
TRANSIENTLY SHARED TUPLE SPACES
FOR SENSOR NETWORKS∗

Amy L. Murphy
University of Lugano, via G. Buffi 13, 6900 Lugano, Switzerland
amy.murphy@unisi.ch

Gian Pietro Picco
Politecnico di Milano, P.za L. da Vinci 32, 20129 Milano, Italy
picco@elet.polimi.it

Abstract In this paper we argue that the notion of transiently shared tuple space,
originally introduced by the Lime model and middleware to support
application development in mobile ad hoc networks, can be successfully
applied also to wireless sensor networks (WSNs). While the two sce-
narios are similar, the peculiar constraints posed by the WSNs (e.g., in
terms of resources and energy) require non-trivial adaptations. Here,
we describe two models and systems, TinyLime and TeenyLime, pro-
viding transiently shared tuple spaces in two different WSN operational
scenarios, and elaborate on alternate designs and opportunities.

Keywords: Tuple spaces, middleware, wireless sensor networks.

1. Introduction
Wireless sensor networks (WSNs) have emerged as a novel and rapidly

evolving field, enabled by continuous technological advancements. How-
ever, the progress in hardware and communication technology has not
been paralleled by breakthroughs in the programming support available
to application developers. As a consequence, WSN applications are typi-
cally developed from scratch directly on the operating system layer. The

∗The work described in this paper is partially supported by the European Union under the
IST-004536 RUNES project and by the National Competence Center in Research on Mobile
Information and Communication Systems (NCCR-MICS), a center supported by the Swiss
National Science Foundation under grant number 5005-67322.



2

consequence is the lack of reusable and reliable solutions and, ultimately,
an unnecessary burden on the programmer.

This gap between the applications and the underlying system re-
sources is typically filled by middleware. While the concept has become
popular in the context of mainstream distributed computing, it is even
more important in dynamic scenarios such as those defined by mobil-
ity. Here, the lack of proper abstractions leaves the programmer alone
with the daunting task of dealing with the dynamic context defined by
the changing physical environment, by the fluid network topology and,
ultimately, by the changing set of application services available.

In our previous research, we defined a model and middleware, Lime [9],
which tackles the aforementioned challenges by relying on the tuple space
abstraction previously introduced by Linda in the context of parallel
programming [6]. Tuple spaces provide a data sharing abstraction that
simplifies the definition of coordination among independent, remote pro-
cesses. In Lime, this notion is adapted towards mobile ad hoc networks
(MANETs) by introducing transiently shared tuple spaces whose con-
tents are dynamically redefined based on connectivity. Moreover, the
model is complemented by reactive operations that integrate the data-
centric tuple space functionality with event-centric capabilities in a uni-
fied programming abstraction.

MANETs and WSNs share many characteristics including wireless
communication, a dynamic network topology, and in general the need to
deal with a changing physical and computational context. At the same
time, there are also significant differences, most notably in terms of the
computational and energy constraints present in WSNs, which make
a direct port of existing mobile approaches infeasible. It is therefore
reasonable to ask whether the flexible and expressive tuple space ab-
straction, and in particular its adaptation to mobility provided in Lime,
can serve as a stepping stone towards new models supporting application
development for WSNs.

In this paper we argue that the answer to this question is positive.
Indeed, we contend that the Lime notion of transiently shared tuple
space and its combination with reactive programming already provide
the fundamental concepts necessary for programming WSN applications.
These arguments are concretely exemplified by illustrating variations of
Lime, both in terms of its model and of the corresponding middleware
support, that we devised to target different WSN scenarios.

Our first adaptation of Lime was motivated by the need to support an
operational scenario where mobile operators collect data from the sensors
in their immediate vicinity [3, 2]. In this scenario, the application logic
resides on the (mobile) sinks—a common choice in WSN applications.



Transiently Shared Tuple Spaces for Sensor Networks 3

Sensors are passive data producers, and at most perform local compu-
tation on behalf of the sinks. Nevertheless, the programmer is shielded
from many of these details by the TinyLime API, which presents a uni-
fied abstract view of the system where all the nodes available (sinks and
sensors) share their data through the tuple space.

