
Introducing Reliability in Content-Based Publish-Subscribe
through Epidemic Algorithms

Paolo Costa, Matteo Migliavacca, Gian Pietro Picco, and Gianpaolo Cugola
Dip. di Elettronica e Informazione, Politecnico di Milano

P.za Leonardo da Vinci 32, 20133 Milano, Italy
{costa, migliava, picco, cugola}@elet.polimi.it

ABSTRACT
Distributed content-based publish-subscribe middleware pro-
vides the necessary decoupling, flexibility, expressiveness,
and scalability required by modern distributed applications.
Unfortunately, this middleware usually does not provide re-
liability, especially in the presence of highly reconfigurable
scenarios. Indeed, this problem has been thus far largely
disregarded by the research community and solutions devel-
oped in other contexts are not immediately applicable.

In this paper, we tackle the problem of introducing re-
liability in content-based publish-subscribe in dynamic en-
vironments by exploiting epidemic algorithms, whose char-
acteristics in terms of decentralization, scalability, and re-
silience to topological changes resonate with our problem.

1. INTRODUCTION
Publish-subscribe middleware has recently become popu-

lar because of its asynchronous, implicit, multi-point, and
peer-to-peer style of communication. Components in a pu-
blish-subscribe system are strongly decoupled: they can be
easily replaced, thus providing a high degree of flexibility
both at the application and infrastructure level. A number
of publish-subscribe systems have been proposed to date. In
this paper we focus on those that seek increased scalability
and flexibility by exploiting a distributed architecture for
event dispatching, and that empower the programmer with
maximum expressiveness by using a content-based scheme
for determining the match between an event and a subscrip-
tion. Representative examples are [4, 29, 27, 3, 10].

Although the publish-subscribe model enjoys a growing
popularity, we observe that the characteristics of the avail-
able systems still fall short of expectations under many re-
spects. For instance, this paper is motivated by the ob-
servation that the reliability of the distributed event dis-
patching infrastructure is rarely guaranteed by dedicated
mechanisms: instead, it is typically delegated to the under-
lying transport protocol, e.g., by assuming the existence of
TCP links. Unfortunately, this approach is overly restrain-

ing in several scenarios, including simple ones characterized
by small scale and a static network topology. For instance,
communication can be implemented on top of unreliable
transport protocols like UDP for performance reasons; more-
over, links and nodes of the dispatching infrastructure may
fail altogether. Clearly, the situation is exacerbated in the
more dynamic scenarios that are increasingly characteriz-
ing modern distributed computing, where publish-subscribe
would find its natural use. As an example, mobile comput-
ing implies a continuously changing network topology, where
reliable links are often difficult to maintain and where the
event dispatching infrastructure is itself continuously recon-
figured, providing an additional source of event loss.

In this paper, we present solutions for reliable publish-
subscribe. The starting point of our research was the desire
to combine our previous work on efficient reconfiguration
of content-based routing in the presence of changes in the
underlying network topology [11, 20] with a mechanism to
minimize the loss of events caused by such reconfiguration.
Nevertheless, the contribution we put forth here goes well
beyond this original goal, in that it is not tied to a specific
source of event loss and hence it enjoys general applicability.
As such, it is useful also in more traditional scenarios, e.g.,
those characterized by a fixed topology and unreliable links.

The approach we investigate in this paper relies on epi-

demic algorithms [2, 17, 14], a breed of distributed algo-
rithms that find inspiration in the theory of epidemics. These
algorithms aim at providing a lightweight, scalable, and ro-
bust means of reliably disseminating information to a group
of recipients, by providing guarantees only in probabilistic
terms. Given their characteristics, epidemic algorithms are
amenable to the unreliable and highly dynamic scenarios we
target. At the same time, epidemic algorithms were never
applied to content-based publish-subscribe, and previous re-
sults in other fields, e.g., multicast communication, cannot
be easily adapted to such scenario.

The paper is structured as follows. Section 2 provides the
reader with the necessary background information concern-
ing content-based publish-subscribe systems and epidemic
algorithms. Section 3 analyzes the challenges posed by the
application of epidemic algorithms in the specific context of
content-based routing. Section 4 presents three algorithms
we designed to provide reliability in content-based publish-
subscribe systems. Section 5 provides a discussion of the
contribution put forth by this paper. Finally, Section 6
places our contribution in the context of related work, and
Section 7 ends the paper with brief concluding remarks.



Figure 1: Subscription forwarding.

2. BACKGROUND
In this section we provide the reader with the background

information about content-based publish-subscribe systems
and epidemic algorithms necessary to grasp the contribution
put forth by this paper.

