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Abstract— Distributed content-based publish-subscribe mid-
dleware is emerging as a promising answer to the demands of
modern distributed computing. Nevertheless, currently available
systems usually do not provide reliability guarantees, which
hampers their use in dynamic and unreliable scenarios, notably
including mobile ones. In this paper, we evaluate the effectiveness
of an approach based on epidemic algorithms. Three algorithms
we originally proposed in [1] are here thoroughly compared
and evaluated through simulation in a challenging unreliable
setting. The results show that our use of epidemic algorithms
improves significantly event delivery, is scalable, and introduces
only limited overhead.

I. INTRODUCTION

Publish-subscribe middleware is emerging as a promising
tool to tackle the demands of modern distributed computing.
In particular, distributed content-based systems (e.g., [2]–
[6]) provide high levels of scalability, flexibility, and ex-
pressiveness by exploiting a distributed architecture for event
dispatching, and by using a content-based scheme for matching
events and subscriptions.

Our research in this field is motivated by the desire to ex-
ploit the good properties of distributed content-based publish-
subscribe in scenarios where the topology of the dispatch-
ing infrastructure is continuously under reconfiguration, e.g.,
mobile computing and peer-to-peer applications. Achieving
this goal requires the solution of several problems. In [7] we
tackled the problem of efficiently reconfiguring subscription
information and restoring event routing. The topic of this
paper, instead, is the complementary problem of recovering
events lost during reconfiguration. Our approach is based
on epidemic algorithms [8], [9]. In [1] we described three
different solutions to the problem. In this paper, we complete
and validate our initial proposal by thoroughly evaluating its
effectiveness in challenging unreliable scenarios.

The contribution put forth by this paper is relevant under
many respects. Reliability is an aspect rarely considered in
content-based publish-subscribe systems—let apart being eval-
uated quantitatively. Our epidemic algorithms, whose effec-
tiveness and efficiency is quantitatively demonstrated by the
simulations discussed in this paper, provide a viable solution
for improving reliability. In addition, although our work is
driven by the need to recover events lost due to topological
reconfiguration, it does not make any assumption about the
source of event loss. Hence, our solutions enjoy general appli-
cability. Finally, as discussed in the rest of the paper, epidemic
algorithms have been applied to a number of applicative
domains but, with the exception of [10], not to content-based

publish-subscribe systems. By devising original solutions in
this domain, we explore new uses for this technique.

The paper is structured as follows. Section II is a con-
cise overview of content-based publish-subscribe systems.
Section III describes the epidemic algorithms we originally
proposed in [1] for achieving reliability in content-based
publish-subscribe systems. An extensive evaluation of these
algorithms, based on simulation, is the subject of Section IV
and the core contribution of this paper. Finally, Section V
places our work in the context of related research efforts, and
Section VI ends the paper with brief concluding remarks.

II. CONTENT-BASED PUBLISH-SUBSCRIBE

The last few years have seen the development of a large
number of publish-subscribe middleware, which differ along
several dimensions1. Two are usually considered fundamen-
tal: the expressiveness of the subscription language and the
architecture of the event dispatcher.

The expressiveness of the subscription language draws a line
between subject-based systems, where subscriptions identify
only classes of events belonging to a given channel or subject,
and content-based systems, where subscriptions may contain
expressions (called event patterns) enabling increased flexibil-
ity and expressiveness through sophisticated matching on the
event content.

The architecture of the event dispatcher can be either
centralized or distributed. In this paper, we focus on publish-
subscribe middleware with a distributed event dispatcher. In
such middleware, a set of dispatching servers2 are connected
in an overlay network, as shown in Figure 1. The servers
cooperate in collecting subscriptions coming from clients and
in routing events, with the goal of reducing the network load
and increasing scalability. Systems exploiting a distributed
dispatcher can be further classified according to the intercon-
nection topology of the dispatching servers, and the strategy
exploited to route subscriptions and events. In this work we
consider a subscription forwarding scheme on an unrooted tree
topology as this choice covers the majority of existing systems.

In a subscription forwarding scheme [2], subscriptions are
delivered to every dispatcher along a single unrooted tree
overlay network connecting all the dispatchers, and are used
to establish the routes that are followed by published events.

1For more detailed comparisons see [2], [6], [11].
2Unless otherwise stated, in the following we refer to a dispatching server

simply as dispatcher, although the latter represents the whole distributed
component in charge of dispatching events instead of a specific server.



Fig. 1: A dispatching network with subscriptions laid down
according to a subscription forwarding scheme.