Recent developments in WSNs are pushing scenarios where the ap-
plication intelligence is no longer relegated to the fringes of the system
(i.e., on a data sink running on a powerful node) rather it is distributed
within the WSN itself. One such scenario involves both sensors and actu-
ators, with actuators basing their decisions on the sensors around them,
yielding a more efficient feedback loop w.r.t. architectures where data is
funneled towards a single sink [1]. To support this scenario, we devised
another adaptation of the Lime model, called TeenyLime, where we as-
sumed that devices are capable of independent computation. (Hereafter,
we use the term device to encompass sensor and/or actuator nodes.)
This time, the application code is not confined to the powerful sinks,
rather it is deployed on the devices. Further, tuple space operations
are no longer used only for data collection, rather they are exploited for
coordination of the devices themselves. In a sense, TeenyLime is liter-
ally a “port” of the Lime model onto the sensor and actuator devices,
while instead TinyLime bridges the MANET and WSN environments by
means of the conceptual and programming glue provided by transiently
shared tuple spaces.

This paper is organized in a progression from Linda to TeenyLime.
Each evolutionary step of the tuple space model is motivated by the chal-
lenge posed by a new operational setting, in which the lessons learned at
the previous step are exploited in the reformulation of the model. The
basic Linda model is described in Section 1.2, together with the adap-
tation to the MANET environment provided by Lime. In Section 1.3
and 1.4 we illustrate how we further extended Lime to suit the needs
of the aforementioned WSN operational scenarios. Section 1.5 summa-
rizes the findings, by highlighting analogies and relationships among the
various models, identifying opportunities for integration and alternative
designs, and comparing our work against the literature. Finally, Sec-
tion 1.6 ends the paper with brief concluding remarks.

2. Background: Linda and Lime

In this section we provide a concise introduction to the notion of
tuple space made popular by Linda, and to its adaptation to the mobile
environment put forth by Lime.



4

Linda and Tuple Spaces. Linda [6] is a shared memory model where
the data is represented by elementary data structures called tuples and
the memory is a multiset of tuples called a tuple space. Each tuple is a
sequence of typed fields, such as 〈“foo”, 9, 27.5〉 and coordination among
processes occurs through the writing and reading of tuples. Conceptually
all processes have a handle to the tuple space and can add tuples by
performing an out(t) operation and read and remove tuples using rd(p)
and in(p) which specify a pattern, p, for the desired data. The pattern
is a tuple whose fields contain either actuals or formals. Actuals are
values; the fields of the previous tuple are all actuals, while the last
two fields of 〈“foo”, ?integer, ?float〉 are formals. Formals act like “wild
cards”, and are matched against actuals when selecting a tuple from the
tuple space. For instance, the template above matches the tuple defined
earlier. If multiple tuples match a template, the one returned by in or
rd is selected non-deterministically.

Both in and rd are blocking, i.e., if no matching tuple is available in
the tuple space the process performing the operation is suspended until a
matching tuple appears. Typical extensions include a pair of primitives
inp and rdp, which return null if no matching tuple exists in the tuple
space and bulk operations ing and rdg, which can be used to retrieve
all matching tuples at once.

Lime: Linda in a Mobile Environment. To support mobility, the
Lime [9] model breaks up the Linda tuple space into multiple tuple
spaces each permanently attached to a mobile component, and defines
rules for the sharing of their content when components are able to com-
municate. In a sense, the static global tuple space of Linda is reshaped
by Lime into one that dynamically changes according to connectivity.
As shown in Figure 1, the Lime model encompasses mobile software
agents and physical mobile hosts. Agents are permanently assigned an
interface tuple space, ITS, which is brought along during migration.
Co-located agents are considered connected. The union of all the tuple
spaces, based on connectivity, yields a dynamically changing federated
tuple space. Hereafter, we consider only stationary agents.

Access to the federated tuple space remains very similar to Linda,
with each agent issuing Linda operations on its own ITS. The semantics
of the operations, however, is as if they were executed over a single tuple
space containing the tuples of all connected components.