2.1 Content-Based Publish-Subscribe
Several publish-subscribe middleware are available, which

differ along several dimensions1. Two are usually consid-
ered fundamental: the expressiveness of the subscription
language and the architecture of the event dispatcher.

The expressiveness of the subscription language draws
a line between subject-based systems, where subscriptions
identify only classes of events belonging to a given channel
or subject, and content-based systems, where subscriptions
contain expressions (called event patterns) that provide in-
creased flexibility and expressiveness through sophisticated
matching on the event content.

The architecture of the event dispatcher can be either cen-
tralized or distributed. In this paper, we focus on publish-
subscribe middleware with a distributed event dispatcher.
In such middleware, a set of dispatching servers2 are con-
nected in an overlay network, as shown in Figure 1. These
servers cooperate in collecting subscriptions coming from
clients and in routing events, with the goal of reducing the
network load and increasing scalability. Systems exploiting
a distributed dispatcher can be further classified according
to the interconnection topology of the dispatching servers,
and the strategy exploited to route subscriptions and events.
In this work we consider a subscription forwarding scheme
on an unrooted tree topology as this choice covers the ma-
jority of existing systems.

In a subscription forwarding scheme [4], subscriptions are
delivered to every dispatcher along a single unrooted tree
connecting all the dispatchers, and are used to establish
the routes that are followed by published events. When
a client issues a subscription, a message containing the cor-
responding event pattern is sent to the dispatcher the client
is attached to. There, the event pattern is inserted in a
subscription table, together with the identifier of the sub-
scriber. Then, the subscription is propagated by the dis-
patcher, which now behaves as a subscriber with respect to
the rest of the dispatching network, to all of its neighboring
dispatchers on the overlay network. In turn, they record the
subscription and re-propagate it towards all their neighbor-
ing dispatchers, except for the one that sent it. This scheme
is typically optimized by avoiding propagation of subscrip-
tions for the same event pattern in the same direction. The

1For more detailed comparisons see [4, 10, 25].
2Unless otherwise stated, in the following we refer to a dis-
patching server simply as dispatcher, although the latter rep-
resents the whole distributed component in charge of dis-
patching events instead of a specific server.

propagation of a subscription effectively sets up a route for
events, through the reverse path from the publisher to the
subscriber. Requests to unsubscribe from a given event pat-
tern are handled and propagated analogously to subscrip-
tions, although at each hop entries in the subscription table
are removed rather than inserted.

Figure 1 shows a dispatching network with two dispatch-
ers subscribed for a “black” pattern, and one for a “gray”
pattern. Arrows represent the routes laid down according to
these subscriptions, and reflect the content of the subscrip-
tion tables of each dispatcher in the network. As a conse-
quence of the subscription forwarding process we described,
the routes for the two separate subscriptions are laid down
on the single tree constituting the dispatching network. This
choice is typical of content-based systems and is motivated
by the fact that a single event may match multiple patterns.
Routing on multiple independent trees, as typically done by
subject-based systems, would lead to inefficient duplication
of events along the separate trees.

Finally, here and in the rest of the paper we ignore the
presence of clients and focus only on dispatchers. Accord-
ingly, with some stretch of terminology we say that a dis-
patcher is a subscriber if at least one of its clients is, although
in principle only clients can be subscribers.

2.2 Epidemic Algorithms
Epidemic (or gossip) algorithms (e.g., [2, 17, 14]) recently

became popular as a solution to address scalable and reliable
multicast dissemination of information. These algorithms
are inspired by the theory of epidemics, in that communi-
cation is achieved by trying to “infect” as many nodes as
possible. In essence, gossip algorithms trade the strong re-
liability guarantees, typical of the traditional deterministic
approaches, for better scalability, achieved at the price of
weaker guarantees defined only in probabilistic terms.

Although epidemic algorithms have been originally devel-
oped to deal efficiently with the consistency management of
replicated databases [12], they have been applied to a num-
ber of problems, including dissemination of news through
NNTP and multicast in ad hoc mobile networks [6, 18].

Basic Concepts. The idea underlying this family of algo-
rithms is for each process to communicate periodically its
knowledge about the system “state” to a random subset of
other processes. Hereafter, the state we consider is the set of
messages appeared in the system so far. Missing messages
are recovered through one or more “gossip rounds”, during
which other processes potentially holding a copy of the data
are contacted. A gossip round consists of the following steps:

1. Process A chooses randomly another process to com-
municate with, say B.

2. A sends to B information that allows to determine
the presence of inconsistencies in their view of the sys-
tem’s state (e.g., the identifiers of the messages A has
received, or missed).

