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ABSTRACT
Distributed applications rely on middleware to enable com-
ponents to interact with each other remotely. Thus, the
overall performance of the distributed application increas-
ingly depends on the interaction between the implementa-
tion of the various components and the features provided by
the middleware. In this paper we analyze Java components
and the RMI middleware provided by the language, and we
discuss the opportunities for optimizing remote method in-
vocations.

Specifically, we discuss how parameter passing among dis-
tributed objects can be optimized through fairly standard
static program analysis techniques. Parameter passing can
be costly: large object parameters need to be serialized and
transmitted over the network. Our optimization allows only
object portions to be transmitted, corresponding to what
is actually used at the server side. The paper presents the
program analysis technique we employ and outlines an im-
plementation of the run-time optimization it enables.

1. INTRODUCTION
Two major trends characterize the evolution of software

technology during the past decade. On the one hand, soft-
ware applications are becoming increasingly distributed and
decentralized. On the other, off-the-shelf components are in-
creasingly used as building blocks in composing a distributed
applications. The gluing mechanisms that support the as-
sembly of components are provided by the middleware.

Although much progress has been achieved in the past in
supporting designers while developing distributed applica-
tions, it is still true that the level of support provided for
traditional centralized software is much more mature. While
full support is available when designing individual compo-
nents, little help is provided in the global context provided
by the distributed infrastructure, in which components have
to be deployed, configured, and interconnected.

As an example, consider the problem of code optimiza-
tion. Traditional approaches deal with code optimization in

the context of a compilation process to a predefined target
architecture—very often, a single-processor machine. Au-
tomatic optimization allows the programmer to concentrate
more on the correct development of the program, its ease
of change, and other desirable qualities, instead of dealing
with tiny details and maybe loosing control of the overall
structure of the program. Consider instead the case where
an application transitions from a centralized implementa-
tion to a distributed one, supported by some middleware
layer. Or the case where a new application is developed
using both a traditional programming language for compo-
nents and some middleware layer for interconnecting them.
We are not aware of automatic optimizations techniques that
span over two domains: the domain of the programming lan-
guage used inside a component and the domain of the mid-
dleware that is used to interconnect the components. This
is true also in the case where the two domains are in the
same linguistic framework, as in the case of Java and Java
RMI [14].

This is exactly our topic of interest. Specifically, we con-
sider the case where components are written in the Java pro-
gramming language, and Java RMI is used as middleware.
In particular, we concentrate on parameter passing across
network boundaries, when object methods are invoked re-
motely. Java allows parameters to be serialized when passed
from one node to another. Serialization allows objects to mi-
grate over the network. This, however, may cause overhead
and reduce performance. Maybe only a small part of a huge
serializable object is actually used remotely, and therefore
performance can be improved by transmitting only a small
serialized portion of the object.

In this paper we discuss how this can be done by stat-
ically analyzing the bytecode of a Java program and then
using the results to optimize the object serialization. We
use fairly standard static analysis techniques. What is new
in this paper is how this analysis is used and the context in
which it is used. Our technique is particularly valuable in
the case where off-the-shelf components are used to build a
distributed application. In this case, in fact, the designer has
no visibility of the internals of the components, and therefore
many opportunities for hand optimizing inter-component in-
teractions are necessarily missed. Moreover, since our tech-
nique is aimed at reducing the communication overhead, it is
particularly useful in bandwidth-constrained scenarios like
those defined by mobile computing.

The paper is structured as follows. Section 2 provides the
reader with the background about Java serialization and
RMI. Section 3 discusses the motivation for our work and



states the problem, by relying on a reference example that
is used in the rest of the paper to illustrate our technique.
Section 4 presents the details of our program analysis ap-
proach, and Section 5 shows how its results can be exploited
at run-time by redefining the serialization by relying only
on the Java API. Section 6 discusses benefits and limita-
tions of our techniques, and suggests possible enhancements
and exploitations. Section 8 reports about a prototype tool
suite supporting we are currently building to support our
approach. Section 7 briefly surveys related work. Section 9
ends the paper with brief concluding remarks.

2. BACKGROUND
In this section we provide the reader with the necessary

background on object serialization and remote method in-
vocation. The presentation is focused on Java, albeit most
of the concepts can be found in similar platforms, e.g., in
the Remoting API of Microsoft .NET [24].

2.1 Object Serialization
Object serialization is the process of flattening an object,

whose data is structured according to the composition rela-
tionship, into a stream of bytes. This is fundamental to per-
form input/output with objects, and in particular for sav-
ing them on persistent storage, or transferring them across
a network link.

In Java, the serialization process is accomplished by using
two special input/output streams, ObjectInputStream and
ObjectOutputStream. When an object reference r is written
to the latter, the Java run-time recursively serializes the at-
tributes of r, the attributes of the attributes of r (if they are
object references), and so on, until the whole graph of ob-
jects rooted at r has been serialized. If an attribute value is
null, this value is written to the serialization stream. Simi-
larly, if an attribute value has a primitive type (e.g., int) it
is serialized by using a default format. Class descriptors are
also inserted in the serialization stream to provide the receiv-
ing side with enough information to locate the correct type
at deserialization time. Deserialization essentially proceeds
backwards, by extracting information from the serialization
stream and reconstructing the object graph accordingly.

Interestingly, serialization preserves aliases within a single
serialization stream. For instance, if two object references
pointing to the same object are written one after the other
without closing the stream, when deserialized they will still
point to the same copy of the original object.

The aforementioned process, however, requires the object
reference to belong to a type that has been explicitly de-
clared to be serializable, which in Java is accomplished by
implementing the java.io.Serializable interface. This in-
terface does not contain any method or constant, and serves
the only purpose of tagging the implementing class as serial-
izable. In addition, the programmer retains control over the
fraction of the object graph that must be serialized. In fact,
although by default all the object attributes are serialized,
attributes that are prepended by the transient keyword
are not. When the object is reconstructed by deserializa-
tion, transient attributes are set to the language default for
their type.

The object serialization API provides means for the pro-
grammer to redefine many facets of the serialization behav-
ior, e.g., changing the policy to locate the object code, re-
placing an object with another one, and so on. In partic-

ular, a class may specify its own (de)serialization through
two private methods writeObject and readObject which,
if defined, are used in place of the aforementioned process.
As we describe in Section 5, this feature can be used to
implement our optimization in RMI applications.

2.2 Remote Method Invocation
Remote method invocation enables the development of

distributed applications by using essentially the same pro-
gramming constructs employed in a local setting, and can
be regarded as an evolution of remote procedure call recast
in the object-oriented paradigm.

Although our work deals with Java, the results enjoy wider
applicability, since several middleware support some flavor
of remote method invocation.

2.2.1 Basic Concepts
In RMI, a line is drawn between remote objects and non-

remote objects. A “remote object is one whose methods
can be invoked from another Java virtual machine, poten-
tially on a different host” ([14], §2.2), i.e., a potential target
of a remote method invocation. Remote objects are de-
fined programmatically by any class that implements the
java.rmi.Remote interface or a subtype thereof. All the
other objects are simply called non-remote objects.

The remote interface plays a role analogous to interfaces
written in an interface definition language (IDL) like in
CORBA or DCOM [5], although here interface and im-
plementation are specified using the same language. The
caller accesses the remote object only through the meth-
ods in its interface: hence, the implementation of the callee
can be changed independently, although constrained by the
dynamic binding rules of the language. In RMI, such an
implementation can even be unknown at compilation time,
and it can be dynamically transferred and linked on the fly
if and when needed at run-time. This removes the need to
determine in advance a proper deployment of stub code on
the hosts involved in the distributed application.

