. The LiDAR raw data are pre-processed in two
steps. First, the Digital Elevation Model (DEM) is subtracted
from each raw data point. The DEM represents the terrain and
its morphology, mapping each pixel to the height of the terrain,
with a precision that depends on the resolution of the technique
used. The DEM is derived by the LiDAR data according to
a standard technique [25]. This operation allows us to adjust
and correct the raw data by extracting the actual elevation from
the ground of each point. Second, from these corrected data
points we generate a raster image with a geometrical resolution
of 50 cm (i.e., each pixel represent a 50×50 cm2 ground area)
by assigning to each pixel the maximum height value of the
points (as obtained from the previous step) belonging to the
corresponding area. The output is the CHM raster image.

Single-tree identification. The next step is to detect each tree
in the site under investigation, and to delineate its crown. To
this end we apply a segmentation technique similar to [12].
We first perform a convolutional prefiltering on the CHM, to
emphasize local maxima and tree crowns. Then, we apply the
set level method [15] to detect local peaks and identify the
tree tops. The latter represent the seeds we use to initialize
a segmentation procedure based on the region growing tech-
nique. In each step, the region around each seed is expanded
by including all the neighboring pixels. The process is iterated
as long as the canopy height value of those pixels is higher
than a predefined threshold (i.e., the height is decreased less
than 80% w.r.t. the seed) and the region diameter does not
exceed a maximum acceptable value, 15 m in our case.

The output of this processing stage is a tree map repre-
senting the dominant layer of the forest with a 50 cm spatial
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Fig. 2. Extracting tree attributes from raw LiDAR data.



(a) (b) (c)

Fig. 3. (a) High-density LiDAR data sample (b) LiDAR points corresponding
to a single tree (c) Tree map example

resolution. Each tree crown in our scene is delineated and the
position of the trunk, corresponding to the position of the tree
top, is estimated. An example showing the relation between the
source raw LiDAR data and the resulting region delineating
the crown is shown at the bottom of Figure 3b; the position
of the tree trunk is the dot inside the region. Figure 3c shows
an example tree map containing several of these regions (i.e.,
crowns and trunks). The area shown is actually one we used
in the experiments we describe in Section IV; the bold circles
represent the position of WSN nodes.

Estimation of forest structural attributes. The tree map
allows us to determine the average density of trees TD , as
number of trees per square meter. Moreover, it provides in-
formation about the position of those trees, which is exploited
next to derive our per-link estimates of the radio signal power.

However, a last processing step is necessary to extract the
diameter Dt of each tree t. We estimate the Diameter at Breast
Height (DBH) of each tree trunk using the approach presented
in [14]. We model the diameter as a function of the tree height
HL and crown radius KL as follows:

Dt = b0 + b1HL + b2KL + b3H
2
L + b4K

2
L (4)

The tree height HL can be easily derived directly from the
CHM value corresponding to the tree top pixel (or seed).
Indeed, in the previous step we directly map this value to the
maximum height of the pre-processed LiDAR points belonging
to the corresponding 50×50 cm2 area. The crown’s horizontal
area is approximated by the area covered by all the pixels
belonging to the corresponding region, from which the crown
radius KL is easily computed as the radius of the circle whose
area is equivalent to the region area.

We determine the coefficients {b0, ..., b4} by applying a
multi-linear regression that relates a small set of ground truth
measurements of tree heights, collected by the local forest
service in the location where we performed our experiments,
with the tree height and crown radius, namely, with HL, KL,
H2
L, and K2

L. We can then apply these coefficients to Eq. (4)
and estimate the diameter of all the trees belonging to the
entire target forest site.

It is worth noting that in-field tree measurements are not
strictly necessary, as other diameter estimation approaches
exist that do not rely on them. One example are the height-
diameter allometric equations widely adopted for forest inven-
tories, which relate the tree dimensions to each other according
to the specific tree species.