Besides transient sharing, Lime adds two new notions to Linda: tuple
locations and reactions. Although tuples are accessible to all connected
agents, they only exist at a single point in the system, with one of the
agents. When a tuple is output, it remains in the ITS of the outputting



Transiently Shared Tuple Spaces for Sensor Networks 5

agent. Lime also allows tuples to be shipped to another agent by extend-
ing the out operation to include a destination. The notion of location
is also used to restrict the scope of the rd and in operations, effectively
issuing the operation only over the portion of the federated tuple space
owned by a given agent or residing on a given host.

Reactions allow an agent

Interface Tuple SpaceHost-Level Tuple Space

Federated Tuple Space

migrate

Mobile Agents
Mobile Host

Figure 1. In Lime connected mobile hosts tran-
siently share the tuple spaces of the agents exe-
cuting on them.

to register a code fragment
(a listener) to be executed
asynchronously whenever a
tuple matching a particular
pattern is found anywhere
in the federated tuple space.
This feature is very useful
in the highly dynamic mo-
bile environment, where the
set of connected components
changes frequently. Reac-
tions can also be restricted in scope to a particular host or agent, like
queries. This ability to monitor changes across the whole system by in-
stalling reactions on the federated tuple space has been shown to be one
of the most useful features of Lime, as it frees the programmer from the
burden of explicitly monitoring the system configuration.

3. TinyLime

TinyLime is the first adaptation of Lime’s ideas to the WSN environ-
ment. As described next, its goal is essentially to extend the span of the
transiently shared tuple space coordinating a group of mobile sinks to
include also the data gathered by nearby sensors.

Scenario. In contrast to the typical sensor network architectures
that collect data at a single centralized location, TinyLime takes an al-
ternative approach that naturally provides contextual access, does not
require multi-hop communication among sensors, and still places reason-
able computation and communication demands on the sensors. The tar-
get scenario, depicted in Figure 2, assumes that sensors are distributed
sparsely throughout a region and need not be able to communicate with
one another. The application is deployed on a set of mobile hosts, inter-
connected through ad hoc wireless links—e.g., 802.11. Some hosts, e.g.,
the PDA, are only clients, without direct access to sensors. The oth-
ers are equipped with base station hardware providing access to sensors
within one hop.



6

Model. As in Lime, the core abstraction of TinyLime is that of a
transiently shared tuple space, which in our case stores tuples containing
the sensed data. However, TinyLime introduces a new component in
addition to agents and hosts—the sensor. In the TinyLime model, a
device in direct communication with some base station is represented
much like an agent residing on the base station, with an associated ITS
containing the set of data provided by its sensors. Each TinyLime sensor
may be a device providing several types of data (e.g., temperature and
light), all stored in the sensor ITS. Looking at Figure 1, it is as if on
each host there were an additional agent for each device currently in
range of that host. Clearly, things are quite different in practice: the
sensor device is not physically on the base station, and there is no ITS
deployed on it. As usual, it is the middleware that takes care of creating
this abstraction to simplify the programmer’s task.

The rest of the model follows

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

Figure 2. TinyLime operational scenario:
communication occurs between base sta-
tions (laptops) and sensors, and between
base stations and clients (PDAs). Clients
and base stations can also coincide.

naturally. For instance, opera-
tions on the federated space now
span not only connected hosts
and agents, but also the sensors
within range of some host. Simi-
larly to Lime, operations can be
restricted to a given host. Also,
the sensor identifier can be used
to restrict the scope of a query
or reaction to a specific sensor.
For instance, in Figure 2, a client
on the laptop can request a light
reading from one specific sensor, from any sensor one hop from itself, or
from any sensor one hop from any connected client. Clients and base
stations are prohibited from modifying the data on the sensors. In other
words, only reactions, rd, rdp, and rdg are available.

Reactions work as in Lime, modulo the changes above, and are ex-
tremely useful in this environment. Consider a situation in which a single
base station agent registers a reaction to display temperature values. As
the base station moves across the region, the temperature from each sen-
sor that comes into range is automatically displayed: the programmer is
spared the effort of explicitly monitoring the changing context.

