
Scavenging Complex Genomic Information Using Mobile Code:
An Evaluation

Mauro Pezz̀e, Davide Tosi
University of Milano-Bicocca

Via Bicocca degli Arcimboldi, 8
I-20126 - Milano, Italy

{pezze|tosi }@disco.unimib.it

Gian Pietro Picco
Politecnico di Milano

Piazza Leonardo da Vinci, 32
20133 - Milano, Italy

picco@elet.polimi.it

Abstract

Mobile code solutions can improve the performances
of applications over the Internet by reducing the amount
of data that must be transferred across the network. The
research on genome examines enormous amount of data
stored on many distributed databases to retrieve the infor-
mation relevant for the specific investigation, and thus is
likely to greatly benefit for mobile code solutions.

This paper studies the benefits of mobile code solutions
for research on genome, by comparing different solutions
with analytical models, and presenting the results of case
studies that allow to identify when mobile code overwhelm
client/server solutions. The measured improvements of per-
formance indicate that the retrieval of information from
genome databases is a promising domain for mobile code
applications.

1 Introduction

The World Wide Web enables access to enormous
amounts of heterogeneous information dynamically dis-
tributed over the Internet. When the information of inter-
est is not immediately identifiable, but requires non-trivial
elaboration, traditional client/server applications can gener-
ate an enormous amounts of information flow that can imply
a significant transmission time.

Retrieval systems based on the mobile code paradigm
can largely reduce transmission time by elaborating the data
remotely, and thus reducing the amount of information that
needs to be transferred [12, 7]. Mobile code solutions have
been evaluated in many domains, e.g., e-commerce [9], doc-
ument retrieval [8], wireless networks [10], internetwork
management [3]. The speed of the network often mitigates
the end user perception of the performance differences be-
tween client/server and mobile code solutions that are per-

ceivable only when the amount of data remotely filtered is
extremely large. In most cases, we can experience a re-
duction of the traffic on the network, but not a perceivable
reduction of the end-to-end delay.

The research on genome is producing enormous amounts
of heterogeneous data dynamically distributed over the In-
ternet that grows at an amazing speed and requires com-
plex elaboration to be turned into useful information for
genomic research. Today biologists rely mostly on clas-
sic client/server systems with dreadful performances [5].
The introduction of federated databases [1] and dataware-
housing [16] alleviates but does not completely solve the
problem. Statistical predictors [15] and text mining mecha-
nisms [6] improve access to the scientific literature, but do
not help accessing other essential information in the field,
e.g., genomic sequences.

The amount of time that biologists waste in transferring
data for local elaboration suggests that the search for ge-
nomic information may greatly benefit from mobile code
solutions. In this paper, we discuss potential benefits of mo-
bile over classic solutions through simple analytical mod-
els, and we assess the predicted benefits though a set of
cases studied with prototypes that allows us to experiment
with client/server, remote evaluation and mobile agent solu-
tions on WAN, LAN and ADSL networks interfacing pop-
ular heterogeneous databases. The paper witnesses expe-
riences in performance reductions up to a factor of 17 for
ADSL networks that can reduce search time from hours to
minutes.

The main contributions of this paper are: the identifica-
tion of the research on genome as an important application
domain for mobile code solutions, the analytical predictions
of the benefits of mobile code solutions for different classes
of queries typical of the considered application domain, the
outline of prototype tools for experimenting with different
paradigms in different situations and the discussion of case
studies that show the benefits of remote evaluation and mo-

bile code solutions over client/server solutions for different
classes of queries, thus identifying the areas where advan-
tages are particularly relevant.

The paper is organized as follows. Section 2 summarizes
the genomic information retrieval problem and surveys the
state of the art in the area. Section 3 identifies remote code
evaluation and mobile agents as the most promising mobile
approaches to this problem, and analytically compares the
performances of these approaches with classic client/server
solutions for different kinds of queries. Section 4 briefly
describes the prototypes used for the experiments and moti-
vates the plans of the experiments. Section 5 discusses the
obtained results, and provides early quantitative evidence
of the potential advantages of mobile over client/server so-
lutions for different classes of queries that characterize the
applicative domain. Section 6 concludes summarizing the
main results presented in the paper and indicating future re-
search directions.