To be remotely accessible, however, remote objects must
be instrumented properly. In essence, the implementation of
hashCode, equals, and toString must be redefined to take
distribution into account. Moreover, the object needs to be
exported, which essentially consists of making it known to
the run-time, and able to accept incoming calls. The sim-
plest way to meet these constraints in the implementation of
a remote object is to subclass from java.rmi.server.Uni-

castRemoteObject, which provides all the necessary func-
tionality. In this case, the object is automatically and im-
plicitly exported to the run-time support upon invocation
of the constructor. Otherwise, it is the programmer’s re-
sponsibility to meet the aforementioned constraints in the
definition of her own class implementing Remote, and to ex-
port it explicitly by using the static method exportObject

provided by UnicastRemoteObject.
There are essentially two ways through which a reference

to a remote object can be acquired by the client side of
a remote method invocation. The first and most straight-
forward one is by querying a lookup service—or registry in
the RMI jargon. The registry is a process that binds local1

objects to symbolic names. Figure 1 shows a code snippet

1For security reasons, in the current RMI implementation
the registry must be on the same machine hosting the ob-
jects being bound.



public static void main(String[] args) {
String name = "//localhost/printer";

IPrinter printer = new DotMatrixPrinter();
try {

Naming.rebind(name, printer);

} catch (Exception e) {
//exception handling code

}
}

Figure 1: Binding an object to an RMI registry.

...
IPage aPage = new MixedPage(20);

IPrinter printer = (IPrinter) Naming.lookup("//myregistry/printer");
printer.print(aPage);

...

Figure 2: Obtaining a remote reference and per-
forming a method invocation.

where an object of type DotMatrixPrinter, implementing
the remote interface IPrinter, is bound to the registry and
made accessible through the symbolic name printer. Re-
mote clients can query the registry by providing a symbolic
name, and obtain a network reference to the corresponding
object2. The remote nature of this reference is transparent
to the application developer. In particular, it can be the
target of a method invocation, that is handled accordingly
by the RMI run-time support. An example is shown in the
code snippet in Figure 2, where a client creates a page to be
printed, acquires a reference to the print service exported
in Figure 1 by looking up the registry, and then invokes the
print service through remote method invocation.

The other means to obtain a reference to a remote object
is through parameter passing, which is examined next.

2.2.2 Passing Parameters to Remote Methods
In object-oriented languages, objects are typically passed

by reference in method invocations. Maintaining this choice
in a distributed setting hides distribution to the program-
mer, and hence simplifies her task. However, when a method
invocation is remote the object reference is actually stretched
across the network: accesses to the formal parameter on the
callee host trigger communication back to the caller site,
where the appropriate actions on the actual parameter are
performed. If the parameters were instead copied and trans-
ferred to the callee site, communication would be reduced,
but semantics of parameter passing would be different from
the one of the host language, hence making the program-
mer’s task more complex and error prone. This tradeoff is
solved in different ways by existing systems. For instance, in
CORBA [16] objects are always passed by reference, while
structs and sequences are passed by copy. In Java RMI,
objects can be passed through parameters either by refer-
ence or by copy. If the object being passed (either as an
actual parameter or as a return value) in a remote method
invocation is a remote object and it has been exported,
then the object is passed by reference, i.e., it is accessed
through the network. Instead, if the parameter is a non-

2What is returned is actually a stub, i.e., automatically gen-
erated code that acts as a local proxy to the remote object,
and manages the communication necessary to support re-
mote method invocation.

remote object, or it is a remote object that has not been
exported yet, it is passed by copy. In this case, however,
the type of the object is required to implement the interface
java.io.Serializable. Primitive types are always passed
by copy. Hence, in Java RMI the programmer is aware of
distribution, and can retain some degree of control over it,
by deciding—albeit only at design time—whether an object
should be copied and hence accessed locally, or instead ac-
cessed through the network. In contrast, a fully distribution-
transparent approach may lead to macroscopic inefficiences,
as discussed for instance in [26].

2.2.3 The Role of Serialization
The semantics of parameter passing by copy is defined in

Java RMI by object serialization. The interplay between
serialization and parameter passing, however, slightly com-
plicates the picture. Since it is relevant to the results we
present here, we hereby delve into further details.

The first issue is aliasing. Since a single serialization
stream per remote method invocation is used, references to
the same object in the caller are mapped in the callee into
references to the same serialized copy of that object. As a
particular case, two actual parameters that are aliases re-
sult in two aliased formal parameters in the callee. Hence,
the two parameters are not copied independently, as usually
happens in programming languages supporting parameter
passing by copy.

The other issue has to do with serialized objects contain-
ing references to remote objects. In this case, the behavior
of RMI is as follows ([14], §2.6.5):

• If the object being serialized is an instance of Remote

and the object is exported to the RMI run-time, the
stub for the remote object is automatically inserted in
the serialization stream in place of the original object.

• If the object is an instance of Remote and the object
is not exported to the RMI run-time, or the object
is not an instance of Remote, the object is simply in-
serted in the serialization stream, provided it imple-
ments Serializable. If the object is not serializable,
a NotSerializableException is raised.

In essence, this preserves the semantics of object refer-
ences in presence of distribution. If the object o contains a
remote object r in its object graph, the serialized copy of o

will still access the original copy of r on the original node,
provided that r has been exported. Otherwise, r will be
treated just like any other ordinary object.

Java RMI provides a number of other features, including
dynamic class loading, activation, and security. For a de-
scription of these features, we redirect the interested reader
to [14], since they do not fall in the scope of this work. In-
stead, we now describe the problem we identified with RMI
serialization, and the solution we devised.

3. MOTIVATION, PROBLEM STATEMENT,
AND REFERENCE EXAMPLE

RMI provides a simple and powerful mechanism for build-
ing distributed applications, whose semantics strikes a rea-
sonable balance between expressiveness and efficient use of
communication. One of the known weaknesses of RMI, how-
ever, is its reliance upon object serialization. In Java—and
in object-oriented languages in general—objects are often



public interface IPrinter extends Remote {
public void print(Page page) throws RemoteException;

}

public interface IPage extends Serializable {

public IPageElement[] getWholePage();
public IPageElement[] getTextElements();

public IPageElement[] getGraphicElements();
}

public interface IPageElement extends Serializable {
public void print();

}

Figure 3: Interfaces for a simple print service.

very structured: composition may quickly lead to pretty
large object graphs. This is usually not a problem when
the use of an object is limited to a given host, and even a
poor use of the composition relation usually does not bear
immediate negative consequence on the performance of the
overall application. Nevertheless, when the object must be
transferred to another host, e.g., during a remote method in-
vocation, the degree of structuring of an object has a great
impact on performance. An overhead is introduced in terms
of both computation, since both serialization and deserial-
ization require the object graph to be recursively navigated,
and communication, since large objects obviously result in
large serialization streams being transmitted.

Most of the existing approaches focus on reducing the
computational overhead introduced by serialization [10, 1,
9, 2, 17]. They aim at improving the Java/RMI run-time,
without considering the application code running and, in
particular, how the object is used after deserialization. In
this paper, we take the complementary approach of exploit-
ing the knowledge about the use of serialized objects on the
server side to achieve opportunities of further optimizations,
in particular for reducing the size of the serialized object and
hence reducing the network traffic.

Different uses of a deserialized object may stress different
portions of the object. For instance, different method in-
vocations may access different subsets of the object fields.
Unfortunately, in Java an object is always serialized in the
same way, regardless of its use after deserialization. The
only degrees of freedom left to the programmer are the abil-
ity to mark some of the fields as transient and the ability to
redefine serialization. The former enables the programmer
to tune serialization only at the class level rather than the
object level; still, serialization cannot be tailored according
to how the object is going to be used (which may vary from
call to call). The latter can be used in principle to achieve
the optimization we are suggesting, but it would require
the programmer to track down and manage a prohibitive
amount of information.

Our approach, instead, consists of (a) performing static
analysis to derive information about the portions of serial-
izable parameters that need to be transmitted at each call
point, and (b) use this information at run-time to drive the
serialization process accordingly.