When a client issues a subscription, a message containing
the corresponding event pattern is sent to the dispatcher the
client is attached to. There, the event pattern is inserted in a
subscription table, together with the identifier of the subscriber.
Then, the subscription is propagated by the dispatcher, which
now behaves as a subscriber with respect to the rest of the
dispatching network, to all of its neighboring dispatchers on
the overlay network. In turn, they record the subscription
and re-propagate it towards all their neighboring dispatch-
ers, except for the one that sent it. This scheme is usually
optimized by avoiding subscription forwarding of the same
event pattern in the same direction. The propagation of a
subscription effectively sets up a route for events, through the
reverse path from the publisher to the subscriber. Requests to
unsubscribe from an event pattern are handled and propagated
analogously to subscriptions, although at each hop entries in
the subscription table are removed rather than inserted.

Figure 1 shows a dispatching network with two dispatchers
subscribed for a “black” pattern, and one for a “gray” pattern.
Arrows represent the routes laid down according to these
subscriptions, and reflect the content of the subscription tables
of each dispatcher in the network. Solid lines are links of the
tree overlay network. As a consequence of the subscription
forwarding process, the routes for the two subscriptions are
laid down on this single tree. This choice is typical of content-
based systems and is motivated by the fact that a single event
may match multiple patterns. Routing on multiple independent
trees, as typically done by subject-based systems, would lead
to inefficient duplication of events along the separate trees.

Finally, here and in the rest of the paper we ignore the
presence of clients and focus only on dispatchers. Accordingly,
with some stretch of terminology we say that a dispatcher is a
subscriber if at least one of its clients is, although in principle
only clients can be subscribers.

III. INTRODUCING RELIABILITY

Existing distributed content-based publish-subscribe sys-
tems rarely address reliability through dedicated mechanisms.
This section describes three epidemic algorithms we developed
to overcome this limitation. They are designed to recover
lost events by operating on top of a best effort content-based
publish-subscribe system behaving as described in Section II.
Section IV thoroughly evaluates their effectiveness by simu-
lating their behavior in challenging unreliable scenarios.

A. Epidemic Algorithms

The general idea behind epidemic (or gossip) algorithms [8],
[9] is for each process to communicate periodically its partial

knowledge about the system “state” to a random subset of
other processes, thus contributing to build a common, shared
view of the system state. The mode of communication can
exploit a push or pull style. In a push style, each process
gossips periodically to disseminate its view of the system to
other processes. Instead, in a pull style each process solicits the
transmission of information from other processes to compen-
sate for local losses. Usually a push style of communication
uses gossip messages containing a positive digest of the system
state to be disseminated. Conversely, a pull approach usually
exploits negative digests, and gossip messages hence contain
the portion of the state that is known to be missing.

Independently from the scheme adopted, the probabilistic
and decentralized nature of epidemic algorithms yields a num-
ber of desirable properties. They impose a constant, equally
distributed load on the processes in the system, and are very
resilient to changes in the system configuration, including
topological ones. Moreover, these properties are preserved as
the size of the system increases, thus leading to good scala-
bility. Finally, they are usually very simple to implement and
rather inexpensive to run. Hence, epidemic algorithms appear
as good candidates for the dynamic distributed scenarios we
target. Nevertheless, their application to the case of recovering
lost events in content-based publish-subscribe system is not
straightforward, as discussed in the next section.

B. Our Approach

In our solution, the state that must be reconciled through
gossip is the set of events appeared in the system. Missing
events are recovered through one or more “gossip rounds”
during which other dispatchers, potentially holding a copy
of the event, are contacted. This apparently simple task is
greatly complicated by the nature of content-based publish-
subscribe systems. Unlike subject-based publish-subscribe and
IP multicast, events are not associated at the source to a subject
or group which determines its routing. Moreover, an event may
match multiple subscriptions, instead of a single group. These
characteristics make more difficult to identify the subset of
dispatchers that may hold missing events, and prevent a direct
use of solutions developed for the aforementioned domains.
This section presents three epidemic algorithms designed for
content-based publish-subscribe systems. Presentation of the
algorithms is kept concise, since the emphasis of this paper
is on their evaluation. The interested reader can find a more
extensive presentation, including a formalization, in [1].

The solutions we describe share a common structure. Each
dispatcher periodically starts a new round of gossip. When
playing this gossiper role, a dispatcher builds a gossip message
and sends it to some of its neighbors, which in turn propagate
it on the dispatching tree. The content of the gossip message
and its routing along the tree vary according to the algorithm
at hand. The sending of a missing event takes place using a
direct link, i.e., out of band with respect to the normal publish-
subscribe operations. Hence, we assume the existence of a
unicast transport layer (not necessarily reliable, e.g., UDP-
based), and that each dispatcher caches the events received.
Push. The first algorithm we developed uses proactive gossip



push with positive digests. At each gossip round, the gossiper
chooses randomly a pattern p from its subscription table,
constructs a digest including the (globally unique) identifiers3

of all the cached events matching p, builds a gossip message
containing the digest, and labels it with p. The message is then
propagated along the dispatching tree as if it were a normal
event message matching p. The only difference with respect to
event routing is that, to limit overhead, the gossip message is
forwarded only to a random subset of the neighbors subscribed
to p, according to the probability Pforward .