2 The Genomic Information Retrieval Prob-
lem

The research on genome is producing an enor-
mous amount of information that is scattered in
many databases and is growing with exponen-
tial rate. For example, in July 2004 the popular
PubMed [http://ncbi.nlm.nih.gov/entrez/]
database contained more than 14.000.000 entries, and a
simple query with the term ’HIV’ returned approximatively
135.000 entries. Today PubMed contains many more
entities and the same query would return many more
results. Size and growth of the information available over
the Internet is only one of the problems that biologists must
face. A lot of genomic information is non-homogeneous,
redundant and badly structured, since it often derives from
experiments that provide only partial data and is stored
in proprietary formats. Thus, biologists must query many
databases and compare the partial data extracted from
different sources to improve the quality of the needed
data [6]. The retrieved information must be filtered to
eliminate redundancy and integrate incomplete data. For
example, a search for the genome sequences related to a
form of life, e.g., a virus, on many databases, can return
many sequences partially overlapping and partially comple-
menting each other. Scientists may be interested only in the
most complete of the currently available sequences, which
can be obtained by discarding many redundant data, and
keeping only the most complete complementary sequences
that must be suitably combined. Filtering often removes
an enormous amount of information that is responsible for
long search time.

The poor performances of traditional client-server
tools [5] have been improved by introducing federations of

databases built with hyperlinks that allow clients to search
though several databases with a single query. Federative
solutions are provided for example in the SRS Sequence
Retrieval System [1] and in the Entrez System [21]. The
advantages of these approaches are limited by the unidirec-
tionality of the hyperlinks and by the lack of incremental
filters. The unidirectionality of the hyperlinks limits brows-
ing capabilities, while lack of filters does not reduce the
enormous amount of information that grows when querying
many databases.

Better solutions are based on data-warehousing, as for
example in the PROSITE system [16]. These solutions im-
prove the access to multiple databases and reduce the prob-
lems that derive from language heterogeneity, but do not
address the problem of information redundancy.

The information redundancy problem is partially ad-
dressed by Ponte and Croft [15], and by Feldman et al. [6]
who focus on retrieving information in the form of reports
or papers but do not adapt to other kinds of data. Ponte and
Croft propose a statistical model to estimate the probabil-
ity that a document could be relevant to the query; while
Feldman et al. use data and text mining mechanisms to au-
tomatically select relevant literature [6].

All the solutions proposed so far are far from being op-
timal and biologists waste a lot of time in retrieving and
filtering a huge amount of redundant information.

3 Mobile Code Solutions for the Genome Re-
trieval Problem

Code mobility, that is the ability to relocate dynamically
the components of a distributed application [14, 7, 4], seems
to well address the different aspects of the genomic infor-
mation retrieval problem. The possibility of migrating code
across locations allows both the search in many databases
for answering a single query, and the reduction of data trans-
fer by locally filtering the retrieved information. Moving
code increases the possibility of querying databases in par-
allel, since different agents that serve a single query can be
executed concurrently on different databases when the re-
sults of the searches are not mutually dependent.

3.1 Architecture

Code mobility indicates many approaches that can be
classified as code on demand, remote evaluation and mo-
bile agents. All paradigms operate in a distributed environ-
ment where an application running on a node (referred to as
base-station), queries several databases for retrieving the in-
formation of interest. In this paper we evaluated the remote
evaluation and mobile agent solutions.

In the remote evaluation paradigm (Figure 1a), the client
machine owns the code for elaborating the results, while the

database machines own the data. The client sends the code
to the database machines, which execute it on the local data,
and send the results back to the client machine. The code
for elaborating the results is composed of a generic driver,
that is a program to extract and filter data from a database,
and a computational logic, that is the specific computation
required by the clients to complete the required searches.
Since databases are involved in many different computa-
tions that rely on the same generic drivers, the generic
drivers can be cached on the databases, and the clients can
send only the computational logic.

In the mobile agent paradigm (Figure 1b), the agents mi-
grate to the databases carrying the programs for remote fil-
tering and some intermediate results and states. As in the
case of remote evaluation, the programs include generic
drivers that can be cached on database machines to reduce
the size of the agents that migrate across the network.

Both remote evaluation and mobile agents seem ap-
pealing solutions since they both filter data on the remote
databases, thus substantially reducing the amount of data
exchanged over the network. Moreover, they both al-
low for parallel execution of independent code on different
databases. In our study, we assume that generic drivers are
cached on the database machines, and thus we send only
computational logic and data across the network.

SCENARIO 4 (Query incrociate su piu’ DB)

Tecnologia Client/Server

Tquery , n = τ Dquery , n + τ Dris , n-1

Tresult , n = Tdb , n + Tstr , n + τ Dris , n + Va Dris , n F%

Tecnologia Codice Mobile

Tquery , n = τ Dquery , n + τ Dris , n-1 F%

Tresult , n = Tdb , n + Tstr , n + τ Dris , n F% + Vi Dris , n F%

Tecnologia Agenti Mobili

Tquery , 1 = τ Dagente/piano + Tserializ , 1

Tresult , 1 = Tdb , b + Tstr , 1 + Vb Dris , 1 F%

Tquery , 2 = τ Dagente/piano + τ Dris , 1 F% + Tserializ , 2

Tresult , 2 = Tdb , c + Tstr , 2 + Vc Dris , 2 F%

Tquery , n = τ Dagente/piano + τ Dris , n-1 F% + Tserializ , n

Tresult , n = Tdb , n + Tstr , n + τ Dris , n F% + Vn Dris , n F%

Ttot = Σi [Tquery , i + Tresult , i]