Implementation. The first implementation challenge was enabling
communication between base stations and sensors. Energy restrictions
require sensors to sleep a majority of the time, waking up on a regular
basis to listen for incoming messages. Sensors cannot receive messages



Transiently Shared Tuple Spaces for Sensor Networks 7

while sleeping and base stations cannot keep track of the wakeup times
of the sensors. However, by quantizing time in epochs, and ensuring each
sensor is awake for a predetermined period every epoch, communication
in TinyLime is enabled by having the base station repeatedly send a
message until a sensor receives it and responds. With no communication
errors, the delay between the beginning of transmission and the response
is at most one epoch. This places the communication burden on the
base stations, which have a larger energy reserve and are more easily
rechargeable than the sensors.

Another design decision arose from the realization that sensor data
remains valid for a period of time, after which it is no longer fresh. Based
on this, we introduced data caching of fresh data on the base station,
allowing future requests for the same data to be served directly from the
cache without requiring additional, energy-consuming communication.
The details can be found in [2], but here it is sufficient to note that
every arriving sensor value is associated with a timestamp upon arrival
at the base station. When the data is no longer fresh, it is removed and
future requests must again query the sensors directly.

Another major design issue was the provision of aggregation features.
WSN applications often do not simply gather raw data, rather they col-
lect and transform it, e.g., aggregating values to find the average tem-
perature over a time interval to reduce the impact of spurious readings.
System-wide aggregation can be naturally provided at the application
level using the group operation rdg to collect the data gathered by each
base station. However, for efficiency aggregation should be pushed close
to the data (i.e., on sensors), trading computation for communication.
This goal requires a slight change of perspective. In our original imple-
mentation of TinyLime [3], sensors played only a passive role, acquiring
and communicating data when requested. Instead, aggregation requires
sensors to be active, sampling and recording data over which aggrega-
tion can later be performed. Sampling comes at the cost of both storage
and computational activity to record data. In our current implementa-
tion [2], TinyLime supports aggregation by allowing the programmer to
dynamically activate sampling on some or all sensors for a given number
of epochs, after which sensors switch back to passive mode. Built-in
aggregation modules are provided, along with mechanisms enabling pro-
grammers to supply their own. Interestingly, the same feature can be
used to support any kind of active behavior on sensors, e.g., automatic
periodic data reporting. This idea of generalizing the active behavior of
sensors is brought to an extreme by TeenyLime, described next.



8

4. TeenyLime

Although TeenyLime followed TinyLime in the evolution towards
WSNs, it partially represents a return to the original Lime model. The
key idea behind TeenyLime is to treat the WSN devices as active com-
ponents performing distributed coordination and data access.

Scenario. In contrast with TinyLime, in the target scenario of
TeenyLime there is no distinction between powerful, mobile base sta-
tions and WSN devices: only the latter belong to the system. However,
the devices can be heterogeneous, e.g., containing not only sensors but
also actuators, as shown in Figure 3. Devices coordinate to perform
the functionality of the WSN application, which is directly deployed on
them, rather than on some external sink. Moreover, in TeenyLime, a
device is expected to communicate directly only with neighbors in com-
munication range.

Example applications are those

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

Figure 3. TeenyLime operational sce-
nario: one hop communication among sen-
sors (motes) and actuators (light bulbs).

where actuators collect informa-
tion from neighboring sensors and
perform some action based on the
value of the data [1], e.g., alert-
ing other actuators in range. For
instance, a fire extinguisher can
make a local decision to activate
based only on readings from sev-
eral sensors in their vicinity, and
inform other nearby extinguishers.
Alternately, the TeenyLime model
can be used as a building block for different data collection strategies,
e.g., where an aggregated value is computed among neighboring sources,
and then made available locally or propagated to the rest of the network
or to an external source with appropriate protocols.

Model. As in Lime and TinyLime, the core abstraction of TeenyLime
is the transiently shared tuple space. However, unlike TinyLime the
spaces are physically located on the devices themselves, and unlike Lime
they are shared only one hop. Because each device has a different set
of one hop neighbors, the shared tuple space view is different for each
device. This is fundamentally in contrast to Lime in which the view of
the transiently shared tuple space is composed of the tuple spaces of all
connected hosts, where connectivity is assumed transitive.