C. Automatic Model Tuning and Link-Level Estimate

We now describe how we exploit the automatic processing
just described towards building estimates of the radio signal
power in the target forest site. We distinguish two cases, we
hereafter refer to as AREA and LINK. AREA refers to estimates
derived using the original model by Azevedo et al. [10], which
considers a single vegetation index VD across the area at hand
(i.e., the entire area being considered for the deployment). The
contribution we put forth here is the automatic computation
of VD . LINK, instead, refers to our own adaptation of this
model, enabling more accurate per-link estimates, for which
the vegetation index VD is individually computed.

AREA model. We exploit the output of the processing of Li-
DAR data to automatically compute the index VD , necessary
to derive estimates based on the model in [10].

We compute the tree density TD by simply counting the
overall number of trunks determined in the previous step and
dividing by the area of interest. Similarly, we easily compute
the average diameter D based on the individual diameter
estimates Dt. The vegetation index VD is simply the product
of TD and D, as per Eq. (3); substituting the value of VD in
Eq. (2) yields the value of path loss coefficients; substituting
the latter in Eq. (1) yields the expected path loss PL in the
target area, i.e., the expected amount of attenuation in the
signal power depending on the distance.

The interesting quantity from an engineering point of view,
however, is the expected received power Prx [dB]. This can be
computed as a function of path loss, at given distance and for
a given frequency, by the following

Prx = P tx +G tx +Grx − PL (5)

where P tx is the transmission power, and G tx and Grx the
receiving and transmitting antenna gains, respectively.

In other words, Eq. (5) enables us to predict, in a given
forest area, the received power as a function of distance.

LINK model. The fact that we are able to obtain automatically
predictions of received power using AREA is already per se a
significant advancement of the state of the art. Nevertheless,
the AREA model is rather coarse, as it assumes that the
influence of vegetation is homogeneous across the target area.
Unfortunately, it is well-known that typical forest vegeta-
tion can not be treated as a single homogeneous dielectric
mean [22] and that vegetation irregularity causes, in turn,
signal propagation to be irregular [8], leading to non-uniform
link connectivity even with a uniform placement of nodes.

Interestingly, AREA does not exploit all the information
that can be extracted from the processing of raw LiDAR data.
Only the average tree density and average tree diameter are
considered, as prescribed by Eq. (3), while our processing
actually yields the individual position of each tree t, along
with its diameter Dt. Next, we show how this information can
be exploited into a link-level model which takes into account
the forest attributes on a per-link basis, i.e., between each
node pair, leading to the significant accuracy improvements
we discuss in Section IV.

The idea behind our LINK model is very simple, yet very
effective. It exploits the detailed knowledge about the position
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Fig. 4. Determining the presence of trees on the line of sight.

and diameter of each tree to compute a vegetation index VD ij

specific to the link between node i and j:

1) if VD ij = 0, the link enjoys a clean line of sight:
therefore, the link behavior is better approximated by the
free space path loss model

PLfree [dB] = 20log(d) + 20log(f)− 27.55 (6)

where d [m] is the distance and f [MHz] the frequency.
2) otherwise, if VD ij 6= 0, the behavior of the link is better

estimated by a “localized” version of Eq. (5) where the
area-specific VD is replaced by the link-specific VD ij .

Figure 4 illustrates the concept. VD ij = TD ij · Dij is
computed only within the rectangular area (hereafter called
the link area) whose length is the line connecting the nodes
i and j composing the link, and whose height is the pixel
resolution used for processing, i.e., 50 cm in this paper. TD ij

is trivially computed by dividing the number of trees in the link
area by the area of the latter, while Dij is simply the average
diameter computed over the trees in the link area. If there are
no trees in the link area (TD ij = 0), the link enjoys a clean
line of sight (clean-LOS) as shown in Figure 4a. Otherwise,
if VD ij 6= 0, some trees are contained in the aforementioned
area, and the link is obstructed (obstructed-LOS) as shown
in Figure 4b. Since the notion of obstruction is defined by
considering the entire link area, a link may be obstructed even
if no tree is actually sitting on the line connecting the two
nodes, as in the case where tree t did not exist in Figure 4b.
The actual processing to classify links based on line of sight is
very simple, and simply consists of checking whether the set
of pixels belonging to the link area intersects the set of pixels
in which the positions of trunks are mapped.

Fig. 5. Classifying links based on line of sight: A real example.