Query 1

Result 1

CLIENT/SERVER

a

b

Query n (Result n-1)

Result n
n

Ttot = Σi [Tquery , i + Tresult , i]

Query 1

Result 1
Query n (Result n-1)

Result n

Driver

Driver

data

data DB

DB BS

Ttot = n (τ Dag/piano + Tserializ) + Σi=1,n-1 τ Dris,i F% + Σi=1,n (Tdb,i + Tstr,i + τDris,i F%+ Vi Dris,i F%)

Query 1 Driver

BS

 Query n (Result n-1)

Result n

Driver

data

DB DB
data

CODICE MOBILE (a) Remote Evaluation:The code migrates without state
and is executed on the remote databases (DB).

SCENARIO 4 (Query incrociate su piu’ DB)

Tecnologia Client/Server

Tquery , n = τ Dquery , n + τ Dris , n-1

Tresult , n = Tdb , n + Tstr , n + τ Dris , n + Va Dris , n F%

Tecnologia Codice Mobile

Tquery , n = τ Dquery , n + τ Dris , n-1 F%

Tresult , n = Tdb , n + Tstr , n + τ Dris , n F% + Vi Dris , n F%

Tecnologia Agenti Mobili

Tquery , 1 = τ Dagente/piano + Tserializ , 1

Tresult , 1 = Tdb , b + Tstr , 1 + Vb Dris , 1 F%

Tquery , 2 = τ Dagente/piano + τ Dris , 1 F% + Tserializ , 2

Ttot = Σi [Tquery , i + Tresult , i]

Query 1

Result 1

CLIENT/SERVER

a

b

Query n (Result n-1)

Result n
n

Ttot = Σi [Tquery , i + Tresult , i]

Query 1

Result 1
Query n (Result n-1)

Result n

Driver

Driver

data

data DB

DB BS

Query 1 Driver

BS

 Query n (Result n-1)

Result n
Driver

data

DB

DB

data

CODICE MOBILE

Ttot = n (τ Dag/piano + Tserializ) + Σi=1,n-1 τ Dris,i F% + Σi=1,n (Tdb,i + Tstr,i + τDris,i F%+ Vi Dris,i F%)

(b) Mobile Agent:The code migrates with the associated
state and is executed on the remote databases (DB).

Figure 1. Code Mobility Paradigms

3.2 Analytical Model

The benefits of mobile code solutions can be studied an-
alytically. Here we examine the mobile agent and the re-

mote evaluation solutions, and compare them with the clas-
sic client/server solution.

The analytical models depend on the kind of query that
can be single, incremental on a single database, incremental
on several databases and independent on several databases.
A single query involves a single access to a single DB.
For example searching proteins related to HIV on a spe-
cific DB. Incremental queries iteratively access a single DB
to incrementally refine or enrich the results. For exam-
ple, we can first search papers about HIV, then restrict the
search to papers about a specific set of proteins among the
ones retrieved in the first step, and then further restrict the
search looking for papers that contain genomic sequences
among the ones formerly retrieved, and so on. In incremen-
tal queries, the keys of the successive steps are computed
from the results of the former steps and thus cannot be in-
cluded in a single query.

All models estimate the total response timeTtot, i.e., the
time between the formulation of the query and the availabil-
ity of the results in the base-station.Ttot is computed as a
function of several parameters that express the dimension
of the data exchanged over the network, the execution time
of the programs involved in the computation, the speed of
the network and of the involved nodes, the network latency
τ defined as the time it takes for a packet to cross a network
connection, from sender to receiver (measured in ms).

Data exchanged over the network (measured in bits)

Dquery indicates the size of the query. It influences the
transmission time of the query from the base-station to
the target databases in the case of client/server solu-
tions.

Drev indicates the cumulative size of the query and of the
associated code in the remote evaluation solution. It
influences the transmission time of the query and the
program from the base-station to the target databases
in the case of remote evaluation solutions.

Dagent indicates the size of the serialized mobile agent. It
includes the size of the agent, its status and the plan of
the query, and influences the transmission of the agent
between the base-station and the databases in the case
of mobile agent solutions.

Dres indicates the size of the results and determines the
transmission time to the base-station in all cases.

Execution time of the involved programs (measured in
ms)

Tdb indicates the response time of the database, computed
as the time between the start of the elaboration of the
query by the database and the production of the results.

Tstr indicates the time for converting the stream of results
as produced by the database into a string suited for
transmission over the network.