Observe that p is selected by considering the whole sub-
scription table instead of only the subscriptions issued locally
to the gossiper. Based on the routing strategy described in
Section II, this means that p can be indirectly known to the
gossiper because the latter is on the route towards a subscriber
for p. Hence, by considering also these subscriptions, we
increase the chance of eventually finding all the dispatchers
interested in the cached events, and thus speed up convergence.

When a dispatcher receives a gossip message labelled with
p, it checks if it is subscribed to this pattern and if all the
identifiers contained in the digest correspond to events that
have already been received. The identifiers of missed events
are included in a request message sent to the gossiper, to which
it replies by sending a copy of the actual events. Both messages
are exchanged by exploiting the out of band channel.
Pull. In some situations a proactive push approach may
converge slowly or result in unnecessary traffic. In these cases,
an approach using reactive pull with negative digests may
be preferable. Nevertheless, this requires the ability to detect
which messages have been lost. In subject-based systems, this
is easily achieved by using a sequence number per source and
per subject. In content-based systems this task is complicated
by absence of a notion of subject and by the fact that each
dispatcher receives only those events whose content matches
the patterns it is subscribed to. As detailed in [1], this problem
can be solved by tagging each event with enough information
to enable loss detection. The event identifier in this scheme
contains the event source, information about all the patterns
matched by the event and, for each pattern, a sequence number
incremented at the source each time an event is published for
that pattern. This information is associated to each event at its
source: this is made possible by the fact that a subscription
forwarding strategy is chosen, and hence subscriptions are
known to all dispatchers.

Whenever a dispatcher receives an event matching a pattern
p, but for which the sequence number associated to p in the
event identifier is greater than the one expected for that pattern
and source, it can detect the loss of an event and trigger the
appropriate actions. In [1] we elaborated two algorithms that
rely on this technique for detecting event loss, but use different
routing strategies: the first one steers gossip messages towards
the event receivers (the subscribers), while the other steers
them towards the event sender (the publisher).

• Subscriber-Based Pull. In this pull scheme, when a dis-

3The pair given by the source identifier and a monotonically increasing
sequence number associated to the source is sufficient.

patcher detects a lost event it inserts the corresponding
information, i.e., the source, the matched pattern, and the
sequence number associated to the pattern and source, in
a buffer Lost . When the next gossip round begins the
dispatcher, now a gossiper, chooses a pattern p among
the ones associated to subscriptions issued locally, selects
the events in Lost related with p, and inserts the corre-
sponding information in a digest attached to a new gossip
message. Note that, unlike in push, subscriptions are not
drawn from the whole subscription table, since here the
goal is to retrieve events relevant to the gossiper rather
than disseminating information about received events.
Finally, the gossip message is labelled with p and routed
in a way analogous to the push solution. A dispatcher
receiving the gossip message checks its event cache for
events requested by the gossiper and, if any are found,
sends them back to it. Observe that, in this case, it is
not necessarily the case that the dispatcher is a subscriber
for the pattern p specified by the gossiper. The dispatcher
could have received the gossip message because it is on a
route towards a subscriber for p, and could have received
(and cached) some of the events missed by the gossiper
because they match also a pattern p′ 6= p the dispatcher
is subscribed to.

• Publisher-Based Pull. Our second pull scheme requires
published events to be cached not only by the dispatchers
that received them but also by the source. Moreover, it
also requires that the address of each dispatcher encoun-
tered during the travel towards a subscriber is appended to
the event message. The algorithm behaves then similarly
to the previous one, but routes gossip messages towards
publishers rather than subscribers.
In particular, while Lost contains the same information
as before, a new buffer Routes is necessary to store
the route towards a given publisher (e.g., based on
the route information stored in the event most recently
received from it). Moreover, the information distinctive
of a gossip message is now the event source rather than
the pattern, and the gossip message is augmented with the
information necessary to be routed back to the publisher,
taken from Routes. It is worth noting that there is no
guarantee that the route stored in Routes is the same
originally followed by the missing event, since changes in
the dispatching network could have occurred meanwhile.
On the other hand, it is likely that the two share at least
the first portion or, in the worst case, the publisher.