Figure 5 shows a detail of a real tree map representing
the forest site where we performed the experiments reported
in Section IV. A portion of the WSN we deployed in that
location is also depicted: the bold circles denote the positions
of nodes (attached to trunks), while thick lines denote some
of the links connecting them.

IV. VALIDATION

We validate our LiDAR-based approach for the automatic
assessment of low-power radio signal attenuation in forests by
comparing our predictions with RSSI traces we collected in
small-scale WSN deployments in a real forest. First, we present
the selected location and describe our WSN deployments, the
LiDAR data set we used, and how we acquired in-field RSSI
traces. Then, we report and discuss our experimental results.

A. Experimental Location

Our study area is a typical alpine forest site in Val di Sella
(Trentino, Italy), 1000 m above sea level. It is a mixed forest
with trees belonging to the European beech (Fagus sylvatica)
and Norway spruce (Picea Abies) species. No understory is
present, the green-leaved part is composed by only a single
layer of canopy. We selected this location because it is of
particular interest for the local forest service. Therefore, this
choice allowed us to exploit the availability of both high-
density LiDAR data and, for validation, ground truth data
collected in-field by the forest service itself.

We consider two different land plots in our study, shown in
Figure 6a, each with an extension of ∼1700 m2. One is located
in the middle of the forest, and the geographical position of
its central point is 46◦ 0′ 53.64′′N, 11◦ 22′ 2.51′′ E. We refer
to this as internal plot. The second site, which we refer to as
the edge plot, is on the edge of the forest, close to a clearing,
with center at 46◦ 0′ 47.45′′ N, 11◦ 25′ 52.16′′ E.

B. LiDAR Dataset and Related Processing

The LiDAR dataset we use has been acquired by an Optech
ALTM 3100EA sensor mounted on an airborne platform. The
laser scanner emits pulses with wavelength 1064 nm. For each
pulse, up to four returns (i.e., points associated up to the fourth
object hit by the laser pulse) were recorded, providing an
average point density >5 pt/m2. This dataset has been acquired

(a) (b)

Fig. 6. (a) Experimental location and network topologies. (b) Node setup.



over our target location on September 4, 2007. Given that our
target is a dense old-growth forest, it is reasonable to assume
that its structure at trunk level is not changed significantly
between the LiDAR data acquisition and our RSSI traces
collection. This assumption has been confirmed also by the
local forest service.

By applying to the raw data the processing chain described
in Section III-B we obtain a tree map for the whole area
comprising both the internal and edge plots. We visually
evaluate the accuracy of the obtained map by overlapping it
both with the CHM and with an ortophoto, shown in Figure 6a,
representing the same area with the same resolution. We
assessed a good agreement between the crowns delineated in
our tree map and the trees discernible in the other images.

We quantitatively evaluate the precision of the tree map
and of the extracted tree attributes by exploiting the availability
of a set of measurements gathered in our internal study site
by the local forest service, which performed forest inventory
by surveying trees in sample locations. One of these surveys
targets a circular land plot with a 20 m radius, enclosed in
our internal site. The forest service mapped 35 trees in this
plot, noting their species along with height and trunk diameter
at breast height. In comparison, in the same circular plot our
processing chain detected 37 trees, of which 32 correspond
to an actual one (i.e., 91% of trees are correctly detected).
More precisely, we obtained 5 wrong detections or false
positives (i.e., tree tops which actually do not correspond to
trunks) and 3 missed detections or false negatives (i.e., missed
tree tops/trunks). For the same set of trees, the multilinear
regression we applied for the estimation of trunk diameters
gives a coefficient of determination R2 = 0.7 and a Root Mean
Squared Error RMSE = 2.75 cm w.r.t. ground truth values.

As a consequence, the difference between the estimated
and ground truth values of TD , D and VD is 0.0016 trees/m2,
0.45 cm, and 0.02, respectively. This translates into a difference
in the estimated received signal power <0.05 dBm for link
distances in the range [0, 60] m. This difference can be
safely considered negligible in our context, as it is well below
the RSSI reading accuracy of the radio chip. Therefore, we
conclude that our raw LiDAR data allows us to estimate the
relevant vegetation parameters with adequate precision.