Tser represents the agent serialization time, i.e., the time
needed to serialize the agent for moving it to a different
node.

Execution time of the involved programs

DB indicates the speed of the machine hosting a database,
and determines the time for filtering the results in the
case of mobile solutions.

BS indicates the speed of the base-station, and deter-
mines the time for filtering the results in the case of
client/server solutions.

F indicates the filtering factor, i.e., the ratio

F = Dfiltered/Dres (1)

whereDfiltered indicates the size of the filtered re-
sults. SinceDfiltered ≤ Dres, the value ofF is be-
tween0 and1.

The parameters are summarized in Table 1 for readers’
convenience. The total response time can be expressed as
the sum of two factors: the time between the formulation of
the query and the start of the elaboration of the query in the
database site (Tquery) and the time between the start of the
elaboration of the query in the database site and the avail-
ability of the filtered results in the base-station (Tresult).

Single queries In a client/server solution, the
query is elaborated at the database site, thusTquery is given
by the time needed to transmit the query to the database, i.e.,
the network latency times the size of the query:τ Dquery.

Tresult is given by the time required to extract the re-
sults from the database (Tdb), the time needed to convert
the stream of results in a string transmittable over the net-
work (Tstr), the time to transmit the results to the base-
station (τ Dres) and the time needed to filter the results in
the base-station (BS Dres) (preliminary experiments have
shown that the time for marshalling the query is negligible,
and thus it has not been considered in the model):

Ttot = [τ Dquery] + [Tdb + Tstr + τ Dres + BS Dres] (2)

Tquery is relevant only in the case of very slow net-
works (high value ofτ). Tresult is usually the dominant
factor, and strongly depends on the size of the produced re-
sults, which influence all factors comprisingTresult. Typ-
ical genome queries usually produce large results and the

DIMENSIONS OF DATA
Dquery Dimension of the query
Dagent Dimension of agent and associated plan
Dres Dimension of the results
ELABORATION AND TRANSMISSION TIME
Tdb Database response time
Tstr String conversion time
τ Network latency
Tser Agent serialization time
ENVIRONMENTAL FACTORS
DB Database processing speed
BS Base-station processing speed
F Filtering Factor
RESULTS
Ttot Total response time
Tquery Time to transmit the query to the DB
Tresult Time to compute and return the results

Table 1. Summary of the parameters of the
analytical models

dominant factors become the database response time (Tdb)
and the the time needed to send the results to the client ma-
chine (τ Dres).

In aremote evaluation solution, the query is elab-
orated at the database site, as in the case of client/server so-
lutions, but the results are filtered remotely (at the DB site),
thus in a remote evaluation solution, both the time to trans-
mit the results to the base-station and the time needed to fil-
ter the results are less than the one required in a client/server
solution. The termτDrev that substitutes the termτDquery

includes the extra time required to send the program as well
as the query to the remote stations. The transmission time
is reduced by the filtering factorF , since data are filtered
before being transmitted, while the filtering time depends
on the speed of the DB site and not of the base station:1

Ttot = [τ Drev] + [Tdb + Tstr + τ Dres F + DB Dres] (3)

Thus, the benefits of remote evaluation over client/server
solutions depend on the filtering factor, the network latency
and the difference in speed between the base-station and
the database site. As confirmed by the case studies reported
in the next section, the difference is appreciable only on
relatively slow networks, such asADSLconnections.

In a mobile agent solution, the base-station sends
the whole agent to the database site, and not only the query.

1The differences between related formulas are shown in bold in the
paper.

The agent is evaluated at the DB site, which sends back the
filtered results. Thus, onlyTquery changes with respect to
remote evaluation solutions. It now depends on the size of
the agent and not only on the size of the query, and includes
also the time for serializing the agent:

Ttot = [τ Dagent+Tser]+[Tdb+Tstr+τ Dres F+DB Dres] (4)

The benefits of mobile agent solutions with respect to
client/server solutions depend on the same factors of remote
evaluation solutions, but are reduced by the serialization and
transmission time of the agent that is higher than the trans-
mission time of the query.

In the case of simple queries over single databases, the
analytical models suggest potentially better performances
of remote evaluation over mobile agent solutions, and indi-
cate the filtering factors and the network latency as critical
parameters for gaining better performances of mobile over
client/server solutions.