3. A and B reconcile their state by exchanging the actual
messages that are not part of the history of both.

Epidemic algorithms differ along two dimensions. The
first one is the mode of communication, which can exploit
a push or pull style. In a push style, each process gossips
periodically, to disseminate its view of the system to other



processes. Instead, in a pull style a process solicits the trans-
mission of information from other processes to compensate
for local losses. Demers et al. showed in [12] that a pull
approach converges faster than push, provided that a ma-
jority of the participants have the requested message. This
can be explained intuitively by considering a scenario where
a broadcast message reaches all the receivers but one. In
this case, the pull strategy allows the receiver who missed
the message to immediately recover it instead of waiting to
be pushed, thus improving message delivery latency.

Another dimension along which gossip algorithms differ is
the scheme used for disseminating the information about the
process state, which can exploit either positive or negative

gossip messages. In the former scheme, each gossip message
sent by a process contains the state of communication as
perceived by the process, e.g., the content of the process’
event history. Hence, the gossip message lists all the events
that the process has received lately. In a negative gossip
scheme, instead, the gossip message contains the events that
the process has missed.

While in principle the style of communication, push vs.
pull, and the information dissemination scheme, positive
vs. negative, are orthogonal, in practice pull/negative and
push/positive are the most meaningful cases and those typ-
ically exploited. In the presence of a pull strategy, a neg-
ative scheme can be naturally used to react to a missing
message by “pulling” it from other processes, while the pos-
itive scheme is best employed to proactively push a process’
state to the rest of the system.

This last remark highlights a key difference between the
two solutions we are considering, that impacts their per-
formance and applicability. The pull/negative strategy is
intrinsically reactive, in that it is triggered only when a pro-
cess realizes it has lost a message; otherwise, no action is
necessary. Instead, push/positive must be implemented ac-
cording to a proactive scheme, where gossip takes place pe-
riodically. Typically, the high degree of reactivity provided
by the first approach is preferable. Nevertheless, in some
scenarios, e.g., those characterized by a low rate of commu-
nication, a process may not realize it missed a message until
the next one is received. In this case, the other approach
may be preferable. Clearly, the two are not mutually exclu-
sive, and mixed approaches are also possible [12, 14].

Advantages and Motivation. The probabilistic and de-
centralized nature of these algorithms gives them a number
of desirable properties. Gossip algorithms impose a con-
stant, equally distributed load on the processes in the sys-
tem, and are very resilient to changes in the system con-
figuration (e.g., topological changes) since they do not rely
on the existence of one or more processes. Moreover, these
properties are preserved as the size of the system increases,
thus leading to good scalability. Finally, these algorithms
are very simple to implement and rather inexpensive to run.

Gossip algorithms are then a good match for highly dis-
tributed and dynamic scenarios. Nevertheless, their applica-
tion to the case of content-based publish-subscribe system
is not straightforward. Content-based systems pose pecu-
liar challenges that have not been tackled thus far by the
research community, which at best has concentrated on the
simpler subject-based publish-subscribe systems. Still, the
synergy between the two approaches is worth investigat-
ing, since a content-based approach enhances the underlying

publish-subscribe middleware with unprecedented levels of
flexibility, hence simplifying the programmer’s task.

The challenges arising from the use of epidemic algorithms
for content-based publish-subscribe are examined next.

3. CHALLENGES
Epidemic algorithms typically rely on some notion of group

(or subject) that is exploited in at least two ways. On one
hand, the group defines the set of nodes (the group mem-
bers) that collectively define the scope of a gossip interac-
tion. Hence, it provides a way to determine how to route
gossip messages within the system. On the other hand,
the group is used to tag the messages exchanged within it.
Hence, it provides a clue for the recovery process when the
message gets lost. These criteria have been applied success-
fully in systems that already provide a notion of group for
the purpose of enabling communication, e.g., multicast pro-
tocols, group communication facilities, and subject-based
publish-subscribe.

Unfortunately, content-based publish-subscribe systems
do not provide an explicit group notion. One could argue
that a subscription to an event pattern can be treated as
an implicit group, but the analogy actually holds only to
a given extent. In subject-based systems, each message is
associated to one subject (the group), for which routing is
performed independently. Instead, in content-based systems
routing is entirely based on the message content: hence, a
single message can match different patterns—i.e., different
groups in the aforementioned analogy.

This observation is at the core of the challenge of apply-
ing epidemic algorithms to content-based publish-subscribe
systems, which can be summarized by the following issues:

• Detecting event loss. In subject-based systems, a sim-
ple solution to detect event loss relies on tagging a pub-
lished event at its source s not only with its subject
p, as already done by s for routing purposes, but also
with a sequence number associated to s and p. This
sequence number gets increased each time an event for
the subject p is published by s. Receivers can then eas-
ily detect an event loss by discovering missing sequence
numbers in the set of events received by a given source
and for a given subject. In content-based systems this
technique must be somehow generalized, since an event
may match many patterns instead of a single subject,
and the source is not required to tag the published
event in any way, since routing is entirely determined
by the event content.