C. Low-power Wireless RSSI Traces and Their Collection

The RSSI traces were collected during November 2013,
with sunny weather. We deployed the same WSN in both
forest plots and collected traces from 12:30 to 14:30 in the
internal plot, and from 15:00 to 17:00 in the edge plot. During
the experimental campaign we placed a LASCAR EL-USB-2+
data logger in the same site where we deployed the network
to sample both temperature and relative humidity every 15
minutes, to accurately monitor the meteorological conditions
experienced by the network. Temperature and humidity were
almost stable during each time interval, ranging from -2.5◦C
to -3◦C, and from 35% to 30%, in the internal plot, and
from -3◦C to -4◦C and from 30% to 25% in the edge plot,
respectively.

Node placement. The WSN we deployed is composed of
9 nodes, placed in a 3×3 grid topology, to characterize the

connectivity in a square portion—a sample “forest slice”—
of our target environment. Nodes were powered by D-size
batteries and placed in waterproof boxes. Care was taken to
ensure the same vertical mounting (i.e., antenna orientation)
for all nodes while placing them in boxes. Boxes were then
latched onto tree trunks with elastic bands at 1.7 m from the
ground, as depicted in Figure 6b. Since boxes were attached
to trees, and these hardly ever form a perfect grid, the actual
topology (Figure 6a) only approximated the intended one.

Hardware platform. We use the popular TMote Sky hardware
platform, operating within the ISM 2.4 GHz frequency band
according to the IEEE 802.15.4 standards. The radio module
mounted on the platform is ChipCon 2420, which includes
a digital Direct Sequence Spread Spectrum (DSSS) baseband
modem coupled with a digital offset-QPSK modulator, pro-
viding an effective data rate of 250 kbps. We exploit the
integrated inverted-F microstrip antenna, which is pseudo-
omnidirectional with gain of 3.1 dBi.

Software platform. The in-field collection of RSSI traces was
performed using TRIDENT [26], a tool developed in our group
for the untethered execution of communication experiments
and collection of connectivity traces. The tool automatically
produces the TinyOS code to be installed on TMote Sky motes,
based on the experiment configuration input by the user.

The communication links are probed by exchanging radio
messages. More precisely, each mote broadcasts a message in
a round-robin fashion, to avoid collisions, while all the others
are listening to the radio channel. Each time a message is
received the reception event is locally recorded by the receiving
node, together with the corresponding RSSI value. In addition,
nodes sample and locally store the ambient noise floor level.
The same procedure is repeated until a user-configured number
of messages is sent by each network node. The completion
of this process defines a round. Each round is characterized
by a set of parameters—time interval between two consecu-
tive transmissions or Inter Packet Interval (IPI), transmission
power, radio channel—that can be set and configured in the
experiment design phase. The results of the experiment (i.e.,
the sequence of packet receptions and their quality indicators)
are stored in the local memory and can be recovered by means
of both multi-hop forwarding among network nodes or direct
USB connection.

Experiment setup and execution. Our experiment is com-
posed of four 30-minutes rounds, in which each node of the
network sends 200 messages with IPI equal to 9 s. All nodes
play both sender and receiver roles. The result is a round-
robin sending process in which at every second one node is
transmitting a packet, while the others are listening. We choose
to keep an interval of 1 s between transmissions to avoid
possible clock drifts that can cause collisions among senders,
given that we are using no Medium Access Control (MAC)
protocol. Nodes always transmit on channel 18 (i.e., at 2.44
GHz with a bandwidth of 3 MHz). We alternate rounds with
transmission power -1 dBm and -8 dBm, which we refer to as
high power and low power respectively.

This experimental setting allows us to probe each linkij
(i.e., the link from nodei to nodej) every 9 s; we collect the
raw packets, along with per-round and overall statistics. We
expected to probe 72 links for each site, considering separately



linkij and linkji. However, the actual number of links we
probed (i.e., 30 for each site) is lower than expected because
some nodes malfunctioned halfway through the experiments,
and were therefore excluded from the analysis. For each linkij
the traces we collect consist of a sequence of records for each
round. Each record represents the reception of a message along
that link and contains RSSI and noise floor related to the
reception of that message. The results in this paper are based
on the analysis of the 41,794 data points we collected overall.