Operations in TeenyLime are essentially those of Lime. Also, as op-
posed to TinyLime, operations to remove tuples (e.g., inp) are sup-



Transiently Shared Tuple Spaces for Sensor Networks 9

ported. Indeed, tuples no longer represent read-only data sensed by
remote sensors, rather it represents application data under the direct
responsibility of the devices, which therefore must retain full control
over it. Reactions function as in Lime, but with a limited one hop
range. This does not undermine their usefulness, as the ability to re-
act to specific data in the neighborhood is of paramount importance.
For example, the fire extinguisher example can be implemented sim-
ply by installing a reaction on nearby sensors for temperature readings.
When sufficiently many high readings are received by the extinguisher, it
should be activated. Reactions, like operations, can also be installed on
specific (neighboring) devices, as in Lime. Interestingly, the information
about which devices are currently directly reachable can be stored in a
special tuple space, therefore providing a single unified abstraction for
representing both the application and system context, similarly to the
LimeSystem tuple space provided in Lime.

Implementation. Among our adaptations of Lime to the WSN en-
vironment, TeenyLime is the least mature from a system perspective.
Nonetheless, it serves as a clear proof-of-concept of what can be accom-
plished by pushing the tuple space model onto small WSN devices.

The implementation currently uses best effort communication. De-
pending on the device duty cycle, it is possible that a transmission (e.g.,
requesting a rdp) is not received by all neighbors. While acceptable for
some applications, we are currently investigating mechanisms to syn-
chronize devices, either at the application or MAC layer.

Another interesting aspect of the middleware is the mechanism to han-
dle sensor readings. Currently, when a request arrives, the new reading
is taken and the value returned. Instead, an alternative design enables
a sensor to store in the tuple space not the actual data, but some de-
scription of it in a capability tuple. A query or reaction matches both
the actual data and its capability tuple. Essentially, the latter acts as
a placeholder for the real data, which is inserted in the tuple space
only upon a request, therefore reducing the necessary storage. Also,
this mechanism can be generalized to tasks more powerful than sens-
ing, including aggregation, therefore providing a flexible and efficient
mechanism for coordinating devices.

5. Discussion and Related Work
As evidenced by our presentation thus far, the unifying theme across

our models is the use, as the main programming abstraction, of a tran-
siently shared tuple space enhanced with reactive operations. This con-
cept was originally introduced in Lime to deal with the dynamicity of



10

the MANET environment. The main advantage it brings to this sce-
nario is the ability to reduce the changes caused by the dynamicity of
the system to indirect changes in the configuration of the tuple space.
This provides the application programmer with a single unified view of
both the application and system context, and frees her from the burden
of explicitly and proactively monitoring the system dynamics. Reac-
tive operations provide the complementary ability to define actions to
be asynchronously triggered when a given data element is found in the
overall context.

WSNs define an application scenario that is even more amenable to
the model put forth by Lime. Indeed, applications intrinsically exhibit a
mixture of data-centric and event-centric characteristics, as they usually
need to collect and share data as well as efficiently report notifications
and alarms. In TinyLime, we adapted transiently shared tuple spaces to
provide the glue between the mobile sinks and the surrounding sensors,
therefore extending the span of the system context accessible through
the tuple space abstraction. Instead, in TeenyLime the Lime tuple space
remains the main abstraction enabling inter-node coordination, but this
time for devices that have different computational and communication
constraints w.r.t. those in a MANET.

The relationship among the various models is depicted in Figure 4,
showing that as we move from Linda to TeenyLime the dynamicity of
the system increases, from parallel systems to mobile and then sensor-
based ones. Similarly, from TinyLime to TeenyLime the model accounts
for “smarter” devices, which are increasingly independent from the sink,
perform localized application functions, and coordinate among them-
selves. From Lime to TeenyLime, the various systems are different vari-
ations revolving around the same core idea of transiently shared tuple
spaces, demonstrating its expressive power and flexibility. The fact that
they are currently separate systems is simply an accident caused by the
pragmatic need to experiment with different implementations in a sce-
nario that is realistic and of practical use, but narrow enough to be
tackled independently. Nevertheless, our ultimate goal is to rejoin the
characteristic dimensions of our systems into a single, unified program-
ming model and middleware that seamlessly supports MANETs, WSNs,
and their combination.