In what follows, we define a simple reference example,
which will be used throughout the paper. The example deals
with a print service. The service is provided through an
IPrinter interface, shown in Figure 3. Clients are expected
to invoke the only method print() by passing the page to

public class DotMatrixPrinter extends UnicastRemoteObject
implements IPrinter {

private PrintStream out = new DotMatrixPrintStream();
public DotMatrixPrinter() throws RemoteException { super(); }

public void print(IPage page) throws RemoteException {
IPageElement[] text = page.getTextElements();
if (text != null)

for (int i = 0; i < text.length; i++)
text[i].print(out);

}
}
public class Plotter extends UnicastRemoteObject

implements IPrinter {
private PrintStream out = new PlotterPrintStream();

public Plotter() throws RemoteException { super(); }
public void print(IPage page) throws RemoteException {

IPageElement[] graphics = page.getGraphicElements();
if (graphics != null)
for (int i = 0; i < graphics.length; i++)

graphics[i].print(out);
}

}
public class InkJetPrinter extends UnicastRemoteObject

implements IPrinter {

private PrintStream out = new InkJetPrintStream();
public InkJetPrinter() throws RemoteException { super(); }

public void print(IPage page) throws RemoteException {
IPageElement[] elements = page.getWholePage();

if (elements != null)
for (int i = 0; i < elements.length; i++)

elements[i].print(out);

}
}

Figure 4: Implementations of the printer interface.

be printed as a parameter3. Pages are made up of page
elements; both are manipulated through the other two in-
terfaces shown in Figure 3. A fundamental characteristics of
pages, in our example, is that they can contain text and/or
graphical elements. The methods exported by the IPage in-
terface allow one to retrieve either or both. A PageElement

object exports a single method print(), which is invoked
by the receiving IPrinter and causes the actual printing of
the element on the printing device.

The code in Figure 3 constitutes a reasonable API for our
printing service, and one that decouples sharply the service
interface from its implementation. A client can request a
page printout regardless of the target device, without any
need to change the client implementation. It will be up
to the IPrinter server to do the printing according to its
own capabilities, i.e., printing only text, only graphics, or
both. Nevertheless, it is precisely this (desirable) separation
of concerns that backfires in terms of communication per-
formance. To understand why, let us consider what happens
when multiple printing devices with different capabilities are
available. In Figure 4 we show three possible implementa-
tions of the IPrinter interface, meant to be used with a
dot-matrix printer, a plotter, and an ink-jet printer, respec-
tively. All of them export the print() method. However, a
dot-matrix printer can only print text-only pages, a plotter
can only print graphics, while an ink-jet printer can print
both.

The implementation of pages and page elements must be

3Clearly, this is unrealistic, as printing usually involves doc-
uments, which are in turn composed of pages. Nevertheless,
we choose to focus on a single page in order to keep the
example simple and compact. Further improvements would
also be possible from an object-oriented programming style.



public class TextPage implements IPage {
private TextElement[] pageElements;

public TextPage(int pageDimension) {
pageElements = new TextElement[pageDimension];

}

public IPageElement[] getWholePage() { return pageElements; }
public IPageElement[] getTextElements() { return pageElements; }

public IPageElement[] getGraphicElements() { return null; }
}
public class GraphicPage implements IPage {

private GraphicElement[] pageElements;
public GraphicPage(int pageDimension) {

pageElements = new GraphicElement[pageDimension];
}

public IPageElement[] getWholePage() { return pageElements; }
public IPageElement[] getTextElements() { return null; }
public IPageElement[] getGraphicElements() { return pageElements; }

}
public class MixedPage implements IPage {

private IPageElement[] pageElements;
public MixedPage(int pageDimension) {

pageElements = new IPageElement[pageDimension];

}
public IPageElement[] getWholePage() { return pageElements; }

public IPageElement[] getTextElements() {
TextElement[] text = new TextElement[pageElements.length];

int j = 0;
for (int i = 0; i < pageElements.length; i++)

if (pageElements[i] instanceof TextElement)

text[j++] = pageElements[i];
return text;

}
public IPageElement[] getGraphicElements() {

GraphicElement[] graphics =

new GraphicElement[pageElements.length];
int j = 0;

for (int i = 0; i < pageElements.length; i++)
if (pageElements[i] instanceof GraphicElement)

graphics[j++] = pageElements[i];
return graphics;

}

}

Figure 5: Implementations of a page.

public class GraphicElement implements IPageElement {
private int[][] colors;
public GraphicElement(int dimension1, int dimension2) {

colors = new int[dimension1][dimension2];
}

public void print(PrintStream out) {
for (int i = 0; i < colours.length; i++)

for (int j = 0; j < colours[i].length; j++)
out.print(colors[i][j]);

}

}
public class TextElement implements IPageElement {

private char[] characters;
public TextElement(int dimension) {

characters = new char[dimension];

}
public void print(PrintStream out) {

for (int i = 0; i < characters.length; i++)
out.print(characters[i]);

}
}

Figure 6: Implementations of a page element.

defined accordingly. Figure 5 shows three possible imple-
mentations of IPage supporting text, graphics, and com-
posite pages, respectively. A TextPage contains textual ele-
ments only, a GraphicPage contains graphic elements only,
and a MixedPage contains both. In this latter case, the
methods getTextElements and getGraphicElements are de-
fined to return only the appropriate subset of page ele-

ments. Figure 6 shows a possible implementation of the
IPageElement interface. The class TextElement contains
an array of characters representing the text fragment asso-
ciated with the element. Similarly, GraphicElements con-
tains a color matrix representing, with some simplification,
the picture to be drawn. It is interesting to note that, while
printing is invoked by the page element through its print

method, the page element does not have any knowledge
about the innards of the printing process: it simply dumps
its data to the print stream out, that has been bound to the
appropriate implementation passed by the calling server ob-
ject. Again, this enables a full decoupling between the doc-
ument logic contained in the page element and the printing
logic contained in the server.

A user may print the same page on different printers at
different times, e.g., depending on proximity. Clearly the
result may be somewhat degraded with respect to the page
content. For example, a page containing text and graphics
can still be printed on a dot-matrix printer. In this case,
however, only the text will be printed.

In this example, the definition of the page contents lies
entirely with the client, while the definition of how such
content is manipulated on the server lies entirely on the lat-
ter. This is compliant with the principles of object-oriented
design, and information hiding at large.

This implementation choice, unfortunately, may raise per-
formance problems at execution time. Consider, for exam-
ple, the case where a composite page is to be printed on
a current printer that, due to dynamic binding, happens to
be a dot-matrix printer. Although only textual elements are
actually accessed by the printer, all page elements are ac-
tually transferred to the server. This is an example where
serialization and transmission of a large unused portion of an
object generates unnecessary overhead. The key point here
is that the client code does not have any means to avoid
this unnecessary serialization—unless information hiding is
broken. Our assumption was that the client must be able to
print the same page on any printer, regardless of the printer
implementation.

We can generalize from this example. Often the client
has no control over the server’s behavior. The actual kind
of server may change over time, due to dynamic binding,
and different servers, though presenting the same interface,
may differ in their internal behaviors. Internal behaviors are
not visible, either because this has been a deliberate design
choice, as in the example, or because we are dealing with
an off-the-shelf component, whose implementation has been
made by a third party.

In either case, and back to the example, the client “sees”
a printer only through the IPrinter interface: it has no
means to know whether it supports text and/or graphics.
All a client can do is to serialize the whole page content,
potentially including elements that cannot be printed by the
target printer object.

The next section presents a program analysis technique
that enables run-time optimization of remote method in-
vocations in an RMI application. Situations like the one
we described can be detected automatically during a static
analysis phase that determines which fields of a given object
involved in a remote method invocation are actually used by
the distributed application and which are not. The results
of the analysis can be exploited by automatically generating
application code that selects the best serialization steps on a



per-invocation basis, by skipping the serialization of unused
objects. The combination of the two leads to a programming
support environment that enables the programmer to write
applications without giving up the benefits of encapsulation
and information hiding, and yet transparently optimizes the
use of communication resources. Needless to say, the opti-
mization is performed without compromising the correctness
of the application, i.e., it guarantees that there will never be
an attempt to access an object that has not been serialized.

The next section describes our analysis technique in detail.
Section 5 contains instead a description of how the analysis
results can be exploited for improved run-time serialization
by relying only on the Java API, i.e., without modifying the
Java Virtual Machine.