D. Results

In this section, we present our experimental results, validat-
ing our approach against the actual received signal power mea-
sured in our WSN deployment. Our goal is to assess to which
extent: i) conventional empirical channel models for vegetated
environments match the real RSSI traces we collected at trunk
level; ii) LiDAR data allows us to automatically describe and
represent local vegetation characteristics and enable received
signal power predictions in a forest area; iii) we can improve
the prediction accuracy by analyzing trees configuration and
its impact at per link level.

The RSSI values in our traces represent the sum of the
received radio signal power and the noise power. Therefore,
we can convert those values to a received power indicator—
comparable with the predictions of the models—and compute
the corresponding Prx by subtracting, in Watt scale, the noise
floor level from RSSI. This step, in addition, makes our
analysis independent from possible hardware differences, in
terms of noise figure, between nodes.

Shortcomings of conventional empirical channel models. As
a term of comparison, we first estimate the path loss PL by
applying both the Weissberger model [21] and the COST 235
model [20]. These conventional models estimate the excess
attenuation due to vegetation as a quantity Lveg [dB]. The
overall path loss in this model is obtained as PLfree + Lveg ,
where the first term is the free space path loss as per Eq. (6).
The excess attenuation Lveg is expressed as a function of the
radio frequency f , in GHz, and the depth of foliage d, in
meters. For Weissberger, the excess attenuation is

LvegW [dB] =

{
0.45 f0.284d 0 ≤ d ≤ 14

1.33 f0.284d0.588 14 < d ≤ 400

For COST 235, which distinguishes between in-leaf (IL) and
out-of-leaf (OL) situations, excess attenuation is defined as:

LvegCOST [dB] =

{
15.6 f−0.009d0.26 in-leaf
26.6 f−0.2d0.5 out-of-leaf

To perform our comparison, based on the above we com-
pute the corresponding expected received power Prx (at given
distance and for a given frequency) according to Eq. (5).
For the COST 235 model we consider both the in-leaf and
out-of-leaf settings, given the mixed nature (i.e., conifer-
ous/deciduous) of our forest plots.

Figure 7 compares the per-distance average of the real
measurements collected in-field against the estimated received
power according to Weissberger and COST 235 models, as a
function of the link distance. We show only the plots for the
low-power setting, both due to space constraints and because
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Fig. 7. Received signal power according to real RSSI traces and various
prediction models (low power).

the plots for the high-power setting show similar results. COST
235 estimations, both in-leaf and out-of-leaf, do not fit well
our data. Although the Weissberger model behaves slightly
better, it still significantly underestimates the received power
for most of the links. As a consequence, its application for
network planning and deployment in this forest would likely
lead to overprovisioning.

The reason behind the discrepancy between these models
and the real traces is that the former are not sufficiently
representative of our specific forest environment. This is not
surprising, as these models are intended as generic, “one-size-
fits-all” solutions, which account for vegetation by making
the assumption that it is homogeneous, and as such they fail
to capture the intrinsic variability displayed by the complex
forest environment. In addition, these models were built for
communication links that traverse the canopy (as most of the
empirical models developed in the past), which is not the
scenario we are considering. Finally, they have been derived
empirically by curve fitting and, even though the measurement
sets on which they are based is large, they clearly cannot cover
all possible forest configurations at the same time.

LiDAR-based estimates: AREA. We now show that our
LiDAR-based automatic approach for estimating the param-
eters of the model described in Section III provides more
accurate predictions. Table I shows the vegetation index and
its constituents for both our deployments, as estimated by the
processing chain described in Section III-B. Based on these
values, we compute the path loss coefficients as a function of
VD as per Eq. (2) and, by applying Eq. (5) and Eq. (1), we
define the curve of the expected received signal power as a
function of distance.