In pursuing this goal, we intend to explore other alternatives that are
currently not captured by the spectrum shown in Figure 4. One promi-
nent new issue is the support for multi-hop communication. In Lime,
this is delegated to the underlying transport layer, and the middleware
simply exploits it when available. However, in WSNs efficiency reasons
often demand that this is integrated into the programming abstraction.



Transiently Shared Tuple Spaces for Sensor Networks 11

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

application intelligence on the sensor/actuator devices
need for inter-device communication

Lime

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

TinyLime
(passive sensors)

6

Figure 2. Operational scenario of TinyLime showing one-hop communication be-
tween base stations (laptops) and sensors and multi-hop communication among base
stations and clients (PDAs). Client agents can also be co-located with the base sta-
tions (e.g., running on the laptops).

sors be transitively connected to the base station—something that may
not be feasible in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alternative, operational sce-
nario; one that naturally provides contextual information, does not re-
quire multi-hop communication among sensors, and places reasonable
computation and communication demands on the sensors. The sce-
nario, depicted in Figure 2, assumes that sensors are distributed sparsely
throughout a region and need not be able to communicate with one an-
other. The monitoring application is deployed on a set of mobile hosts,
interconnected through ad hoc wireless links—e.g., 802.11 in our exper-
iments. Some hosts are only clients, without direct access to sensors,
such as the PDA in the figure. The others are equipped with a sensor
base station, which enables access only to sensors within only one hop,
therefore naturally providing a contextual view of the sensor sub-system.

3.2 Model Highlights
To support the development of applications in the operational setting

just described, TinyLime extends Lime by providing features and mid-
dleware components specialized for sensor networks while maintaining
Lime’s coordination for ad hoc networks.

As in Lime, the core abstraction of TinyLime is that of a transiently
shared tuple space, which in our case stores tuples containing the sensed
data. However, TinyLime introduces a component in addition to agents

TinyLime
(active sensors) TeenyLimeLinda

transiently shared + reactive operations global, persistent

tuple space

dynamicity of the target operational scenarioLO
W

LO
W HIG

H

Figure 4. Tuple spaces from Linda to wireless sensor networks.

Various alternatives are possible, leading to different models and imple-
mentations. One immediately available option is to leverage off work
done in our research group on logical neighborhoods [8]. This abstrac-
tion enables communication towards a set of devices that, unlike the
physical neighborhood defined by wireless broadcast, is defined by the
programmer based on characteristics of the devices (e.g., all temperature
sensors with enough battery), and whose implementation accounts for
efficient multi-hop routing. By integrating logical neighborhoods with
our Lime derivatives we would not only readily obtain a multi-hop im-
plementation, but also open opportunities for alternative models where
data sharing occurs only among functionally related devices.

Our efforts are motivated by the increasing awareness that appropri-
ate programming abstractions are needed to deal with the complexity of
WSN application development. The work in [4] advocated early on the
need for constructs that enable coordination among the WSN nodes, and
to do so by privileging localized interactions among them. An incarna-
tion of this concept is the Hood system [11], which provides programming
constructs for interacting with the devices in the one hop neighborhood
defined by physical communication range. The details of messaging, data
caching, and maintaining node membership are built in the middleware:
the programmer focuses on acquiring and processing the data fed by the
neighboring nodes. As such, Hood relies on a many-to-one coordina-
tion paradigm. In comparison, TeenyLime provides a similar capability
to access transparently the data shared in the physical neighborhood,
but provides the programmer with a more general coordination inter-
face where there is no directionality of the information flow. Moreover,
TeenyLime provides both proactive and reactive operations, which en-
able the programmer to synchronously query for data or asynchronously



12

receive notifications of its presence. Hood, instead, relies only on local
access to cached data. Interestingly, in TeenyLime such caching can be
effectively provided by using the appropriate reaction registrations.

Another strong link between the work described here and the scientific
literature on WSNs exists between TinyLime and the Data Mules archi-
tecture [10]. In this work, the authors propose to exploit mobile nodes
(e.g., humans, animals, vehicles) to support data collection in sparse
WSNs, where alternative solutions would be technically or economically
impractical. The mobile nodes (called data mules) exploit opportunistic
interactions with the nodes in their proximity, buffer the data, and later
make it available to some collection point. However, the work reported
in [10] and similarly by other researchers focuses mostly on evaluating
under which conditions and to what extent mobility is beneficial. No
mention is made about how applications based on this paradigm can
be designed and implemented. Interestingly, the TinyLime model pro-
vides a natural match for this scenario, with its middleware incarnation
greatly simplifying application development without sacrificing efficient
communication.