Incremental queries on a single database Incremental
queries on a single database iteratively access the database
to refine the results. Thus, the new analytic models can be
obtained from the single query/single database models by
accumulating the costs of the iterative steps as follows:

client/server

Ttot =

n∑
i=1

[
[(τDquery,i + τDres,i-1Fi-1)]+

[(Tdb,i + Tstr,i + τDres,i + BS Dres,i)]
] (5)

remote evaluation

Ttot =

n∑
i=1

[
[(τDrev,i + τDres,i-1Fi-1)]+

Tdb,i + Tstr,i + τDres,iFi + DB Dres,i

] (6)

mobile agent

Ttot = [τDagent + Tser] + Tstr,n+
n∑

i=1

[
Tdb,i + DB Dres,i

]
+ τDres,nFn

(7)

In the formulas, the indexesi identify the different it-
erative accesses, e.g.,Dquery,i indicates the dimension of
the query during the i-th iteration. Boldface indicates the
differences with the case of the simple query. We notice
that for both client/server and remote evaluation solutions,
at each iteration the base-station must send to the database
not only the i-th version of the query, but also the fil-
tered results of the former query (as indicated by the terms

τ Dres,i−1 Fi−1) to enable the new iteration at the database
site. The symmetry of the formulas with respect to the case
of the single query suggests no main differences in the rel-
ative performances of the two classes of solutions. Con-
versely, mobile agent solutions accumulate less overhead.
In fact, since the agent is evaluated on the database site, we
need to send the agent only once to the database, and we
do not need to exchange intermediate results for incremen-
tal filtering that is performed directly on the database site by
the agent. This reflects in the first (τ Dagent+Tser+Tstr,n)
and last (τ Dres,n Fn) terms of the formula that are not
included in the sum. This gives a performance advantage
to mobile agent solutions over other solutions. The per-
formance gap grows for queries that require several refine-
ments, as often the case in the considered applicative do-
main.

Incremental Queries on several databases Incremental
queries on several databases iteratively access different
databases to refine or enrich the results of a query. The
new analytic models are parametric with respect to the
numbern of queries and the numberm of nodes, and can
be obtained from the incremental queries/single database
models by considering the costs of the iterative steps for
each database, as follows:

client/server

Ttot =

n∑
i=1

[
[(τDquery,i + τDres,i−1Fi−1)]+

[(Tdb,i + Tstr,i + τDres,i + BS Dres,i)]
] (8)

remote evaluation

Ttot =

n∑
i=1

[
[(τDrev,i + τDres,i−1Fi−1)]+

Tdb,i + Tstr,i + τDres,iFi + DBi Dres,i

] (9)

mobile agent

Ttot = m(τDagent + Tser) +

m∑
j=1

[
[τDres,j-1Fj-1] + Tstr,j

]
+

n∑
i=1

[
Tdb,i + DBi Dres,i

]
+ τ Dres,n Fn

(10)

Boldface indicates the differences from the
single database case. We notice that the client/server
and the remote evaluation models do not change. In fact,
client/server solutions return the intermediate results to the
client station that filers the data and executes the new query,
while remote evaluation solutions filter the intermediate
results on the database station, but return the filtered data
to the client station to formulate the successive query. The

index in the termDBi in the remote evaluation model
indicates that data are filtered on the database where they
are retrieved, which in this case changes at every step.

The mobile agent solution differs from the single
database case, since the agent must be sent to them nodes
involved in the search (the termτ Dagent + Tser now is
computedm times), and the intermediate results must be
sent to the new database when the next subquery involves
a different database (a termτ Dres,j−1 Fj−1 + Tstr,j is
added for them nodes involved in the search.) Thus, the
advantages of the mobile agent over the remote evaluation
solution are reduced and depend on the transmission time
between databases. Fast inter-database connections result in
small overhead, while slow connections can result in loos of
performances below the performances of remote evaluation
solutions.

Independent queries on several databasesIndependent
queries on several databases iteratively access different
databases with queries that are non correlated. In a
client/server solution the base-station must iteratively elab-
orate each query, while both mobile solutions can take
advantage of the parallel evaluation on the independent
databases. Thus, the advantages of the mobile solutions
over the client/server solution are emphasized by a factor
corresponding to the number of databases interested by the
queries.

Summary The analytical models confirm the hypothe-
sis of better response time of mobile over client/server
solutions. The advantages increase with the number of
databases and the independency of the queries. Although
in general, mobile agent solutions seem better than remote
evaluation solutions, advantages are not always significa-
tive and in few cases remote evaluation seems to perform
slightly better than mobile agent.

4 Case Studies

We evaluated the analytical predictions on some case
studies using prototypes that support the three solutions:
client/server, remote evaluation and mobile agent.

The three prototypes have been implemented in Java and
share a common core that interfaces with the databases and
elaborates the extracted data to satisfy the users’ queries.
The remote agent prototype is obtained by adding a ser-
vice to transfer queries and drivers on the database ma-
chines. Drivers execute the code on the machine hosting
the database. The mobile agent solution is obtained by ex-
tending the agent class with theµCode platform [13].

The prototypes are extended with plug-ins for handling
different databases. The current prototypes offer plug-ins

for five popular databases:EMBL [17], SwissProt[19],
PubMed[21], InterPro [18] andBLAST[20].