IV. EVALUATION

This section presents simulation results that allow one
to critically evaluate our use of epidemic algorithms. We
evaluate the performance of our push, subscriber-based pull,
and publisher-based pull algorithms. We also consider the
case where the two pull approaches are combined because,
as discussed in the following, this option enables a significant
performance improvement. In addition, we also simulate the
behavior of a random pull approach where routing of gossip
messages is performed entirely at random. This alternative



Parameter Default Value
number of dispatchers N = 100

maximum number of patterns per subscriber πmax = 2

publish rate 50 publish/s
link error rate ε = 0.1

interval between topological reconfigurations ρ = +∞

buffer size β = 1500

gossip interval T = 0.03s

Fig. 2: Simulation parameters and their default values.

allows us to evaluate if the extra effort of deciding how to
route gossip messages is worthwhile. Simulations of a similar
random push approach are omitted since their performance is
extremely poor.

Section IV-A describes the simulation setting, while Sec-
tion IV-B illustrates the results. Simulations consider two very
different unreliable scenarios: one where links are lossy and
the percentage of events lost is then directly determined by
the link error rate, and one where event loss is indirectly
determined by a topological reconfiguration taking place in
the overlay network. Most of the results focus on the former
scenario, as it is more general and its effects more easily
isolated and controlled.

A. Simulation Setting

In absence of reference scenarios for comparing content-
based publish-subscribe systems, we defined our own by
choosing what we believe are reasonable and significant
values. The simulation parameters are discussed below and
summarized, together with their default values, in Figure 2.
Modeling content-based publish-subscribe. For this set of
parameters, we built upon the simulation parameters used in
previous work by some of the authors [7].

• Events, subscriptions, and matching. Events are rep-
resented as randomly-generated sequence of numbers,
where each number represents a pattern of the system.
We chose a uniform distribution for this sequence. An
event pattern is represented as a single number. An event
matches a subscription if it contains the number specified
by the event pattern in the subscription. Each dispatcher
can subscribe to a maximum number πmax of event
patterns, drawn randomly from the overall number Π of
patterns available in the system, which in our simulation
is set to 70. Given these parameters, it is possible to
calculate the number of subscribers per pattern as Nπ =
(Nπmax )/Π whose default value, given the values in
Figure 2, is 2.85.

• Publish rate. Our simulations are run with dispatchers
continuously publishing events on a network with sta-
ble subscription information (i.e., no (un)subscriptions
are being issued). The frequency at which the publish
operation is invoked by each dispatcher determines the
system load in terms of event messages that need to be
routed. As a default, we choose a high publishing load
scenario with about 50 publish/s per dispatcher. In some
of the simulations we also consider a low publishing load
scenario of about 5 publish/s per dispatcher.

• Overlay network topology. The results we present here
are all obtained with configurations where each dispatcher
is connected, in the dispatching tree, with at most four
others. Clients are not modeled explicitly, as their activity
ultimately affects only the dispatcher they are attached to.

Modeling the sources of event loss. The relevant parameters
differ according to the unreliable scenario considered:

• Channel reliability. We assume that each link connecting
two dispatchers in the overlay network behaves as a
10 Mbit/s Ethernet link. For the lossy link scenario, we
simulated scenarios with an error rate ε = 0.1 (leading
to 75% of events lost) and ε = 0.05 (leading to a 55%
loss). In the case of topological reconfiguration, the links
are instead assumed to be fully reliable.

• Frequency of reconfiguration. For the scenario with topo-
logical reconfigurations we relied on the algorithm and
simulations described in [7], where the interested reader
can find more details. A reconfiguration in this setting is
the breakage of a link, and its replacement with another
that maintains the network connected. We assume that the
overlay network is repaired in 0.1s. Reconfigurations are
triggered with a frequency determined by the duration of
the interval ρ between two reconfigurations. We simulated
non-overlapping reconfigurations (ρ = 0.2s) where a link
is replaced by another before a new link breaks, as well as
overlapping ones (ρ = 0.03s). Clearly, the former cause
less disruption and hence less event loss.

Gossip parameters. The parameters governing the behavior
of our gossip algorithms are the following:

• Buffer size. Each dispatcher is equipped with a buffer
where events are stored, to satisfy retransmission re-
quests. The buffer has a size of β elements. In our
simulations we adopted a simple FIFO buffering strategy
where each dispatcher caches only events for which it is
either the publisher or a subscriber.

• Gossip interval. The frequency of gossiping is controlled
by the gossip interval T between two gossip rounds.

• Combining pull approaches. As discussed later, we com-
bined these two pull approaches to improve performance.
Which approach is used at a given moment is determined
in probabilistic terms, using the Psource parameter.

Effect of randomization. The results of 10 simulations ran
with different random seeds showed that, differently from [7],
variations are limited, around 1%-2%. Hence, we present here
the results of a single simulation, rather than averaging over
runs with different seeds.
Simulation tool. Our simulations are developed using OM-
NeT++ [12], a free, open source discrete event simulation tool.