The results are shown in Figure 7. We can visually assess
that the trend of our experimental data is well captured by such
curve. We quantitatively evaluate the performance by compar-
ing our in-field data and the estimated received power for the
reference distances of our links. In particular, we consider the
average received power computed on our low power and high
power traces, in the internal and edge sites, separately. For
instance, the average estimation error for the internal site at

TABLE I. VEGETATION INDEX AND ITS CONSTITUENTS IN OUR
DEPLOYMENT SITES

site D [cm] TD [trees/m2] VD
internal 24.2 0.0355 0.8598

edge 25.2 0.0372 0.9366
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Fig. 8. Analysis of clean-LOS and obstructed-LOS links using AREA and
the free space path loss model (low power).

low power is 4.06 [dBm] with a standard deviation of 3.31,
minimum 0.25 and maximum 12.1. A complete account of the
estimation errors for both sites and power settings is shown in
Table II.

LiDAR-based estimates: LINK. Despite the promising result,
there are still significant discrepancies between the real data
and the AREA prediction model. Next, we show that the LINK
model we introduced in Section III-C, thanks to its ability to
select the most appropriate path loss model, leads to further
and significant improvement in estimation accuracy.

Figure 8 shows the real power received, as derived from
our RSSI traces, for both clean-LOS (triangles) and obstructed-
LOS (dots) links, together with the estimation curves given by
AREA and the free space path loss model. From the chart,
it is evident that the latter can better predict the behavior of
clean-LOS links for which, across both deployment sites, our
diversified estimation strategy reduces the average error from
6.22 dBm to 1.86 dBm at low power, and from 14.21 dBm
to 2.71 dBm at high power. Table II offers the complete
error statistics (average, standard deviation, minimum and
maximum) of this “dual-model” LINK prediction technique vs.
AREA, across different deployment sites, power settings, and
line-of-sight situations (clean vs. obstructed). By automatically
identifying clean-LOS and obstructed-LOS links and applying
our diversified strategy accordingly, we significantly and sys-
tematically reduce the estimation error for all the locations and

power settings we considered in our experiments.

Figure 9 offers a different, graphical view of the com-
parison by plotting the real received power against the one
predicted by AREA and LINK. The diagonal on the plot depicts
the perfect estimate with zero error; the closer a point is to
this line, the more accurate the corresponding prediction is.
Moreover, the charts also show the ±6 dBm error band; we
chose this value as this is the accuracy of the RSSI readings
of the CC2420 radio chip our WSN nodes are equipped
with. Figure 9a compares the performance of AREA and LINK
w.r.t. clean-LOS and obstructed-LOS links, represented by
black and white dots, respectively. It is interesting to note that
AREA consistently understimates the received power for clean-
LOS points. In LINK, these points are effectively “shifted”
closer to the diagonal, as the effect of the attenuating VD
coefficient is removed from the path loss model. All of the
clean-LOS points are within the ±6 dBm error band. On the
other hand, AREA appears to partly overestimate the effect of
vegetation. Moreover, the white points in LINK are in general
less spread and much closer to the diagonal. Figure 9b com-
pares the performance of AREA and LINK w.r.t. the deployment
site, i.e., internal vs. edge. In this case, LINK provides in
general better predictions in both cases.

The rightmost part of Table II shows the fraction of predic-
tions falling within the reference ±6 dBm error band for both
AREA and LINK, for all the combinations of deployment sites,
power settings, and link types. The quantitative data confirm
that LINK systematically improves over AREA; apart from the
dramatic improvement for clean-LOS links, obstructed-LOS
ones have a significant improvement in the case of high power.
We also show data for the narrower error band of ±1 dBm,
to assess how close the two models approximate the perfect
estimate. Once again, LINK gets systematically closer; the best
result is for clean-LOS, low-power, internal plot, where 50%
of the links are within ±1 dBm of the real value with LINK,
and 0% with AREA.