EMBL stores information about nucleotide se-
quences [11], SwissProt contains information about
protein sequences [2], PubMed stores bibliographical
references, InterPro contains information about protein
families, and BLAST provides facilities for searching for
similarities between protein and nucleotide sequences.

Both the remote evaluation and the mobile agent proto-
types require the code to be executed on the database ma-
chine. Moreover, the mobile agent prototype requires the
availability of theµCode platform on the database machine.
Most databases do not allow execution of alien code, thus,
to conduct our experiments, we installed copies of EMBL
(150GB) and SwissProt (6GB) databases on our own ma-
chines, and we experimented with these databases.

The prototypes have been instrumented to record the ex-
ecution time of the relevant phases. All prototypes record
the database response time (Tdb), the string conversion time
(Tstr), the time for elaborating the results, which corre-
sponds toBS Dres for the client server prototype and to
DB Dres otherwise, and the time for sending the data to
the base station, which corresponds toτ Dres for the client
server prototype and toτ Dres F otherwise. The mobile
agent prototype records also the serialization time (Tser)
and the time for transmitting the agent to the remote sta-
tion (τ Dagent). Both the remote evaluation and the mo-
bile agent prototypes record also the time spent to send the
driver to the remote station, which was not considered in the
analytical formulas.

The experiments have been executed with a bench-
mark identified in collaboration with Schering-Plough. The
benchmark consists of sets of queries that represent typical
genomic queries in the different cases identified in the pre-
vious sections: single queries, incremental queries on a sin-
gle database and incremental queries on several databases.
Each set contains queries that vary in terms of dimensions
of the produced results.

Tables 2, 3 and 4 show some sample queries that are
referred to in the discussion of the next section. Table 2
shows some simple queries on the SwissProt and the EMBL
databases, respectively (databases contain different infor-
mation and thus are accessed with different queries). Ta-
ble 3 shows four incremental queries on a single database:
SwissProt. Table 4 shows six incremental queries on two
databases: SwissProt and EMBL.

5 Empirical Results

We empirically evaluated the different solutions pro-
posed in this paper by running the three prototypes
(client/server, remote evaluation, and mobile agent) with the

(Kb) F (Kb) F (Kb) F
Field: All
"Cannabinoid"

(Kb) F (Kb) F (Kb) F
Field: Organism
"Pig"

(Kb) F (Kb) F (Kb) F
Field: Organism
"Mouse"

(Kb) F (Kb) F (Kb) F
Field: Author
"Martinelli"

(Kb) F (Kb) F (Kb) F
Field: Organism
"Golden Hamster"

(Kb) F (Kb) F (Kb) F
Field: Organism
"Dog Hookworm"

Output Field: All Output Field: All Output Field: ID

Output Field: All Output Field: All Output Field: ID

80 1 20 0,25

SWISSPROT

EMBL

Output Field: All Output Field: All

Output Field: All Output Field: All Output Field: ID

Output Field: All Output Field: All Output Field: ID

0,2 0,002

4750 1 1100 0,23 12,5 0,002

97 0,003

46 1 23 0,5 1,5 0,032

32000 1

Output Field: MedLineID

4610 1 1200 0,26 15,6 0,003

Output Field: ID

30100 1 4100 0,14 138 0,004

Contain "cds"

Contain "rel.65"

QA1

QA2

QA3

QA4

QA5

QA6
Output Field: All Output Field: All

Not contain "receptor"

Not contain "suin"

Not contain "protein"

Contain "nucleic"

3500 0,11

(Kb) F (Kb) F (Kb) F
Field: All
"Cannabinoid"

(Kb) F (Kb) F (Kb) F
Field: Organism
"Pig"

(Kb) F (Kb) F (Kb) F
Field: Organism
"Mouse"

(Kb) F (Kb) F (Kb) F
Field: Author
"Martinelli"

(Kb) F (Kb) F (Kb) F
Field: Organism
"Golden Hamster"

(Kb) F (Kb) F (Kb) F
Field: Organism
"Dog Hookworm"

Not contain "receptor"

Not contain "suin"

Not contain "protein"

Contain "nucleic"

Contain "cds"

Contain "rel.65"

QA1

QA

QA3

QA4

QA5

QA6
Output Field: All Output Field: All Output Field: ID

30100 1 4100 0,14 138 0,004

Output Field: MedLineID

4610 1 1200 0,26 15,6 0,003

97 0,003

46 1 23 0,5 1,5 0,032

32000 1 3500 0,11

0,2 0,002

4750 1 1100 0,23 12,5 0,002

SWISSPROT

EMBL

Output Field: All Output Field: All

Output Field: All Output Field: All Output Field: ID

Output Field: All Output Field: All Output Field: ID

Output Field: All Output Field: All Output Field: ID

Output Field: All Output Field: All Output Field: ID

80 1 20 0,25

A simple query is characterized by a field and an input string. The
database returns the records that contain the string in the given
field. The three columns indicate the size of the output both in
Kbytes and in percentage with respect to all retrieved records
with three different filters. Filters are given in the header of the
columns as constraints on the fields. The first column corresponds
to no filter, the second column corresponds to a filter that leads to
a moderate filtering factor, the third column corresponds to a filter
that produces a high reduction on the size of produced data.