• Routing gossip messages. In subject-based systems,
the subject defines the set of nodes it is useful to gos-
sip with, since it contains the set of receivers for a given
event associated to that subject. In content-based sys-
tems, however, this set of nodes cannot be determined
as easily since the subject notion is missing. In prin-
ciple, gossip interactions should rely on content-based
routing as much as possible, since it is precisely the
event content that determines the set of potential re-
cipients. Nevertheless, it is generally not possible to
simply route gossip messages as normal events. This
is particularly evident when a pull approach with neg-
ative digests is applied. In this case, a node starts a
gossip round to retrieve an event that has been lost
and whose content is, by definition, not available.



4. RELIABLE CONTENT-BASED
PUBLISH-SUBSCRIBE

In this section, we present three epidemic algorithms that
overcome the challenges described in the previous section.
The first algorithm, presented in Section 4.1, uses proactive
gossip push with positive digests. Instead, in Section 4.2 we
illustrate two alternatives using reactive pull with negative
digests. All the solutions assume that a unicast transport
layer (not necessarily reliable, e.g., UDP-based) is available,
which is a reasonable assumption in most environments.

The behavior of each event dispatcher is formalized, for
what concerns the processing of gossip messages, by using
a very simple pseudo-code notation, as shown in Figure 2
and 3. The key steps of the algorithms are formalized as
actions, reminiscent of subroutines, whose body is assumed
to be executed atomically. The three algorithms we present
share a common structure. Each dispatcher periodically ini-
tiates a new round of gossip by performing the operations
described by an action startGossipRound, that is invoked ex-
ternally upon expiration of a timeout determined by the
gossip interval. We omitted the actions concerning the set-
ting and triggering of this timeout as their semantics is triv-
ial. Processing of gossip messages received by neighbor dis-
patchers is instead codified in the action handleGossipMsg.
The variable Cache contains the event messages stored by
the dispatcher. In the description and formalization of our
algorithms we do not delve in the details of the policy em-
ployed to select which events to cache. A reasonable policy
is to cache only the events for which a dispatcher is either
a subscriber or a source. Nevertheless, other alternatives
are meaningful depending on the deployment scenario, and
we provide additional insights about this issue later in this
paper. Similarly, we do not detail further the last step of
a gossip interaction, i.e., the sending of the missing event.
A reasonable implementation is to exploit an out of band
channel, e.g., a unicast link.

4.1 Push
To provide an answer to the questions identified in Sec-

tion 3 in the case of proactive push with positive digests
we observe that, with this strategy, a gossip message sent
by a dispatcher should include information about the set of
events it cached. Moreover, this gossip message should be
sent only to dispatchers subscribed to such events. As we al-
ready discussed, in content-based publish-subscribe systems
this set of subscribers cannot be computed once and for all.
Nevertheless, we can leverage off of the fact that every dis-
patcher that received and cached an event e knows, from its
subscription table, all the patterns matching e. This means
that each dispatcher is able to construct a gossip message
which includes a digest of all the cached events matching a
given pattern p. This gossip message can then be labelled
with p and routed similarly to events matching p.

Figure 2 describes an algorithm based on the considera-
tions above. When startGossipRound is invoked by the dis-
patcher acting as the gossip initiator—or gossiper—a pat-
tern p is chosen according to some strategy (e.g., randomly)
from the dispatcher’s subscription table and a digest is con-
structed which includes the (globally unique) identifiers3

3A straightforward implementation of this identifier is the
pair given by the source identifier and a monotonically in-
creasing sequence number associated to the source.

Per dispatcher information:
- list of neighboring nodes (including clients)
- subscription table, stored as a list of pairs (node, pattern)
- buffer Cache holding a copy of the last events received

Invoked periodically, e.g., after timeout expiration.
Triggers the start of a new gossip round for a pattern
in the subscription table.
startGossipRound ()

choose a pattern p from the subscription table
create digest = ∅

for all event e ∈ Cache do

if matches(e, p) then

insert e.id in digest
end if

end for

create gossipMsg = (self , p, digest)
send gossipMsg towards one or more subscribers for p

Invoked on a dispatcher upon receipt of a gossip message.
handleGossipMsg (gossipMsg)

if self is subscribed to gossipMsg.pattern then

create a new reqMsg = ∅

for all id ∈ gossipMsg.digest do

if ¬isReceived(id) then

insert id in reqMsg
end if

end for

if reqMsg 6= ∅ then

send reqMsg to gossipMsg.initiator
end if

end if

with probability Pforward send gossipMsg towards one or more
subscribers for gossipMsg.pattern