Although LINK represents an improvement in estimation
performance, there are still discrepancies that the current model
cannot account for. We argue that these are mainly due to the
effect of obstructing trunks which are very close to the node,
e.g., the trunks on which nodes are latched onto. This and

TABLE II. EXPERIMENTAL RESULTS

avg error std dev min max % in ±6 dBm % in ±1 dBm
site AREA LINK AREA LINK AREA LINK AREA LINK AREA LINK AREA LINK

lo
w

po
w

er

internal 4.06 2.52 3.31 1.99 0.25 0.03 12.10 7.20 76.64 96.67 20.00 33.33
clean-LOS 6.48 1.97 2.18 2.08 4.21 0.03 9.40 4.94 50.00 100.00 0.00 50.00

obstructed-LOS 3.18 2.72 3.25 1.97 0.25 0.14 12.1 7.20 86.36 95.54 27.27 27.27
edge 5.57 3.11 3.32 3.02 0.39 0.40 15.04 12.50 56.67 86.67 6.67 26.67

clean-LOS 6.07 1.80 1.91 1.48 3.55 0.39 8.77 4.27 57.14 100.00 0.00 35.71
obstructed-LOS 5.11 4.33 4.27 3.58 0.39 0.39 15.04 12.50 56.25 75.00 12.54 18.75

all 4.81 2.81 3.38 2.55 0.25 0.03 15.04 12.50 66.67 90.00 13.33 30.00
clean-LOS 6.22 1.86 1.97 1.68 3.55 0.03 9.40 4.94 54.55 100.00 0.00 40.91

obstructed-LOS 3.29 3.37 3.76 2.81 0.25 0.14 15.04 12.50 73.68 86.84 21.05 23.68

hi
gh

po
w

er

internal 8.20 2.73 4.72 1.69 0.77 0.26 17.58 5.49 36.67 100.00 6.67 13.33
clean-LOS 14.49 2.94 2.08 2.06 12.33 0.83 17.58 5.49 0.00 100.00 0.00 12.50

obstructed-LOS 5.91 2.65 2.97 1.58 0.77 0.26 10.19 5.39 50.00 100.00 9.09 13.64
edge 10.18 4.15 4.89 4.97 0.73 0.43 17.11 14.12 30.00 83.33 3.33 23.33

clean-LOS 14.06 2.57 1.94 1.66 11.00 0.43 17.11 5.23 0.00 100.00 0.00 28.57
obstructed-LOS 6.79 5.53 4.08 6.40 0.73 0.42 14.60 14.12 56.25 68.75 6.25 18.75

all 9.19 3.44 4.87 3.75 0.73 0.26 17.58 14.12 33.33 91.67 5.00 18.33
clean-LOS 14.21 2.71 1.96 1.77 11.00 0.43 17.58 5.49 0.00 100.00 0.00 22.73

obstructed-LOS 6.28 3.86 3.46 4.48 0.73 0.26 14.60 14.12 52.63 86.84 7.90 15.79
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Fig. 9. Prediction accuracy of AREA and LINK w.r.t. a ±6 dBm error band.

other open issues, together with possible ways to exploit RS
data to deal with are addressed in Section VI.

V. RELATED WORK

The potential of low-power wireless communications to
enable unobtrusive and dense monitoring led to a number
of real-world deployments in natural scenarios [1], [2], [5].
However, the connectivity assessment before deploying the
network proved to be extremely difficult in harsh environ-
ments, with both pre-deployment network planning and data
interpretation practices lacking of proper support. Although
the node placement problem has been addressed by the WSN
community [27]–[29], the proposed approaches are often based
on non-realistic assumptions (e.g., isotropic communication
range), rarely satisfied in real outdoor settings. Several studies
report about the experimental evidence of the environment
effect on WSN links [7], [8], [30], [31], including the impact
of trees on communication performance when forests are
considered. This experimental evidence, together with the lack
of methods for a priori connectivity assessment suitable in
forest environments, motivate our investigation.

Over the last decades, several radio propagation models
accounting for the presence of vegetation have been presented.
The theoretical approach at the base of mechanistics mod-
els [19] involves the solution of Maxwell’s equations with
boundary conditions for each source of scattering along the
propagation path. This approach is complex and often not
applicable in practice. Therefore, several approximate and

simpler empirical models, including the Weissberger [21] and
COST 235 [20] models described in Section IV-D, have been
developed. These models, however, are developed for scenarios
in which communication links are distant from the ground and
traverse the canopy. Therefore, they are not appropriate for
the aforementioned common WSN applications, which rely on
links that are closer to the ground and traverse the forest at
the level of its trunks, as we showed in Section IV-D.