4. TYPE-BASED STATIC ANALYSIS
This section describes our static analysis technique in a

stepwise manner. We begin by describing the overall anal-
ysis strategy, then introduce the notion of concrete graph,
which is central to our approach, and conclude by describing
the details of the analysis.

4.1 Overall View
Our goal is to identify, for each remote method invoca-

tion r=o.m(p1, . . . , pn) and for each serializable parameter
pi ∈ {r, p1, . . . , pn}, which attributes of pi need to be copied
through serialization and passed to the remote target ob-
ject. To achieve this goal, we focus our analysis on types
that can be instantiated directly, e.g., through a new opera-
tion. These types, which we call concrete types, include all
the primitive types, and do not include any abstract class
or interface.

Our analysis technique is structured in the following phases:

1. Given the overall set of types constituting the dis-
tributed application, determine:

(a) the set R of remote types, i.e., types that extend
or implement the Remote interface;

(b) the set S of serializable types. This includes prim-
itive types (e.g., int) and reference types that ex-
tend or implement4 the Serializable interface.
The declaration of an array T[] causes the inser-
tion in S of both T and the type “array of T”.

2. From the above sets, compute the set of concrete re-
mote and serializable types, i.e., the subsets Rc ⊆ R
and Sc ⊆ S containing only concrete types, according
to the definition above.

3. For each class belonging to Rc, identify the set M of
methods that can be invoked remotely. For a given
class in Rc, M includes all the methods implement-
ing (directly or through overriding) the corresponding
method declarations provided by the interfaces extend-
ing Remote and implemented by the class.

4. For each remote invocation of a method m ∈ M, iden-
tify the set of parameters Pm that must be serialized,
i.e., those for which at least one dynamic type belongs
to Sc.

4According to Java inheritance rules, a class can implement
an interface directly, or indirectly through a superclass that
implements it directly.

R = {IPrinter, DotMatrixPrinter, Plotter, InkJetPrinter}
Rc = {DotMatrixPrinter, Plotter, InkJetPrinter}
S = {IPage, TextPage, GraphicPage, MixedPage,

IPageElement, IPageElement[],
TextElement, TextElement[],

GraphicElement, GraphicElement[],
int, int[], int[][], char, char[]}

Sc = {TextPage, GraphicPage, MixedPage,
TextElement, TextElement[],

GraphicElement, GraphicElement[],
int, int[], int[][], char, char[]}

M = {print}
Pprint = {aPage}

Figure 7: The sets of program elements relevant to
our analysis found in our reference example.

5. For each parameter p ∈ Pm, identify the attributes of
p for which serialization can be safely skipped.

The first three phases of the analysis can be accomplished
straightforwardly through a simple inspection of the inheri-
tance hierarchy. The fourth phase involves determining the
set of remote method invocations r=o.m(p1, . . . , pn) that are
actually present in the code. This must take into account all
the possible dynamic types of o which, again, can be accom-
plished with standard techniques inspecting the inheritance
hierarchy. Figure 7 shows the result of phases 1 through 4
for our reference example.

Phase 5 is the most complex. It constitutes the core of
our analysis and the main contribution of this paper. Given
a remote method invocation in the form r=o.m(p1, . . . , pn),
the analysis is complicated by polymorphism. In fact, given
a parameter pi, its static type T can be replaced at run-time
by any subtype of T . The same holds for every attribute of
T , and so on recursively. For each parameter pi, we must
determine whether each attribute that is potentially reach-
able through pi must be serialized or whether we can safely
avoid to do it.

The next two sections describe precisely how this can be
done. Section 4.2 defines the notion of concrete graph, the
data structure used to represent the type information asso-
ciated with an object reference. Section 4.3 describes how
concrete graphs are used by our analysis algorithm.

4.2 Concrete Graphs
Each parameter of a remote method invocation can be as-

sociated with one or more descriptors, called concrete graphs.
Intuitively, a concrete graph associated with a reference pa-
rameter p of type T is a directed multi-graph5 that repre-
sents the type structure of one of the possible instances of
p at runtime, according to the class hierarchy. The nodes
of the concrete graph are serializable types belonging to Sc.
Each edge departs from a node representing the type of an
object, ends in the node representing the type of one of the
object’s attributes, and is labeled with the name6 of such
attribute.

The concrete graphs associated to a given parameter can
be computed easily through a simple inspection of the static
class hierarchy. As an example, Figure 8 shows the two con-

5That is, a node can be linked to another through more than
one edge.
6Attribute names are fully specified, i.e., they must include
the type where they are defined, to account for inheritance.
For simplicity, however, the figures in the rest of the paper
do not show the type information.
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Figure 8: The possible concrete graphs for the pa-
rameter aPage in the invocation of print in Figure 2.

crete graphs for the parameter aPage shown in Figure 2,
built using the class definitions shown earlier. The two con-
crete graphs differ according to the assumptions about the
array attribute pageElements of MixedPage. The graph in
Figure 8(a) describes the case where an element of the ar-
ray, accessed through an index, is of type TextElement. The
other graph, in Figure 8(b), describes the case where the el-
ement is instead of type GraphicElement. Clearly, the array
can in general contain any combination of the two.

Arrays require a little more explanation. We treat in-
dexing in the array by labelling the edge of the concrete
graph with the special label [*]. For example, the graph
in Figure 8(a) represents the case where indexing yields a
TextElement element from the array. Moreover, Java arrays
are objects containing a built-in attribute length. While
our analysis takes into account this attribute, the concrete
graphs disregard it, since its serialization cannot be rede-
fined.

Formally, a concrete graph can be represented as a tuple
〈N , E ,Sc,A, type, attr〉. N and E are respectively the set of
nodes and edges of the graph, with

E ⊆ N ×N ×A

where A is the set of attribute names. Sc is the set of se-
rializable concrete types. The functions type and attr map
the object structure on the concrete graph:

type : N → Sc

attr : E → A

The function type associates a serializable type to each node
of the concrete graph, with the constraint that

@n1, n2 | type(n1) = type(n2)

i.e., each type appears in the concrete graph exactly once.
The function attr allows one to retrieve the name associated
to an edge. For instance, if n1 and n2 are the first two nodes
of the concrete graph in Figure 8(a), and e the first edge,
then type(n1) = MixedPage and attr(e) = pageElements.

Intuitively, concrete graphs are used to optimize serializa-
tion as follows. First, we assume that, for all remote invo-
cations, each serializable parameter has its associated set of
concrete graphs. Static analysis is then performed by exam-
ining each concrete graph and determining, for each field,
whether it is used on the receiving side, and hence should
be serialized7. This information is recorded by suitably an-
notating the edges of the concrete graph. At run-time, since
the dynamic type of each node of the object graph to be
transferred is known, the information stored in the concrete
graph gives all the information needed to define which at-
tributes should be serialized and then transmitted.

4.3 The Analysis in Detail
Armed with this knowledge, we can now describe the core

of our technique, i.e., phase 5 of the program analysis de-
scribed in Section 4.1. To simplify the presentation, we focus
on method invocations with a single input parameter. The
analysis can be adapted easily to method signatures with
arbitrary arity and types8. Similarly, we limit the discus-
sion to the serialization of input parameters. The analysis
of whether the serialization of the result value can be opti-
mized can be achieved straightforwardly by using the same
technique described here, but analyzing the client code using
the return value instead of the server code using the input
parameters.

Exploiting the concrete graph. The analysis of a given
method m(p) starts by building the concrete graphs associ-
ated to p. Then, it analyzes the control flow of m. As the
analysis walks through the body of m, it “decorates” each
concrete graph of p by keeping track of whether a given at-
tribute can be serialized or not, based on how the control
flow has used the attribute thus far. This information is
derived incrementally as the control flow is examined, and
relies on the definition of two labelling functions that map
each edge of a concrete graph to a boolean value:

defined : E → {true, false}

skip : E → {true, false}

The value returned by defined(e) is true if the attribute as-
sociated with the edge e (i.e., attr(e)) has been already as-
signed a value at a given point in the analysis. Instead, the
value of skip(e) is true if the attribute attr(e) can be safely
skipped during the serialization process of the parameter p

associated to the concrete graph. Essentially, the value of
skip eventually holds the final result of the analysis, while
the value of defined is relevant only while the analysis is
being performed.