B. Event Delivery

As mentioned in Section I, our initial and driving motivation
for tackling reliability was to cope with event loss induced by
the dynamic reconfiguration of the dispatching infrastructure,
e.g., due to mobility. Nevertheless, thus far we did not make
any hypothesis about the cause of event loss. Hence, our
algorithms enjoy general applicability, and in principle can
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(a) Scenario with lossy links, ε = 0.05 (left) and ε = 0.1 (right).
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(b) Scenario with topological reconfigurations, ρ = 0.2s (left) and ρ = 0.03s (right).

Fig. 3: Event delivery.

improve reliability in any situation where an event loss may
occur. In this section, we evaluate the effectiveness of our
approach in improving event delivery, by considering both the
common scenario of a stable topology with lossy links, and
the scenario where events are lost because of changes in the
topology of the overlay network.

Figure 3(a) shows the simulation results4 for the former
case, by comparing the performance of the various solutions
when the error rate ε = 0.05. The performance metric we
choose is the delivery rate, i.e., the ratio between the number
of events correctly received by a process and those that would
be received in a fully reliable scenario. The delivery rate in
the chart is averaged, and shown in percentage. The time on
the x-axis is the simulation time.

In this scenario, our baseline is the delivery rate obtained
without any form of recovery, which is around 75%. The chart
shows how neither of the pull solutions alone is sufficient
to achieve a satisfactory delivery rate. This can be easily
understood by focusing on the special case where only one
dispatcher is subscribed for a given pattern. A subscriber-
based approach is not very effective, because there are no
other dispatchers to gossip with. Instead, a publisher-based is
more convenient in this case. Nevertheless, in a situation where

4Hereafter, we assume that parameters whose value is not explicitly
mentioned in the text are set to their default value, defined in Figure 2.

there are many dispatchers subscribed to the same pattern
a publisher-based approach is less appealing, since gossip
involves a much smaller fraction of the dispatchers. Hence,
the two variants essentially complement each other and, as
shown by the simulations, perform best when combined, by
enabling a delivery rate close to 98%. Analogous performance
is achieved by the push algorithm.

This behavior and the associated benefits can be better
appreciated in the more challenging scenario considered in the
right-hand side of Figure 3(a), where ε = 0.1 yields a baseline
delivery rate of 55%. Again, neither of the pull approaches
alone is enough, but together they boost the delivery rate
up to 90%, similar to what achieved by the push algorithm.
Hence, in this scenario the recovery phase performed with our
algorithms is responsible for the delivery of almost half of the
events being dispatched in the system.

The effect of our algorithms is evident when topological
reconfigurations occur. While in the scenario with lossy links
errors are by and large uniformly spread, in the case of
topological reconfigurations (over fully reliable links) they are
instead concentrated around the time when the reconfiguration
occurs. The left-hand side of Figure 3(b) shows a situation
where reconfigurations occur every ρ = 0.2s, leading to a
sequence of non-overlapping reconfigurations, i.e., the system
reaches a stable state where subscription routes are correctly
restored and hence events correctly delivered, before a new
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Fig. 4: Effect of buffer size (top) and gossip interval (bottom)
on delivery.

link breaks. In this case, depending on where in the tree the
reconfiguration actually occurs, the delivery rate may drop as
low as 70%. All of our algorithms have a beneficial effect,
by reducing the fraction of events lost. Nevertheless, again
the push approach and the combined pull approach effectively
“level” the delivery rate in proximity of 100%, by eliminating
all the negative spikes corresponding to event loss.

The right-hand side of Figure 3(b) shows instead a scenario
where reconfigurations occur every ρ = 0.03s and hence are
overlapping. Clearly, this is a very challenging scenario, that
can be regarded as an approximation of the case where a non-
leaf dispatcher is detached from the network and multiple links
are broken at once. In any case, it defines a good, extreme test
case for our analysis. It can be seen that the baseline delivery
rate may drop as low as 60%. Again, our best algorithms cut
all the negative spikes, and never fall below a 95% delivery
rate. Hence, they introduce a high degree of robustness in the
system, by masking to a great extent the perturbations caused
by topological reconfiguration.

In the remainder of the section we focus on scenarios
characterized by lossy links, since they represent the most
general case. In particular, we set the error rate to the value
of ε = 0.1 to better appreciate the variations in performance
determined by changes in the other parameter values.