Table 2. Sample single queries.

three kinds of queries discussed in the previous section (sin-
gle query, incremental query on single database and incre-
mental query on several databases) under different band-
width conditions: LAN (10Mbit/s), WAN (1Mbit/s) and
ADSL (256Kbit/s).

All experiments were conducted using local images
of the SwissProt and the EMBL databases, to overcome
problems of running “alien” code on publicly available
databases, as required to execute the remote evaluation and
mobile agent solutions. The different bandwidth conditions
were obtained using local, remote and ADSL-connected
computers to run the client, respectively. The local client
was an AMD Atholon XP 1700+ processor with 512MB of

QB1

QB2

QB3

Author

ID

ID

 Description

QB4

All "cannabinoid"

Organism "pig"

Organism "frog"

Organism "mouse" ID

 MedLineID

 Author

Description

AccessN

An incremental query is characterized by a sequence of simple
queries. Each simple query is performed on the set of records
produced by the former query. For example, query QB1 is
composed of three simple queries. The first query selects the
content of field ”Author” of all records containing ”cannabinoid”.
The second query selects the content of fields ”MedLineID” of
all records containing any of the values returned by the former
query as author. In this way it retrieves all products of authors
who dealt with ”cannabinoid”. The third and last query selects
the content of field ”Description” associated to all records whose
field ”MedLineID” matches the results of the former query. In
this way we have a description of all work of authors who dealt
with ”cannabinoid”. The other queries work similarly.

Table 3. Sample incremental Queries on Swis-
sProt.

EMBL

SWISSPROT

SWISSPROT

EMBL

SWISSPROT

EMBL

SWISSPROT

EMBL

Organisme "giraffe" MedLineID Author

SWISSPROT

EMBL

SWISSPROT

EMBL

All "cannabinoid" ProteinID

Organism "duck" ProteinID InterProID

Author "martinelli" ID Protein ID Description

Organism "pig" MedLineID ID

AccessN

Organism "coffee" ProteinID InterProID

QC6

QC1

QC2

QC3

QC4

QC5

Table 4. Sample incremental queries on Swis-
sProt and EMBL.

RAM. The remote client, located in Eugene Oregon, was an
Intel Pentium 4 processor 1.50GHz with 512MB of RAM,
and the ADSL-connected computer was an Intel Pentium 4
processor 2.40GHz with 256MB of RAM. The server ma-
chines, that store the EMBL and SwissProt databases, were
Intel XEON dual processor 2.00GHz with 1GB of RAM.

We ran all experiments with generic drivers pre-installed
on the servers running the databases. Thus, the total execu-
tion time measured in the experiments does not include the
time for transmitting and installing the generic drivers.

The mobile agent prototype serializes the agents before

transmitting them on the network. The total execution time
measured in the experiments includes the serialization time,
which in our case accounts for a fixed overhead of 20ms.

The experiments involved the execution of 2520 queries
that derive from the execution of the 16 queries illustrated in
the previous section (6 single queries, 4 incremental queries
on a single database and 6 incremental queries on multiple
databases) with or without filtering (in the case of single
queries only) for the three solutions (client/server, remote
evaluation, and mobile agent) under the three bandwidth
conditions (LAN, WAN, ADSL). Each query has been exe-
cuted 10 times on different dates and times of day to avoid
dependencies from the specific load conditions. We then
eliminated the outliers and we considered the mean values.

5.1 Single Queries

In the case of single queries, mobile agent and remote
evaluation solutions do not present significant mutual differ-
ences, and both usually perform better than the client/server
solution. The advantage over the client server solution de-
creases with the speed of the network. Figure 2 shows
the total execution time for the first three queries of Ta-
ble 2 with three different filtering factors each, executed
on EMBL using a WAN connection. The advantages of
remote and mobile solutions over client/server depend on
the amount of the returned data and the filtering factor.
For small quantity of returned data (queryQA4) or no fil-
tering (QueriesQA5F=1 andQA6F=1), all solutions are
equivalent. For medium quantities returned data and no fil-
tering (QA5F=1), client/server performs even slightly bet-
ter than the remote and mobile solutions, due to the addi-
tional cost of agent transferring not balanced by a lower
cost of returning data. However, for the critical cases of
large amounts of returned data and high filtering factors
(QA5F=0.26, QA5F=0.003 and especiallyQA6F=0.14 and
QA6F=0.004), remote and mobile solutions perform much
better than client server solutions. We measured an average
gain of a 2.2 factor and a maximum gain of 4.3 factor of
mobile over client server solutions.