Analyzing the control flow. To inspect the control flow
of the invoked method, our analysis exploits a standard
data-flow framework as described in [15]. In this approach,
the control flow of a program is described by a control flow
graph, where nodes represent program statements and edges
represent the transfer of control from one statement to an-
other. As an example, Figure 9 shows the control flow graph

7Clearly, in the case of recursive types only an approxima-
tion is possible.
8A simple way to do this is to represent parameters as at-
tributes of a fake, single parameter. Incidentally, this solu-
tion has the additional benefit of providing a way to detect
parameters whose serialization can be avoided entirely.
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Figure 9: The control flow graph of the meth-
ods DotMatrixPrinter.print, TextPage.getTextElement,
and TextElement.print.

for the methods print in DotMatrixPrinter, getTextElement
in TextPage (invoked by print), and print in TextElement

(invoked by getTextElements). The control flow graph of
each method starts with an entry node and ends with an
exit node: these nodes are entered upon method invocation
and method termination, respectively. Hence, the overall
program control flow can be built out of the method control
flow graphs by moving from one control flow graph to the
other according to method invocation and termination9.

Program analysis is carried out by relying on two groups
of equations. The first group focuses on a given node in
the control flow graph, and defines the relation between the
information entering and exiting the node. This group of
equations is sufficient to analyze a single path in the given
program. However, a node in the control flow graph may
have multiple incoming edges that represent different con-
trol flow paths, e.g., due to branches or loops, as shown in
Figure 9. The second group of equations specifies precisely
how the information coming from these different sources is
merged at the entry point of a given target node n, by defin-
ing the relationship between the outgoing information asso-
ciated to the sources of all the edges insisting on n, and the
information effectively entering n.

Given these two groups of data-flow equations, the global
solution can be computed by standard techniques like a
worklist algorithm, typically used in data flow analysis to
solve equation systems. In this algorithm, a representation
of the work to be done (e.g., the computation of some vari-
able properties through the program control flow graph) is

9Exception-handling introduces additional implicit control
transfers. However, these can be analyzed by using existing
techniques (e.g., [20]) in conjunction with ours.

stored in a worklist. The algorithm iteratively removes a
task from the worklist and processes it, potentially causing
the insertion of new tasks in the worklist. The algorithm
proceeds until the worklist is empty and the least solution
of data flow equations is found10. In other words, the dif-
ficult (and original) part of the analysis is not the solution
of the equation system, rather in the definition of the rela-
tionship between nodes. In the remainder, to simplify the
description we define the equations only informally.

Object aliasing. Our analysis is complicated further by
object aliasing, i.e., the ability of Java to refer to the same
object through different object references. Aliasing is a fact
of life in object-oriented programming, and Java is no ex-
ception. This means that, to determine whether an object
must be serialized, we need to keep track of how all of its
aliases are used.

Fortunately, the aliasing problem is a well-known and
thoroughly studied one in program analysis, and a number of
suitable techniques exist (e.g., [11, 3, 22, 19, 12, 13]). More-
over, alias analysis is orthogonal to the type-based analysis
we describe here, and the two can be combined straightfor-
wardly as follows. First, we can exploit the results of alias
analysis to annotate each node of the control flow graph with
the alias set associated to each parameter attribute found
in the concrete graph currently under consideration. Here,
we do not discuss further the details of how to accomplish
this, since it can be done straightforwardly by exploiting the
aforementioned alias analysis techniques found in the liter-
ature. Then, when “decorating” the edges of the concrete
graph under consideration, based on the walkthrough on the
control flow graph, we need to be careful about changing the
state of an edge not only when an attribute is being modi-
fied by a node of the control flow graph, but also when any
of its aliases is.

In the sequel, we first describe how the analysis is per-
formed on a single path, by defining how each instruction
in the control flow graph of m affects the labeling functions
defined and skip defined for that control path. Then, we
explain how the functions defined and skip computed on dif-
ferent paths are merged when different paths of the control
flow graph meet in a single node.

4.3.1 Analyzing a Single Path
To simplify the presentation, we assume that the input

parameter p in the method invocations o.m(p) has a single
concrete graph and is serializable, i.e., p ∈ S. Moreover,
we assume that all multiple-level reference expression such
as a.b().c() and a.b.c are normalized into a sequence of
two-level reference expression of the form a.b() and a.b, by
using additional variables. For instance, a.b().c() can be
split in x=a.b(); y=x.c().

The analysis begins with an initial state where skip(e) =
true and defined(e) = false, ∀e ∈ E , where E is set of edges
belonging to the concrete graph of p. In other words, all the
attributes of p are not defined and their serialization can be
avoided.

We focus the discussion on a variable y being analyzed in
the context of the execution of the given method m, where
y is either represented in the concrete graph by some edge

10The reader interested in further details on worklist algo-
rithms can see for instance Chapter 6 of [15].



e such that y = attr(e) with e = (ni, nj , v) and v = y, or
is an alias of the variable v represented by e. Note that
when referring to an attribute y in the concrete graph we
implicitly assume that there is no ambiguity, i.e., that there
is only one type definition containing the attribute label y.
The ambiguity can be removed by referring to the variable
together with its type, at the only expense of clarity and
compactness of the notation.

Essentially, we need to specify how the traversing of a
given node of the control flow graph involving y affects the
concrete graph, and in particular the labeling of its edges.
The variable y can be affected by definitions and uses (in the
common meaning of program analysis [23, 8]). Definitions
of y are statements which assign a new value to y. Uses
of y are all those situations where y’s value (or one of y’s
attribute values) is used in an expression.

With these definitions, the data-flow equations can be ex-
pressed informally as follows:

• Definition. If defined(e) is already true before enter-
ing the node of the control flow graph containing the
definition of y, nothing needs to be done, since y was
already defined and the state of the concrete graph up-
dated accordingly. Otherwise, the value of defined(e)
is set to true for edge e and for all the outgoing edges
of nj , the target of e.

• Use. If defined(e) is already true before entering the
node of the control flow graph containing the definition
of y, nothing needs to be done. Otherwise, the value
of skip(e) must be set to false in the concrete graph,
since the value of y is needed in the execution of the
method under analysis.

The rationale behind the above rules can be grasped by
stating that if all the uses of y are preceded by a definition, or
there are no uses, then the serialization of y can be avoided.

Note how the value of skip(e) is unchanged by a definition
of y. If defined(e) was false before entering the node of
the control flow graph, skip(e) must remain true, since it is
safe (at this point of the analysis) to skip the serialization
of the variable because its value is immediately reset by a
definition. Similarly, if instead defined(e) was true before
entering the node, nothing is changed by a definition. If we
already decided that y must be serialized and skip(e) = false,
e.g., because a previous use occurred, we cannot override this
decision at this point of the analysis because the value of y

will still be needed before this definition.
Attribute accesses and method invocations are an impor-

tant kind of use. Attribute accesses are in the form11 y.x,
where x is an attribute defined in the class of y. An at-
tribute access is a use of y, but it requires to consider, from
this point on, not only the definitions and uses of y but also
of x, to determine whether it is in turn serializable. Method
invocations where y is involved can be either of the form
y.g(...), where y is the invocation target, or g(y,...),
where y is one of the actual parameters. Again, a method
invocation is treated as a use, but it also requires the anal-
ysis of the method g whose execution involves y, that is
performed by insisting on the concrete graph that has been
labelled up to the invocation point.

11As mentioned earlier, if y is an array a reference to one of
its elements is treated like a reference to an attribute.

Example. Let us consider the printing application we de-
scribed in Section 3, and let us focus on the remote invo-
cation of the method print on an object of type DotMa-

trixPrinter, with a parameter aPage of type MixedPage,
as we previously showed in Figure 2. For this case, we al-
ready built the concrete graphs in Figure 8, and the control
flow graphs in Figure 9. For now, let us consider only the
first concrete graph, related to TextElement, and let us walk
through the control flow graph along the path defined by en-
tering the body of all if and for statements.