C. Gossip Interval and Buffer Size

The key parameters of our epidemic algorithms are the
gossip interval T , determining how frequently dispatchers
communicate for the sake of recovery, and the size β of the
buffers where events are cached. Figure 4 shows how changes

in these parameters affect event delivery. The chart at the top
shows simulations results for a buffer size β ranging from
500 to 4000 buffered events, which in our scenario translates
into a time of persistence of an event in the buffer ranging
between 1.3s and 9.2s, against an overall simulation run time
of 25s. It is evident how subscriber-based pull alone cannot
improve beyond a given limit. The reason for this behavior
is the same we discussed earlier, and lies in the scarcity of
dispatchers with the same pattern. The publisher-based and
random pull approaches perform better than subscriber-based
pull, but nevertheless exhibit a much slower convergence to
100% delivery. Again, push and the combined pull approach
exhibit the best performance. Interestingly, combined pull has
better performance than push with small buffers, while push
approaches much faster 100% delivery as the buffer increases.
This is easily explained by observing that the push approach
relies more heavily on the persistence of events in the buffer. In
fact, as known from the literature on epidemic algorithms [8],
the push approach has a bigger recovery latency than pull.
Moreover, in our push approach each gossip round involves
only one of the potentially many patterns matching an event.
Hence, the event recovery may involve several gossip rounds.
Instead, the pull approach gossips more precise information
about the lost event, and hence exhibits a smaller latency.

It is worth noting at this point that since the buffer ca-
pacity is a key factor in determining the performance of our
algorithms, in all the simulations presented in this section we
were very careful in setting the value of β, to minimize bias.
In particular, as we discuss next, we increased linearly the
buffer size together with the system scale. This is a rather
conservative choice, since it is shown in the literature that
buffer requirements grow as O(fN log N), being f the publish
frequency. Moreover, we are currently investigating if and
how some of the published results (e.g., [13]) that enable a
significant buffer optimization are applicable in our context.

The chart at the bottom of Figure 4 shows instead how event
delivery is affected by the gossip interval. The considerations
that can be drawn are similar to those we made about the buffer
size. Once more, subscriber-based pull has a limit at about
78%, while push and combined pull are the best solutions, with
the former improving much faster as gossip rounds become
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more frequent, and the latter performing better as the interval
between rounds increases.

The interplay between the two parameters is shown in
Figure 5, where we plotted the event delivery obtained with the
combined pull approach against the gossip interval, and varied
the buffer capacity with increments of 1000 elements, starting
with a buffer of 500. (Simulations of push show a similar
behavior, and hence are not shown here.) The chart evidences
a number of interesting phenomena. First, increments in the
buffer size do not bear any significant impact after a given
threshold. This is particularly evident when T is very small.
Moreover, it can be seen how the sensitivity of our algorithms,
and in particular of the combined pull approach considered in
the figure, to changes in T is greater when the buffer size is
smaller. This is evident from our previous discussion: when
the buffer is big, less frequent gossip rounds are compensated
by a longer persistence of events in the buffer.

D. Scalability

The charts we presented thus far were derived for an overlay
network of N = 100 nodes. An open question is how an
increase of N affects event delivery. The answer is in Figure 6.
In each run we increased the number of dispatchers in the
system and, to compensate for the increased scale, we also
increased the buffer size accordingly, so that a given event
persists in the buffer for a constant time (of about 4s). The sim-
ulation results show that our solutions exhibit good scalability
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with respect to the number of nodes. This is not surprising,
given that this is a characteristic of epidemic algorithms, and
one of the reasons why we chose this approach. Again, the
best performance in terms of delivery is achieved by push
and the combined pull approaches. The two pull solutions are
more sensitive to scale when applied alone, with the publisher-
based one being the best when the number of nodes is limited.
The graph shows also that push becomes more convenient as
the system size increases. Since the total number of possible
patterns is kept constant in the chart, the introduction of new
nodes increases the probability that a given pattern is gossiped,
and hence an event recovered.

The system size, however, is not the only parameter charac-
terizing scalability. In a content-based system, the distribution
of patterns is another key factor. We evaluate this aspect
by intervening on the maximum number πmax of patterns a
dispatcher can be subscribed to. The effect of this parameter
in terms of scalability can be grasped by looking at Fig-
ure 7, where πmax is plotted against the average number
of subscribers that receive a single event. It can be seen
how πmax = 5 is already sufficient to reach about 25% of
dispatchers; this percentage raises to 80% with πmax = 30,
essentially making communication more akin to a broadcast
rather than a content-based one5.

5All of our simulations assume that an event can match at most 3 patterns.
In a content-based system this is a quite conservative assumption, since the
need for a single tree is motivated precisely by the fact that a single event
is likely to match several patterns. A higher matching rate would make the
curve in Figure 7 even steeper; additional simulations we ran show how this
noticeably improves further the performance of our algorithms.
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Fig. 9: Overhead introduced by gossip: in absolute terms (left) and relative to the events in the system (right).