Another conventional approach is based on the log-normal
path loss model [24], described in Section III-A. The criti-
cal aspect in its application is the estimation of its param-
eters, whose values are strictly dependent on the specific
environment being considered. These parameters are usually
determined empirically by regression analysis of in-field mea-
surements. As a consequence, results are site-specific and
suitable only for environments very similar to those where
measurements were performed [22]. This approach has been
applied for instance in [23], which specifically focused on the
ISM radio bands used by WSNs, and considers propagation
paths relatively near to the ground, mainly affected by trunks.
The authors explicitly consider situations where trees are
obstructing the line of sight between transmitter and receiver
nodes, deriving distinct models for different obstruction config-
urations. Nevertheless, these models still lack generality, being
based on regressions from location-specific measurements.

To the best of our knowledge only two works [29], [32]
mention explicitly the use of remote sensing in support to
WSN deployments. In [29], LiDAR is mentioned as a source
of information to characterize forests and trees. However, the
whereabouts of information extraction are entirely neglected;
LiDAR is simply one of the possible inputs to the 3D grid-
based algorithm for deploying relay nodes, which is the focus
of the paper. A simplistic radio model is considered for sim-
ulations, where nodes have a fixed and isotropic transmission
range that is assumed to depend on the average tree height
over the area of interest.

The analysis presented in [32], instead, is closely related
to our work since it focuses on RS-based techniques for
path loss prediction. The authors investigate the relationship
between the path loss exponent n and vegetation indexes
derived from Landsat 8 satellite multispectral images. These
indexes (e.g., the Normalized Difference Vegetation Index,
NDVI) are “greenness indicators” denoting the amount of live
green vegetation. The “green” part of plants absorbs the solar
radiation in the visible (red) spectral bands and reflects it in
the near-infrared band; NDVI is computed as the normalized
difference between the two. The spatial granularity of the
analysis is inherently determined by the geometrical resolution
of the images used, which represents the side of the ground
area covered by each image pixel. This resolution is 30 m for
Landsat 8—a far cry from the 50 cm used in our work. The
work also partly uses a dataset estimated from even lower-
resolution (250 m) MODIS images. The correlation between
NDVI and path loss exponent is obtained by regression from
RSSI measurements collected in a WSN deployment in an
aspen boreal forest. However, this correlation appears to hold
only when trees are in-leaf. Arguably, during the out-of-leaf
period the amount of green leaves of the canopy is no longer
the main factor affecting the communication, especially in a
site characterized by deciduous trees and dense understory. In



these conditions other factors predominate, which cannot be
captured by the proposed greenness indicators.

VI. CONCLUSIONS AND FUTURE WORK

The goal of accurately predicting the behavior of low-
power wireless communication is still a rather elusive one,
especially in forests, where the irregularity of vegetation exac-
erbates complexity. In this paper, we presented a LiDAR-based
approach that is automatic, i.e., it does not require the in-field
campaigns commonly adopted to perform radio (or vegetation)
surveys, and fine-grained, i.e., it enables received signal power
estimates on a per-link basis. We validated our approach on
real RSSI traces from two small-scale WSN deployments in a
forest, and shown that it achieves unprecedented accuracy in
estimating the received signal power.

Despite the encouraging results, however, further work
is required to validate the approach over a broader range
of scenarios (e.g., forests with different foliage or a denser
understory) and environmental conditions (e.g., rain vs. dry
or cold vs. warm weather). These additional experiments are
already in our research agenda, and will enable us to ascertain
to what extent our approach can be generalized, and how it is
affected by other, complementary variables.

Other avenues for future research include the exploration
of other forest attributes—e.g., the distance between a node
and a tree trunk, to assess their actual impact on connectivity
and consequently on our estimates—and the exploration of
the cost vs. accuracy tradeoff between high-density and low-
density LiDAR as well as other remote sensing technologies,
e.g., optical systems. Finally, a practical use of our technique
would be its integration in a network planning tool where,
starting from an initial seed placement of nodes, the optimal
placement is automatically derived.
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