Figure 10 shows the result of this analysis as a series of
snapshots of the concrete graph as the control flow graph
is analyzed. Note how the nodes of the control flow graphs
in Figure 9 are numbered to reflect the order in which their
analyzed in this specific walkthrough.

In the initial state, shown in Figure 10(a), all the at-
tributes of the concrete graph are not defined and hence
can be skipped during serialization. This graph is iden-
tical to the one in Figure 8(a). A dashed edge e means
that the corresponding attribute can be safely skipped, i.e.,
skip(e) = true, while a solid edge means that the attribute
must be serialized. In our example there are only uses and
no definitions, thus it is safe to render graphically only the
value of skip(e).

The analysis of the control flow graph begins in the en-
try point of DotMatrixPrinter.print, node 1 in Figure 9.
Upon entering the first statement of print in node 2, the for-
mal parameter page (and hence the actual parameter aPage)
is used during the invocation of method getTextElements.
Invocation of this method is analyzed by moving to the
entry point of its control flow graph (node 3), but retain-
ing the concrete graph labelled thus far. The traversal of
node 4 leaves the concrete graph unaffected. On the other
hand, node 5 contains a use of the attribute pageElements,
through access to its attribute length. The edge corre-
sponding to pageElements is then is marked as to be serial-
ized, shown with a solid arrow in Figure 10(b). Since we set
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Figure 11: Decorating the concrete graph of Fig-
ure 8(b) while walking through the control flow
graphs in Figure 9.
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Figure 10: Decorating the concrete graph of Figure 8(a) while walking through the control flow graphs in
Figure 9. The value of skip is true for dashed edges and false for solid ones.

out to enter every for loop, node 6 must be considered next.
This node is particularly interesting since it gives us the
opportunity to consider how the analysis must proceed in
presence of the language construct instanceof. One could
think that, since pageElements[i] appears as an argument
of this instruction, this constitutes a use of the variable. In-
stead, it must be observed that the result of instanceof

does not depend at all on the value of pageElements[i],
but only on its type. Moreover, the value of this variable is
left unaffected by the execution of instanceof. Hence, the
traversal of this node leaves the concrete graph unchanged.
Note also that in this case we are forced to go through node
7 instead of choosing the else branch and return to node
5. In fact, choosing this latter path would be a violation of
the previous assumption about the type of the elements of
pageElements.

The remaining two nodes of the method getTextElements

do not affect the concrete graph directly, but establish the
object aliases that enable further changes effected by the
other methods. Node 7 establishes an alias between an at-
tribute of the concrete graph, i.e., an element of pageElements,
and an element of the local array text. Node 8 propagates
this alias back to the method print, by returning text as
a result value. Node 9 brings the control back to the print

method, that resumes from node 10. Nodes 10 and 11 do
not affect the concrete graph, since they contain only uses
of text. Instead, node 12 contains a use of an element of
text, which is potentially aliased to one of pageElements.
Hence, the corresponding edge in the concrete graph must be
marked accordingly, as in Figure 10(c). The use of text[i]
is a method invocation, which causes the analysis to move to
the control flow graph of the method print in TextElement.

The first statement of this method, corresponding to node
14, contains a use of the array characters which, by virtue
of aliasing, is an attribute of the element of pageElement

aliased to the invocation target text[i]. Hence, characters
must be serialized (Figure 10(d)). Finally, node 15 contains
an invocation of the method responsible for printing an el-
ement characters[i]. Although here we do not show the
code of this method, it intuitively relies on the input param-
eter, which then needs to be serialized, leading to the last

and final concrete graph in Figure 10(e).
According to this analysis, the whole object graph rooted

at the parameter aPage must be serialized—at least for con-
crete graph and control path we considered. This matches
the intuition associated to our example, where all the in-
formation associated to a text page is effectively used by a
dot-matrix printer.

It is instructive at this point to see what happens if the
concrete graph of Figure 8(b) is considered instead, when
walking through the same control flow graphs in Figure 9.
The corresponding snapshots of the analysis are shown in
Figure 11. Again, the initial state is represented by the
first graph, where all the edges are dashed. Up to node 6,
the analysis proceeds like in the previous case, by requir-
ing the attribute pageElements to be serialized. The test
in node 6, however, forces us to choose a different path, re-
turning to node 5. In fact, as we mentioned earlier, proceed-
ing to node 7 would violate the assumption we are making
when considering this concrete graph, i.e., that the elements
of pageElements are of type GraphicElement. The rest of
the analysis proceeds through nodes 5, and 8 to 17. How-
ever, since no alias has been established between text and
some attribute of the concrete graph graph, the latter re-
mains unchanged. Hence, the graph in Figure 11(b) shows
the outcome of the analysis, which again confirms the intu-
ition about our example: the serialization of an element of
pageElements whose type is GraphicElement can be safely
skipped, while the array pageElements must be serialized
anyway.

4.3.2 Merging Information from Multiple Paths
What we described thus far is sufficient to analyze meth-

ods whose code does not contain branches in the control
flow. Otherwise, we need to specify how the information
collected through separate control paths is reconciled when
the control paths are rejoined.

In our case, the information that we need to reconcile is
the labelling of edges of the concrete graph, i.e., the value
returned by the functions defined and skip. The problem
is that an attribute y in the concrete graph may have been
recorded as defined (defined(e) = true, y = attr(e)) through



MixedPage

TextElement[]

TextElement

char[]

char

pageElements

characters

[*]

[*]

MixedPage

TextElement[]

TextElement

char[]

char

pageElements

characters

[*]

[*]

Figure 12: The result of the analysis in Figure 10
(left) and the result of the analysis performed by
following a different path on the control flow graph
(right).

one control path, and not defined in another. Even more
important to the outcome of the analysis, the same attribute
may have been deemed necessary to the enclosing method,
and hence marked as to be serialized (skip(e) = false) along
one path, and marked as to be skipped along another.

Clearly, to preserve a correct program behavior we need
to take the most conservative stand. In the aforementioned
case we need to preserve, in the node where the control flow
rejoins, the values defined(e) = false and skip(e) = false. In
other words, an attribute is defined in the joining node if it
was defined through all of the joining paths, and similarly it
can be safely skipped during serialization if it can be skipped
through all the joining paths.

To express the rule in a formal way, we simply need to
set the value of the labelling functions defined and skip in
the join point to be the logic conjunction of the values of all
the functions definedi and skipi computed along an incoming
path i, that is, ∀e ∈ E :

defined(e) =
n

^

i=1

definedi(e),

skip(e) =

n
^

i=1

skipi(e)

Once the data-flow equations are given, the analysis is com-
pletely defined and the least solution can be computed by a
working list algorithm, as we mentioned earlier. Obviously,
the analysis must be performed for each method that can be
invoked remotely, for each serializable object parameter, and
for each of the possible concrete graphs of such parameter.

Example. Figure 12 compares the result of the analysis we
performed previously (Figure 10(e)) with the result of the
analysis performed using the same concrete graph but choos-
ing a different control flow path in node 10. Since the most
conservative annotation of the concrete graph prevails, the
final result of the analysis is the one shown on the left. It
confirms that the whole object graph must be serialized in
this case. In the case where a GraphicElement is considered
instead, all the alternative control flows leave the concrete
graph unchanged, thus confirming that serialization of the
graphic page elements is always unnecessary when a dot-
matrix printer is exploited, independent of the control flow

followed on the server.

4.3.3 From Types to Objects
The analysis of the control flow graph terminates by re-

turning the definition of skip for all the concrete graphs un-
der consideration. This allows one to determine, for each
concrete graph, whether a given attribute should be serial-
ized. Nevertheless, to actually implement our optimization
and redefine serialization we need to link the type infor-
mation stored in the annotated concrete graphs with the
particular object graph rooted at the parameter involved in
a remote method invocation.

From an abstract point of view, the required steps can be
summarized easily. The nodes of the object graph associated
with the parameter contain the actual field objects, while
edges represent the references established among them. One
can navigate through the object graph, starting at the root,
and mark each object as serializable or transient by looking
at the information stored in the concrete graph that matches
the parameter.