Finally, tuple spaces have been considered by other researchers for
use in WSNs. Context Shadow [7] exploits multiple tuple spaces, each
holding only locally sensed information thus providing contextual infor-
mation. The application is required to explicitly connect with the tuple
space of interest to retrieve information. TinyLime, with its focus on
the combination of MANET and sensor networks, exploits physical lo-
cality to restrict interactions without application intervention. Instead,
Agilla [5] exploits mobile agents as the main communication media, but
resorts to tuple spaces for local coordination of co-located agents. Agents
can also interact with remote tuple spaces, which are nonetheless dis-
tinct. In comparison, TeenyLime enables a higher level of abstraction,
by enabling data sharing among agents on neighboring devices, albeit
only within one hop in the current implementation.

6. Conclusions
In this paper we outlined our approach for easing the development of

applications in the challenging environment of WSN. While the choice
to exploit transiently shared tuple spaces was based on our successful
experiences in the MANET environment, our initial experiments with
TinyLime and TeenyLime show the appropriateness and versatility of
the model when applied to the WSN environment.



Transiently Shared Tuple Spaces for Sensor Networks 13

The systems described here are implemented for the Crossbow MICA2
platform, using nesC/TinyOS. TinyLime can be downloaded from the
main Lime Web site, lime.sf.net.

References
[1] I. F. Akyildiz and I. H. Kasimoglu. Wireless sensor and actor networks: Research

challenges. Ad Hoc Networks Journal, 2(4):351–367, October 2004.

[2] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A.L. Murphy, and G.P. Picco.
Mobile data collection in sensor networks: The TinyLime Middleware. Elsevier
Pervasive and Mobile Computing Journal, 4(1):446–469, December 2005.

[3] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A.L. Murphy, and G.P. Picco.
TinyLime: Bridging Mobile and Sensor Networks through Middleware. In Proc. of
the 3rd IEEE Int. Conf. on Pervasive Computing and Communications (PerCom
2005), pages 61–72. IEEE Computer Society, March 2005.

[4] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges:
scalable coordination in sensor networks. In Proc. of the 5th Int. Conf. on Mobile
computing and networking (MobiCom), 1999.

[5] C.-L. Fok, G.-C. Roman, and C. Lu. Rapid development and flexible deployment
of adaptive wireless sensor network applications. In Proc. of the 25th IEEE Int.
Conf. on Distributed Computing Systems (ICDCS), pages 653–662, 2005.

[6] D. Gelernter. Generative communication in Linda. ACM Computing Surveys,
7(1):80–112, January 1985.

[7] M. Jonsson. Supporting context awareness with the context shadow infrastruc-
ture. In Wkshp. on Affordable Wireless Services and Infrastructure, June 2003.

[8] L. Mottola and G.P. Picco. Logical Neighborhoods: A Programming Abstraction
for Wireless Sensor Networks. In Proc. of the 2nd Int. Conf. on Distributed
Computing in Sensor Systems (DCOSS), 2006. To appear. Available at www.

elet.polimi.it/upload/picco.

[9] A.L. Murphy, G.P. Picco, and G.-C. Roman. Lime: A Coordination Model and
Middleware Supporting Mobility of Hosts and Agents. ACM Transactions on
Software Engineering and Methodology (TOSEM), 2006. To appear. Available at
www.elet.polimi.it/upload/picco.

[10] R. Shah, S. Roy, S. Jain, and W. Brunette. Data MULEs: Modeling and Anal-
ysis of a Three-Tier Architecture for Sparse Sensor Networks. Elsevier Ad Hoc
Networks Journal, 1(2–3):215–233, September 2003.

[11] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: A neighborhood
abstraction for sensor networks. In Proc. of the 2nd Int. Conf. on Mobile systems,
applications, and services. ACM Press, 2004.