The impact of πmax on the delivery rate is then analyzed
in Figure 8, under different publishing loads. The chart at the
top shows how, under a low publish rate of 5 publish/s, the
delivery rate of push and combined pull is basically unaffected
by increases in πmax , with the former performing slightly
better than the latter. The subscribed-based pull improves a
little since more dispatchers are now caching an event. The
chart at the bottom, derived under the usual high publish
rate of 50 publish/s, shows a more interesting behavior. For a
small number of subscriptions per dispatcher, about πmax < 6,
combined pull improves delivery, while push makes it worse.
This is explained by observing that the push approach proceeds
by gossiping about a pattern at a time: the higher the number
of patterns, the higher the number of gossip rounds potentially
required to recover an event, and the higher the likelihood that
the event is actually discarded from all the caches before being
recovered—especially under a high publish load. Instead, in
a pull approach the increase in the number of subscribers
is beneficial, since it increases the probability to contact a
dispatcher that has actually cached the event. For πmax > 6,
instead, performance decreases significantly for all solutions.
This can be explained by noting that both charts in Figure 8
were derived with a buffer size β = 4000. Since the number of
subscriptions per dispatcher increases, each subscriber receives
more events: this value of β is more than enough for a low
publishing load, but it is insufficient to keep up with a high

publishing load—hence the decrease in performance.

E. Overhead

After we verified that our solutions significantly improve
event delivery even when the system scale increases, the
next question is about the overhead they introduce. Moreover,
overhead can be regarded as another facet of scalability.
Figure 9 contains the results of our evaluation. It considers
the system size N and the number πmax of subscriptions per
dispatcher as a measure of scalability, similarly to what we
did in Section IV-D. The overhead is presented in two ways:
as the number of gossip messages sent by each dispatcher,
to evaluate the overhead on the single dispatcher, and as the
ratio between the gossip and event messages dispatched in the
overall system, to evaluate the impact of gossip on the overall
bandwidth available to event dispatching.

The left-hand side of Figure 9(a) shows that the number of
gossip messages sent by each dispatcher as the dispatching
network grows increases with the scale of the system, but
well below a linear trend. This very desirable behavior is
a direct consequence of the decentralized nature of gossip
algorithms: the local effort of a dispatcher, in term of gossip
messages sent, is independent from the system size. Hence,
the growth of gossip traffic is proportional to the number
of hops made by each gossip message, which in our case
increases logarithmically. The right-hand side of Figure 9(a)



shows instead that the traffic caused by event forwarding rises
faster than the one caused by gossip—under the assumption of
continuous publishing. Again, this is a desirable property of
our algorithms that leads to high scalability. It can be explained
by noting that while event forwarding essentially implements
a multicast scheme that must reach all the recipients, gossip
involves only a fraction of them; moreover, the propagation
of a single message is often “short-circuited” by the first
dispatcher that owns the requested message.

Figure 9(b) shows the impact on overhead of the number
πmax of subscriptions per dispatcher. The overhead on a single
dispatcher, shown in the left-hand side, is only marginally af-
fected by πmax . The overhead decreases a little for increasing
values of πmax , which can be explained by observing that
an increase in the number of patterns increases the number of
dispatchers at which an event gets cached, and hence increases
the likelihood of retrieving the event close to the gossiper.
Instead, the ratio of gossip messages and event messages in
the system decreases significantly with the increase of πmax ,
which is a desirable property. The reason can be grasped by
looking back at Figure 7. An increase in πmax determines
an increase in the number of receivers, hence the number of
events dispatched in the system rises much faster than the
number of gossip messages, especially in the scenario with
high publishing load we considered.

It is worth pointing out some additional issues related with
overhead. First, we note that the overhead against the system
scale might look relatively high, since in Figure 9 it ranges
from about 28% for 40 nodes, down to about 20% for 200
nodes. Still, it should be remembered that we performed these
simulations in extremely challenging scenarios, where the sys-
tem load is very high and so is the chance of losing an event.
Given this tough setting and the remarkable improvement in
event delivery, the overhead plotted in Figure 9 does not
seem unreasonable. In general, however, the tradeoffs between
overhead and event delivery are essentially determined by the
application and networking scenario at hand, and can be tuned
appropriately by intervening on the gossip interval and buffer
size whose impact has been described in Section IV-C.