Invoked on the gossip initiator when a request for a
missing event is received.
handleReqMsg (reqMsg)

for all id ∈ reqMsg do

if ∃e ∈ Cache | e.id = id then

send e to the sender of reqMsg
end if

end for

Figure 2: Push.

of all the cached events matching p. The gossip message
gossipMsg is then labelled with the pattern p and prop-
agated along the dispatching tree. Routing of gossipMsg

message outside the gossiper and along the way towards a
subscriber is determined as usual, by looking at the sub-
scription table to find neighbors interested in the pattern p.
Nevertheless, it is worth noting that the gossip message is
not necessarily duplicated on all the outgoing routes towards
subscribers, as in the normal operation of a publish-subscri-
be system. Instead, to limit the overhead, it is forwarded
only to a subset of the neighbors on the dispatching tree,
e.g., determined randomly. The extent of propagation is
determined at each hop by the probability Pforward .

Moreover, in traditional push-based approaches every node
gossips only with nodes sharing the same interests. A similar
behavior could be obtained in a content-based publish-sub-
scribe system by limiting the choice of p to those patterns
in the subscription table that belong to subscriptions issued
locally, i.e., by the clients attached to dispatcher. Neverthe-
less, in the system we consider a dispatcher receives—and
stores—also subscriptions that are not issued locally, but
that are nonetheless handled by the dispatcher because it is
on the route toward a subscriber. Consequently, the above
strategy would potentially limit the scope of each gossip



round. For this reason, in our solution p is selected by con-
sidering the whole subscription table, i.e., among all the pat-
terns known to the dispatcher. This increases the chances
of eventually finding all the dispatchers interested in the
cached events, and speeds up convergence.

Upon receipt of gossipMsg , a dispatcher is expected to
perform the operations represented by the action handle-

GossipMsg. These consist of checking if the dispatcher is
subscribed to the pattern p labelling gossipMsg and, if yes,
of verifying if all the identifiers in the digest correspond to
events already received. In our solution, the details of how
this test is performed are glossed over, and encapsulated in a
function isReceived (id), which returns true if the dispatcher
received an event with the given id .

The identifiers of all the missed events, if any, are then
included in a request message reqMsg which is sent back to
the gossiper using an out of band channel. Upon receipt of
this message, the gossiper invokes the action handleReqMsg,
which selects the events with the corresponding identifier
from the cache, and sends them back to the requester. This
third and last phase concludes the interaction taking place
in our push approach.

4.2 Pull
In some situations a proactive push approach may con-

verge slowly or result in unnecessary traffic. In these cases,
an approach using reactive pull with negative digests may be
preferable. Nevertheless, the problem of detecting an event
loss in a content-based system is complicated by the fact
that dispatchers do not receive all events, but only those
matching the patterns they are subscribed to.

The technique we employ to overcome this problem is to
tag events with identifiers carrying enough information to
detect loss. Besides the event source, these identifiers con-
tain information about the patterns4 matched by the event,
each associated with a sequence number incremented at the
source each time an event is published for that pattern. For
instance, let us consider a publisher with identifier S, which
already published four events matching a pattern Pa, and
other three matching Pb

5. When this event source publishes
a new event that matches both patterns, the identifier as-
sociated to the event message is S:Pa-5:Pb-4. Patterns are
associated to an event at its source: this is made possible by
the fact that a subscription forwarding strategy is chosen,
and hence subscriptions are known to all dispatchers.

This scheme, which is a generalization of the one we de-
scribed in Section 3 for subject-based systems, enables the
detection of event loss. Whenever a dispatcher receives an
event matching a pattern p, but for which the sequence num-
ber associated to p in the event identifier is greater than the
one expected for that pattern and source, it can detect the
loss of an event and trigger the appropriate actions. In the
remainder of this section, we present two solutions that both
rely on the this technique for detecting event loss, but differ
in the way they attempt to retrieve the missing event. The
solutions are complementary, in that the first one steers gos-
sip messages towards the event receivers (the subscribers),

4A hash signature of the pattern is actually enough.
5Content-based systems allow rather sophisticated expres-
sions. For instance, Pa could be {Software* OR Appl*s}
and Pb {Distributed AND ?pplication?}. Events contain-
ing "Distributed Applications" would then match both
patterns.

while the other steers them towards the event sender (the
publisher). Both solutions are shown in Figure 3.