In practice, however, things are slightly more complicated
by the details of Java serialization. For instance, the object
graph can be constructed only at run-time, and the Java
API does not provide any direct way to obtain it.

In the next section, we show a way to implement our opti-
mization, without being concerned with efficiency. Instead,
our main concern is to show that an implementation path
indeed exists, and to illustrate through a clean design the
steps required by our optimization. In doing this we choose
to rely only on the mechanisms provided by the language
API: more efficient solutions can be devised if modifications
to the JVM are allowed.

5. REDEFINING SERIALIZATION
The information derived from the analysis we described in

Section 4 can be summarized as a three-dimensional matrix,
whose elements are identified by:

1. the type S of a remote server;

2. the method m that is being invoked on S;

3. the concrete type of a serializable parameter p being
passed to m.

The value of a matrix element is the list of attributes of p

whose serialization can be safely skipped during the corre-
sponding remote invocation.

This information can be made available at run-time thro-
ugh a (static) object of class InvocationData. Part of the
interface of this class is shown in Figure 13. The field
attributes contains the aforementioned three-dimensional
matrix that we assume pre-loaded with data through mech-
anisms whose details are irrelevant here. The (static) fields
targetClass and targetMethod are instead set at run-time
right before the corresponding remote invocation. This re-
quires a straightforward instrumentation of the source code.
An example is shown in Figure 14, where the original client
code of Figure 2 is instrumented to determine through re-
flection the class and method involved in the invocation, and
set them appropriately in the InvocationData object.

Once the invocation target and the invoked method are
known, the next step is to intervene on the way serializa-
tion is performed, to skip the appropriate attributes. As we



public class InvocationData {
private static Class targetClass;

private static Method targetMethod;
private static HashSet [][][] attributes;
public void setInvokedMethod(Class targetClass,

Method targetMethod) {
this.targetClass = targetClass;

this.targetMethod = targetMethod;
}
public HashSet getNonSerializableFields(Class c) {

int x = targetClass.hashCode();
int y = targetMethod.hashCode();

int z = c.hashCode();
return attributes[x][y][z];

}
}

Figure 13: The class InvocationData containing the
results of the analysis, which are retrieved at run-
time to optimize serialization.

...
IPage aPage = new MixedPage(20);

IPrinter printer =
(IPrinter) Naming.lookup("//myregistry/printer");

// BEGIN INSERTED CODE
Class[] methodParameters = {aPage.getClass()};

InvocationData
.setInvokedMethod(print.getClass(),

print.getClass()

.getDeclaredMethod("print",
methodParameters));

// END INSERTED CODE
printer.print(aPage);
...

Figure 14: Instrumenting the remote method invo-
cation of Figure 2.

mentioned in Section 2.1, a class can define its own serial-
ization by defining the private methods writeObject and
readObject. Hence, we need to provide an appropriate defi-
nition of these methods for all the classes whose serialization
must be optimized. Again, this step can be performed triv-
ially through a precompilation step.

The code for these two methods is shown in Figure 15.
It relies on a feature introduced since Java 1.2, which al-
lows one to declare in a class a (private, static, and final)
field serialPersistentFields, which contains the names
and types of fields that must be serialized. This can be re-
garded as an alternative and complementary way of declar-
ing transient fields. Again, the content of this field can be
set in the source code through a straightforward precompi-
lation step, by using the result of our analysis.

From the code in Figure 15, however, it can be seen how
the methods behave differently depending on whether the
field being (de)serialized is an object or a primitive type.
In the former case, all the object fields that are specified
as serializable by the programmer are effectively inserted
in the serialization stream. However, for all those fields
that should not be serialized according to our analysis, i.e.,
for all the fields whose name is returned by InvocationDa-

ta.getNonSerializableFields, the value null is inserted
in the stream in place of the real object. A dual behavior is
used for primitive types. In fact, all the primitive types are
removed from serialPersistentFields, and hence set to
transient, independent of what the programmer originally
specified, and hence are not automatically inserted in the se-

private void writeObject(ObjectOutputStream out)
throws IOException {

try {
ObjectOutputStream.PutField fields = out.putFields();
HashSet skipFields =

InvocationData.getNonSerializableFields(this.getClass());
for (int i=0; i<serialPersistentFields.length; i++) {

String name = serialPersistentFields[i].getName();
if (skipFields.contains())

fields.put(name, null);

else
fields.put(name,

getClass().getDeclaredField(name).get(this));
}

out.writeFields();
Field[] allFields = this.getClass().getDeclaredFields();
for (int i=0; i<allFields.length; i++)

if (!notSerFields.contains(allFields[i].getName())) {
out.writeInt(i);

if (allFields[i].getType() == Boolean.TYPE)
out.writeBool(allFields[i].getBoolean(this));

else if

... and similarly for all the other primitive types ...
}

} catch(Exception e) { e.printStackTrace(); }
}
private void readObject(ObjectInputStream in)

throws IOException {
try {

ObjectInputStream.GetField fields = in.readFields();
for (int i=0; i<serialPersistentFields.length; i++) {

String name = serialPersistentFields[i].getName();
getClass().getDeclaredField(name).set(this,

fields.get(name, null));
}
Field[] allFields = this.getClass().getDeclaredFields();

int current = in.readInt();
for (int i=0; i<allFields.length; i++)

if (current == i) {
if (allFields[i].getType() == Boolean.TYPE)

allFields[i].setBoolean(this, in.readBool());

else if
... and similarly for all the other primitive types ...

}
} catch(Exception e) { e.printStackTrace(); }

}

Figure 15: The methods writeObject and readObject

implementing our optimization.

rialization stream. In this case, however, the value of fields
that are not returned by getNonSerializableFields is ex-
plicitly inserted in the serialization stream together with its
index, so that the corresponding deserialization step is able
to restore the value found in the stream to the appropriate
field.

The reason for processing differently object and primitive
types lies in the desire of reusing the built-in Java mecha-
nisms. If we were to set all the object fields as transient,
we would need to explicitly deal with object serialization
ourselves, and hence redefine the serialization process com-
pletely. While this is indeed a viable approach, it places a
bigger burden on the precompilation step.

As we mentioned earlier, surely the implementation we
sketched here is not the most efficient. A faster solution
would be to hard-wire directly in the code the necessary
steps. Anyway, it is interesting to note how the solution
we presented is much more flexible. If the results of the
analysis change as a consequence of a code modification, in
a hard-wired implementation all the classes affected must
be recompiled, while here only InvocationData needs to be
changed accordingly.



6. DISCUSSION
In this section we discuss improvements and limitations

of our technique, as well as its exploitation.

Reducing the number of concrete graphs. To determine
the possible types of a parameter p we relied on the inher-
itance hierarchy, i.e., on static type information. Neverthe-
less, it is possible that, in the context of a given invocation,
the legal dynamic types of a given object are only a subset
of those calculated conservatively by using static informa-
tion. Minimizing the number of types to be considered has a
strong impact on performance, since it minimizes the num-
ber of concrete graphs to be annotated during the analysis
of the control flow. The necessary type information can be
computed by performing a preliminary phase using a con-
crete type inference [18]. We are currently considering if and
how this technique can be integrated in our approach.

Semi-static analysis. Analyses like those described in this
paper are typically performed entirely statically, and indeed
this is the way our approach works thus far. The reason is
that the computational load of this kind of analysis is usually
too high to be placed on the run-time system, especially
since most of the approaches in the literature are meant to
optimize execution speed.

Nevertheless, in our case we aim at reducing the band-
width utilization. Hence, in some cases (e.g., in mobile en-
vironments with low-bandwidth connectivity) it might be
reasonable to trade computation for bandwidth, and per-
form some if not all of our analysis at run-time.