Moreover, if the assumptions about load and error rate
are made less challenging, the relative performance of the
push and pull approaches changes significantly, as the reactive
pull approach triggers communication only when a recovery
is needed while the proactive push approach gossips con-
tinuously, and hence may result in wasted bandwidth. This
behavior is shown in Figure 10, which plots the total number of
gossip messages sent against the error rate. The top chart plots
the overhead at the high publish rate of 50 publish/s, while the
bottom plot is derived with 5 publish/s. In the latter case, the
pull approach clearly wastes less bandwidth, especially when
communication is more reliable: from the chart it can be seen
that when ε = 0.01, corresponding to a baseline delivery rate
of 95%, pull overhead is one third of push. The pull approach,
in this case, may skip some gossip rounds due to fact that
no event has been detected as lost in the meantime, while a
push approach must proactively push at each gossip round.
To remove the potential source of inefficiency of the push
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Fig. 10: Overhead under a high (top) and low (bottom)
publishing load.

algorithm, an adaptive approach could be exploited where the
gossip interval T is changed dynamically according to the
current state of the system, as suggested in [14].

In general, note also that in these simulations we assumed
that the size of event and gossip messages is the same. Hence,
the plots actually show only an upper bound for overhead: the
size of gossip messages is likely to be in reality much smaller
than the one of event messages, bringing the relative overhead
below the curves shown.

Finally, another issue is the one of computational over-
head, which we did not investigate through our simulations.
Qualitatively, the pull-based solutions require that, when an
event e is published by a dispatcher, the latter performs a
match of e against all the patterns in its subscription table.
This is more than normally required, since usually the match
processing needed to route a message towards a neighbor stops
as soon as the first matching pattern is found. While we are
currently investigating optimizations to limit this overhead, we
also observe that only the publisher experiences it: the other
dispatchers route events according to the normal processing.

V. RELATED WORK

Several centralized publish-subscribe systems (e.g., all the
JMS [15] compliant) and also some of the existing distributed
subject-based publish-subscribe systems provide a reliable
service [5], [16]–[19]. Similarly, researchers working on re-
liable multicast and group communication proposed several
protocols for reliable multicast where routing is group or
subject-based. Unfortunately, none can be used for the systems



we target here, due to the peculiarity of content-based routing
and of the scenarios we target.

Little research work addresses reliability in content-based
publish-subscribe systems. In [20], the authors describe a
guaranteed delivery service for the Gryphon system. Content-
based routing is provided through a collection of spanning
trees each rooted at one of the publishers. Guaranteed delivery
is ensured by an acknowledgment-based scheme that requires
stable storage only at the publisher. However, the solution
described is not amenable to the highly dynamic scenarios
motivating our work, since the solutions for facing a publisher
crash (e.g., shared and replicated logs) are not applicable, and
a topological change would trigger a high-overhead recon-
figuration of several trees. Instead, Hermes [21] provides a
form of content-based routing based on constraints on type
attributes. It exploits Pastry [22] as the basic transport layer,
and hence inherits the ability to tolerate topological changes.
Nevertheless, the authors do not give details about how to
recover events lost during reconfiguration.

The closest match to our work is hpcast [10]. In hpcast
nodes are organized in a hierarchy where the leaves repre-
sent event subscribers and publishers, and intermediate nodes
represent delegates, i.e., special nodes which are chosen to
represent aggregate interests of their children. A gossip push
approach is used to distribute events starting from the root of
the hierarchy and moving down each time a delegate retrieves
an event that could interest its children. The idea of using
gossip not just to improve event delivery but as the only
routing mechanism is simple and elegant, but suffers from
several drawbacks. First, in absence of faults it increases the
overhead since events are not routed only to interested nodes,
but they can reach also non-interested nodes or even be sent
more than once to the same node. Second, even in absence of
faults it does not guarantee that events are delivered correctly.
Third, it forces the adoption of a push approach in which
gossip messages include the entire event content instead of
a simple digest, thus further increasing the network traffic.
Finally, the nodes near to the root of the hierarchy experience
high traffic, and hence must maintain very big event caches to
increase the probability of correctly delivering events.

VI. CONCLUSIONS

Modern distributed computing fosters scenarios that are
increasingly large scale, unreliable, and highly dynamic. Dis-
tributed content-based publish-subscribe is emerging as an
effective tool to tackle the new challenges. Nevertheless,
reliable event delivery, a fundamental requirement in the new
distributed scenarios, has largely been ignored by researchers.

In this paper, we provided a thorough evaluation of an
approach to reliability based on epidemic algorithms. Sim-
ulations show that our use of epidemic algorithms improves
significantly event delivery, is scalable, and introduces only
limited overhead. Our results are derived without making
assumptions about the source of event loss, and hence enjoy
general applicability. Our ongoing work aims at complement-
ing the results we described here with those we enabling re-
configuration of the dispatching infrastructure [7] and convey

them in a new generation of distributed content-based publish-
subscribe systems able to tolerate topological reconfigurations
and minimize event loss.
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