Subscriber-Based Pull. In the solution shown in Fig-
ure 3, as soon as a lost event is detected it is immediately
inserted in the buffer LostBuffer , by an action that is not
shown explicitly in the figure to keep the algorithm descrip-
tion concise. The elements of LostBuffer are the triples iden-
tifying an event in our encoding, i.e., source, pattern, and
sequence number associated to the pattern and source. The
action startGossipRound, that is invoked at regular intervals
like in the push solution, first checks whether there are lost
events. If yes, a gossip round is effectively triggered6. Note
how in this case we do not use the whole subscription table
like in the push approach, since here the focus is on retriev-
ing events that are relevant to the gossiper, and not on dis-
seminating events to as many dispatchers as possible. Con-
sequently, the pattern p is drawn from the ones associated
to subscriptions issued locally, i.e., by the clients attached
to dispatcher. Pattern p is used to select the corresponding
lost events from LostBuffer , which are inserted them in the
digest attached to the gossip message gossipMsg , which is
then labelled with p and routed in a way analogous to the
push solution.

When a dispatcher receives a gossipMsg , it checks its event
cache to see whether it holds some of the events requested
by the gossiper. It does not matter whether the dispatcher
at hand is a subscriber for the pattern p requested by the
gossiper. For instance, following up on our earlier example,
let us suppose that the gossiper is missing the event S:Pa-5,
and that this information is included in a gossipMsg . Of
course, there is no way for the gossiper to know that this
event has been delivered also to dispatchers subscribed to Pb.
Instead, a dispatcher that is subscribed to events matching
Pb and has cached the event can easily determine that S:Pb-

4 and S:Pa-5 are indeed the same event by looking at the
event identifier (S:Pa-5:Pb-4). Hence, the dispatcher can
retransmit the missed event to the gossiper.

Although events can be retransmitted by any dispatcher
that has “seen” the event, it is very important for a gos-
sip message to be steered towards a subscriber for the same
pattern of the lost event (Pa in our case). In fact, sub-
scribers act as “points of accumulation” for events, in that
not only they might have the requested event in the cache,
but they also actively try to recover lost events through gos-
sip. Hence, when a gossipMsg reaches a subscriber rather
than a middleman dispatcher, the likelihood of recovering
the lost events is much higher.

Publisher-Based Pull. The right side of Figure 3 shows a
source-routing scheme that recovers lost events by walking
backwards towards the publisher. While in the other algo-
rithms we are not sensitive about the policy used to cache
events, here we assume that published events are cached
at the source and possibly at all the dispatchers located on
routes towards the subscribers for that event. Moreover, the
address of each dispatcher encountered by the event during
its travel towards a subscribers is appended to the event

6In principle, a gossip round could be triggered immediately
upon detection of a lost event. Nevertheless, in scenarios
characterized by frequent losses it is convenient to delay the
triggering to the next gossip round, so that multiple lost
events can potentially be retrieved during a single round.



Per dispatcher information:
- list of neighboring nodes (including clients)
- subscription table, stored as a list of pairs (node, pattern)
- buffer LostBuffer holding a triple
(source, pattern, sequence number) for each lost event

- buffer Cache holding a copy of the last events received

Invoked periodically, e.g., after timeout expiration.
Triggers the start of a new gossip round for a pattern in the sub-
scription table.
startGossipRound ()

if LostBuffer 6= ∅ then

choose a pattern p from the subscription table (considering only
those coming from clients)
create digest = ∅

for all (s, p, c) ∈ LostBuffer do

insert (s, c) in digest
end for

create gossipMsg = (self , p, digest)
send gossipMsg towards one or more subscribers for p

end if

Invoked on a dispatcher upon receipt of a gossip message.
handleGossipMsg (gossipMsg)

for all (s, c) ∈ gossipMsg.digest do

if ∃e ∈ Cache | e matches (s, gossipMsg.pattern, c) then

send e to gossipMsg.initiator
end if

end for

if self is not subscribed to gossipMsg.pattern then

send gossipMsg to one or more subscribers for gossipMsg.pattern
else

with probability Pforward send gossipMsg to one or more sub-
scribers for gossipMsg.pattern

end if

Per dispatcher information:
- list of neighboring nodes (including clients)
- subscription table, stored as a list of pairs (node, pattern)
- buffer LostBuffer holding a triple
(source, pattern, sequence number) for each lost event

- buffer Cache holding a copy of the last events received
- buffer Routes holding a pair (source, route) for each event source

Invoked periodically, e.g., after timeout expiration.
Triggers the start of a new gossip round for a source.
startGossipRound ()

if LostBuffer 6= ∅ then

choose a publisher s

create digest = ∅

for all (s, p, c) ∈ LostBuffer do

insert (p, c) in digest
end for

create gossipMsg = (self , s, digest, r) with r|(s, r) ∈ Routes
send gossipMsg to the first node in gossipMsg.route

end if

Invoked on a dispatcher upon receipt of a gossip message.
handleGossipMsg (gossipMsg)

for all (p, c) ∈ gossipMsg.digest do

if ∃e ∈ Cache | e matches (gossipMsg.source, p, c) then

send e to gossipMsg.initiator
end if

end for

if self = gossipMsg.source then

drop gossipMsg
else

send gossipMsg to the next node in gossipMsg.route
end if

Figure 3: Subscriber-based (left) and publisher-based (right) pull.

message, thus recording a route from the publisher to the
subscriber. Lost events are stored in LostBuffer as described
earlier for the subscriber-based solution. In addition, a new
buffer Routes is necessary to store the route towards a given
publisher, e.g., based on the route information stored in the
most recent event received from that source.