The advantage of this approach lies in the accuracy of
information about the program that becomes available at
run-time. For instance, if the analysis were to be performed
right upon a remote method invocation there would be no
need to consider all the possible combinations of concrete
graphs for a given parameter and control flow of the possible
servers. Considering the single concrete graph matching the
parameter being passed and the specific server target of the
invocation would be sufficient. Hence, while on one hand
there is a computational overhead to be paid at run-time,
this overhead would arguably be significantly smaller than
the one to be paid by an entirely static analysis. We are
currently elaborating and experimenting with this idea, to
determine quantitatively the tradeoffs involved.

Closed vs. open world. Thus far, we implicitly assumed
that the whole code base of the distributed application is
available to the analysis, and it is not going to change after
the code is deployed. This “closed world” scenario is reason-
able for a non-negligible number of distributed applications.
On the other hand, RMI was designed to support an “open
world” scenario where instead the code base of the appli-
cation can change dynamically and seamlessly, by virtue of
encapsulation and mobile code.

In this scenario, our analysis is no longer applicable as
is. In fact, let us consider our reference scenario, and let us
assume that the interface IPrinter exports an additional
method getPage, which returns the page currently being
printed. This method can be invoked by a client C2, differ-
ent from the client C1 that required the page printout. No
assumption can be made in general about the use C2 makes
of the page. For instance, regardless of optimizations made

by our approach, C2 might require the serialization of the
entire page as originally stated by the programmer. The rea-
son could be to implement a persistency service that stores
for a given period of time all the processed pages to cope
with temporary malfunctioning of the printer, thus avoiding
C1 to reissue a print request.

Now the question is whether the code of C2 is available
at the time of the analysis. If yes, then the need to serialize
all the fields of a page is discovered when the analysis is run
on the remote method invocation of getPage issued by C2,
and no modification is required to our approach. Instead,
if the setting is such that the code of the clients that may
invoke getPage is not available, our analysis must be mod-
ified accordingly, otherwise the application may experience
an incorrect behavior. For instance, a monitoring client in-
dependently developed to visualize on screen the whole con-
tent of the page currently being printed on a dot-matrix
printer would fail to display it correctly because, as a result
of our optimization, only the textual elements of the page
are present on the server.

We are currently working on an extension of our analy-
sis that encompasses also an open world scenario. This is
achieved by exploiting escape analysis [4], a static analysis
originally developed to optimize memory allocation and ob-
ject synchronization by determining i) whether the lifetime
of an object can exceed the lifetime of the method where it
is created, and ii) whether an object created by a thread
can be accessed by another.

In our context, we are currently adapting escape analysis
to determine whether a given object cannot escape the code
base that is known at analysis time. In this case, the result of
our analysis is still valid as is, since an object that has been
only partly serialized is never passed outside the boundaries
of the analyzed code. Instead, if an object escapes such
boundaries no assumption can be made about its use. All
we can do is to warn the programmer about fields not being
accessed by an invocation occurring in the analyzed code,
and demand to her the ultimate choice about whether these
fields must be serialized or not.

Moreover, we are also investigating whether the aforemen-
tioned semi-static approach can provide some benefit when
applied in an open world context.

Other possible uses of the analysis. Thus far, we as-
sumed that our analysis is exploited to optimize parameter
serialization on a per invocation basis. This remains the
primary motivation for our approach, and the natural ex-
ploitation path. Nevertheless, our analysis can be used in
other, slightly different ways.

For instance, programmers often overlook serialization,
since it is enabled by default on all the fields of a serializ-
able object. This is true especially during the initial phases
of development, when the fine tuning of serialization is of-
ten deferred to a later, more mature stage of the product.
Nevertheless, in complex applications it is often difficult to
gain a complete understanding of which fields can safely be
left transient. The fact that subtyping in Java preserves
serializability12 , makes matters worse. In this context, our
analysis can be exploited to warn the programmer that a
given field is never accessed by an invocation target, and

12In contrast, in .NET serializability of a type is not propa-
gated downwards along the inheritance hierarchy.



hence in principle can be safely declared as transient.

7. RELATED WORK
The approaches to RMI optimization we were able to find

in the literature are all focused on optimizing the computa-
tional overhead of serialization, rather than its bandwidth
consumption. Not surprisingly, most of these approaches
aim at optimizing RMI in the context of scientific appli-
cations exploiting parallel computing, where computational
efficiency is a particularly strong concern. Hence, to the
best of our knowledge no published research has tackled di-
rectly the problem of using program analysis to reduce the
traffic overhead of serialization. As a consequence, no other
approach is directly comparable to ours.

Krishanswamy et al. [10] reduce the computational over-
head on the client side by exploiting object caching. For each
call, a copy of the byte array storing the serialized object is
cached to be reused in later calls—provided that the object
has not changed in the meantime. Braux [1] exploits static
analysis to reduce the computational overhead of an RMI
call due to the reflective calls necessary to discover the dy-
namic type information. The work of Kono and Masuda [9]
relies on the existence of run-time knowledge about the re-
ceiver’s platform, and redefines the serialization routine to
exploit this information. On the sender, the object to be
serialized is converted directly into the receiver’s in-memory
representation, so that the receiver can access them imme-
diately without any data copy and conversion. Breg and
Polychronopoulos [2] explicitly target homogeneous cluster
architectures, and provide a native implementation of a sub-
set of the serialization protocol. Their approach leverages on
knowledge about the layout of data structures on the cluster
machines, so that complex data structures are encoded di-
rectly in the byte stream by using only a minimal amount of
control information. Philippsen et al. [17] integrate various
approaches to obtain a slightly more efficient RMI imple-
mentation. They simplify the type information encoded in
the serialization stream, improve the buffering strategies for
dealing with the stream, and introduce a special handling
for floats and double. Nevertheless, their optimizations are
again closely tied to the parallel computing domain.

Another line of research that is somewhat related to ours
exploits program analysis techniques to find the best way
to transform a monolithic, centralized application in a dis-
tributed one by relying on the middleware as is, rather than
optimizing it. Examples of this kind of research are the
Pangea [21] and J-Orchestra [25]) systems, relying on Java
RMI, and the Coign system [7] that instead relies on DCOM.

8. PROTOTYPE
We are currently developing a prototype suite of tools

supporting our technique. The overall architecture is shown
in Figure 16.

The main component of the architecture is the analyzer,
which receives as input the Java source code of the appli-
cation and outputs the result of the analysis by recording
information about each remote method invocation and the
corresponding annotated concrete graphs. This information
is stored in a binary format for the sake of compactness. Our
analyzer is currently developed using JABA [6], an API sup-
porting program analysis of Java bytecode.

The result of the analysis can be input to one of the three

viewerchecker

analyzer

optimizer

source
code

binary
representation

stdoutwarnings instrumented code

Figure 16: Exploiting our analysis through software
engineering tools.

tools at the bottom of Figure 16. The viewer enables the vi-
sualization of the analysis result in a human readable format.
Many implementation of the viewer are possible, ranging
from a simple filter that outputs ASCII text, to a sophisti-
cated GUI-based tool, possibly integrated with the debugger
of an integrated development environment.

The optimizer instruments the source code based on the
results of the analysis, as explained in Section 5. The output
of this component is the original program with enhanced
serialization behavior.

Finally, the serialization checker tool on the left allows
to detect fields declared as serialized but never used in the
program, as mentioned in Section 6.

9. CONCLUSIONS AND FUTURE WORK
In this work we presented a novel program analysis tech-

nique that aims at optimizing parameter serialization in re-
mote method invocations on a per-invocation basis. The
analysis identifies which portion of a parameter is actu-
ally used on the receiving side, and its results can be used
to redefine the serialization mechanism to reduce the run-
time communication overhead. In this paper we defined the
problem, motivated our contribution, presented the program
analysis technique, illustrated a way to implement the run-
time optimization that relies only on the Java API, and
briefly reported about the ongoing development of a proto-
type tool suite supporting our approach.

The latter is the focus of our current research work on the
topic described in this paper. In fact, the tool will give us
the possibility to demonstrate the feasibility of our approach
and, more importantly, evaluate quantitatively its effective-
ness in optimizing real-world applications developed with
RMI. Meanwhile, we are further refining our analysis tech-
nique, in particular exploring the idea of performing part of
the static analysis at run-time.
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