When a new gossip round is triggered, an event source is
chosen among those known. The actions startGossipRound

and handleGossipMsg essentially behave like their counter-
parts in the subscriber-based pull algorithm, except for the
fact that the information distinctive of the gossip message is
now the event source rather than pattern, and that gossipMsg

is now augmented with the information necessary to be
routed back to the publisher. It is interesting to note that
there is no guarantee that the route stored in Routes is the
same originally followed by the missing event, since changes
in the dispatching network could have occurred meanwhile.
On the other hand, it is likely that the two share at least
the first portion or, in the worst case, the source.

One reasonable question to ask is whether this solution
suffers from the well-known “acknowledgment implosion”
problem, which affects several reliable group communication
schemes and occurs when several nodes missing a message
request retransmission simultaneously to the same node.
Our push and subscriber-based pull solutions, thanks to
their distributed nature, are essentially free from this risk.
For the publisher-based solution, the probability of such a
phenomenon is rather low. In fact, it is unlikely that two
subscribers holding different subscriptions (e.g., Pa and Pb)
realize at the same time that they have missed an event.

Following our example, this would happen only if the next
event published by S matches both patterns as well. Finally,
differently from traditional NACK-based reliable multicast
schemes, retransmission requests are handled by the first
dispatcher holding the desired event found along the path,
thus avoiding to overload the publisher.

5. DISCUSSION
As mentioned in Section 1, our initial and driving mo-

tivation for tackling reliability was to cope with event loss
induced by the dynamic reconfiguration of the dispatching
infrastructure, e.g., due to mobility. Nevertheless, thus far
we did not make any hypothesis about the cause of event

loss. Hence, our algorithms enjoy general applicability, and
in principle can improve reliability in any situation where
an event loss may occur.

The three solutions we proposed exhibit very different
characteristics, and are hence likely to perform best in differ-
ent scenarios. To begin with, we observe that the effective-
ness of pull-based solutions strongly depends on the avail-
ability of a reasonable number of subscribers for the same
pattern used to “pull” messages. Hence, scenarios where the
sets of subscriptions held by each dispatcher have a small in-
tersection are very critical for pull, while they do not affect
significantly the performance of push. One way to overcome
this limitation of the pull approaches is to couple them with
others. A natural solution is to combine subscriber-based
with publisher-based pull, since the two mechanisms are
dual and complementary. The rationale is that this com-
bination improves the chances to recover an event, since the



recovery process proceeds not only along the routes towards
receivers, but also towards the sender.

The number of subscribers does not affect significantly the
push approach, whose performance is instead challenged by
scenarios with a high number of patterns. The problem is
that our push approach recovers messages by periodically
gossiping the digest of received events for a given pattern.
The more the patterns, the bigger the latency experienced
in recovering an event, which meanwhile may get discarded
from the buffer of dispatchers and eventually get lost forever.
We observe, however, that what dominates the behavior of
push is not the sheer number of patterns in the system, but
only the number of patterns potentially matched by each
event. In a scenario where a content-based system is being
exploited for multiple applications at once (or by users with
different roles) this number should not be very high, as it is
unlikely that a single event matches all subscriptions, as the
latter express very different application concerns.

The tradeoff between delivery and overhead can be tuned
by intervening on a pair of parameters that are tightly re-
lated: the buffer size and the gossip interval. For instance, a
bigger buffer size essentially allows events to persist longer
in the cache, and hence enables less frequent gossiping, thus
essentially trading storage consumption on dispatchers for
communication overhead. The situation can be improved
by exploiting more refined policies for discarding events from
the cache. For instance, a dispatcher may discard first events
for which it is neither a source nor a subscriber. Or, a
probabilistic scheme can be employed to ensure that a given
event does not get discarded at about the same time from
all caches in the system.

One great advantage of pull-based solutions is their re-
activity: a gossip round is triggered only when an event is
lost. Reactive approaches perform better, in terms of gen-
erated traffic overhead, when there is a large variability in
the frequency of event losses, e.g., in situations where bursts
of errors are followed by periods in which the system looses
very few events. A significant instance of this case is when
the changes occur in the topology of the dispatching infras-
tructure, e.g., because of mobility. Instead, a proactive push
approach is likely to result in wasted bandwidth when the
system is stable. To remove this potential source of inef-
ficiency, an adaptive approach can be exploited where the
gossip interval is changed dynamically according to the cur-
rent state of the system, as suggested for instance in [9].

Another issue is computational overhead. Pull-based so-
lutions require that a dispatcher, when publishing an event
e, performs a match of e against all the patterns in its sub-
scription table. This introduces overhead since usually the
match processing needed to route a message towards a neigh-
bor stops as soon as the first matching pattern is found.
While we are currently investigating optimizations to limit
this type overhead, we also observe that only the publisher
experiences it: the event routing performed by the other
dispatchers in the system follows the normal processing.

We conclude this section by pointing out that the con-
siderations we just expressed are actually supported by a
thorough evaluation we are carrying out through simulation.
The results indeed demonstrate that our algorithms bring a
remarkable improvement of event delivery, are scalable, and
pay only a limited overhead. Nevertheless, space limitations
forced us to present here only a concise discussion of our
findings. The reader interested in the complete evaluation,

comprehensive of simulation charts and a description of the
simulated scenario, is redirected to [8].

6. RELATED WORK
Several centralized publish-subscribe systems offer a reli-

able service (e.g., all the JMS [28] compliant ones). More-
over, some of the existing distributed subject-based publish-
subscribe systems provide a reliable service [30, 23, 3, 21, 31,
5]. Similarly, researchers working on reliable multicast [24,
19, 16] and group communication [13, 7] proposed several
protocols for reliable multicast where routing is group or
subject-based. Unfortunately, none can be used for the sys-
tems we target here, as discussed in Section 3.

Only a few works address reliability in content-based pu-
blish-subscribe systems. In [1], the authors describe a guar-
anteed delivery service for the Gryphon system. Content-
based routing is provided through a collection of spanning
trees each rooted at one of the publishers. Guaranteed de-
livery is ensured by an acknowledgment-based scheme that
requires stable storage only at the publisher. However, the
solution described is not amenable to the highly dynamic
scenarios motivating our work, since the solutions for fac-
ing a publisher crash (e.g., shared and replicated logs) are
not applicable, and a topological change would trigger the
reconfiguration of several trees and generate high overhead.

The Hermes [22] system provides a form of content-based
routing based on constraints on type attributes. Hermes
exploits Pastry [26] as the basic transport layer, and hence
inherits the ability to rearrange the overlay network and the
routing information as a consequence of topological changes.
Nevertheless, the authors do not give details about how to
recover events lost during reconfiguration.

The closest match to our work is hpcast [15]. In hpcast
nodes are organized in a hierarchy where the leaves represent
event subscribers and publishers, and intermediate nodes
represent delegates, i.e., special nodes which are chosen to
represent aggregate interests of their children. A gossip push
approach is used to distribute events starting from the root
of the hierarchy and moving down each time a delegate re-
trieves an event that could interest its children. The idea of
using gossip not just to improve event delivery but as the
only routing mechanism is simple and elegant, but results
in several drawbacks. First, in absence of faults it increases
the overhead since events are not routed only to interested
nodes, but they can reach also non-interested nodes or even
be sent more than once to the same node. Second, even
in absence of faults it does not guarantee that events are
delivered correctly. Third, it forces the adoption of a push
approach in which gossip messages include the entire event
content instead of a simple digest, thus further increasing
the network traffic. Finally, the nodes near to the root of
the hierarchy are subject to a high traffic, and hence must
keep their event caches very large to increase the probability
of correctly delivering events.

7. CONCLUSIONS
Modern distributed computing is steering towards scenar-

ios that are increasingly large scale, unreliable, and highly
dynamic. Distributed content-based publish-subscribe em-
bodies a communication model providing the necessary com-
ponent decoupling, flexibility, expressiveness, and scalabil-
ity to deal with these characteristics at the application level.



Nevertheless, the problem of reliable event delivery, which
is exacerbated by the aforementioned scenarios, has not yet
been tackled by researchers, and is hampering the exploita-
tion of content-based publish-subscribe middleware in real-
world applications.

In this paper, we presented three solutions that intro-
duce reliability in content-based publish-subscribe systems
by means of epidemic algorithms.

Our results are derived without making assumptions about
the source of event loss, and hence enjoy general applicabil-
ity. Our ongoing work, however, is aimed at complementing
the results we described with those we already obtained for
the reconfiguration of the dispatching infrastructure, and
convey them in a new-generation distributed content-based
publish-subscribe system able to tolerate arbitrary reconfig-
urations and minimizing the number of events lost.
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