LAN and ADSL present similar behaviors, but were re-
duced in the case of LAN, and were enhanced in the case
of ADSL. In our experiments, with a LAN connection the
gain reached a maximum factor of 2, while with an ADSL
connection it reached a factor of approximately 17 (from 20
minutes with the client/server prototype to 1 minute for the
mobile agent prototype in the case of queryQA6F=0.004).

The experiments with SwissProt confirmed the result ob-
tained with EMBL.

EMBL DATABASE

0 50000 100000 150000 200000 250000 300000 350000

Total Execution Time (ms)

RE
MA
C/S

Q
U

ER
Y

Q
A

4
Q

U
ER

Y
Q

A
5

Q
U

ER
Y

Q
A

6

F=1

F=0.5

F=0.03

F=1

F=0.26

F=0.003

F=1

F=0.14

F=0.004

Total Execution Time for the different solutions client/server
(C/S), remote evaluation (RE) and mobile agent (MA). The three
rows of each query correspond to the results for the three filtering
factors (F) of Table 2.

Figure 2. Single queries on EMBL on a WAN.

5.2 Incremental queries on a single database

In our experiments with incremental queries on a single
database with WAN connectivity, the mobile agent solutions
gain up to a factor of 2 over the remote evaluation solu-
tions, which gain a factor of 2 on the client/server solutions.
The amount of gain depends on the amount of incremen-
tal filtering. The remote evaluation solutions gain over the
client/server by returning less data at each step, while the
mobile solutions gain by returning only the last result.

Table 5 shows the ratios between the performances of
the three solutions for the four queries of Table 3 on Swis-
sProt with a WAN. The differences in the gains between the
queries depend on the reductions on the exchanged results
due to incremental filtering.

As for single queries, the advantages leverage on high-
speed networks (LAN), and are enhanced on low-speed net-
works (ADSL): The ratio among the different approaches
approximates 1 with LAN connectivity and reaches a gain
factor of up to 17.2 between mobile agents and client/server
solutions with ADSL connectivity.

5.3 Incremental queries on several databases

In the cases of incremental queries over several databases
the experimental results confirm once more the analyti-
cal predictions: mobile solutions outstand client/server ap-
proaches and mobile agents perform slightly better than re-
mote evaluation approaches.

QB1 QB2 QB3 QB4

CS/MA 1.63 3.88 3.37 4.28
CS/RE 1.03 1.97 1.73 2.07
RE/MA 1.58 1.97 1.94 2.07

Ratio between the performances of the different solutions
(client/server over mobile agent (CS/MA), client/server over re-
mote evaluation (CS/RE) and remote evaluation over mobile agent
(RE/MA)) for queries with different incremental filtering factors.

Table 5. Incremental queries on SwissProt on
a WAN.

Figure 3 shows the total execution time for the six
queries of Table 4 with WAN connectivity. The experiments
have been executed with only two databases (EMBL and
SwissProt) working on the same LAN, due to the impossi-
bility of running the experiments on the native databases,
and to the problems of autonomously replicating databases.
Thus the results are conservative: we should expect higher
differences when executing with multiple databases and
with WAN interconnections.

0 10000 20000 30000 40000 50000 60000 70000 80000

Total Execution Time (ms)

RE
MA
C/SQC1

QC2

QC3

QC4

QC5

QC6

Total Execution Time for the different solutions client/server
(C/S), remote evaluation (RE) and mobile agent (MA).

Figure 3. Incremental queries on SwissProt
and EMBL on a WAN.

6 Conclusions

The amount of data involved in the research on genome
makes classic client/server applications inefficient. Feder-
ated databases, data-warehousing and text mining mecha-
nisms alleviate but do not solve the problem. In this pa-

per, we evaluate mobile code approaches to solve the prob-
lem, we study the benefits with simple analytical models,
and we report on a set of case studies that show the ben-
efits of remote evaluation and mobile code solutions over
client/server solutions for different classes of queries. The
experiments have been executed with prototypes on WAN,
LAN and ADSL networks with two popular databases,
SwissProt and EMBL, with a set of queries identified with
experts of the application domain. The results obtained are
very encouraging and we plan to develop a precompetitive
tool for beta testing to collect detailed information for com-
plete evaluation of the approach.

7 Acknowledgments

This project started with a collaboration with Schering-
Plough. We are grateful to the research group in Milan for
the valuable information provided during the project. We
would like to express our gratitude especially to Dr. Mas-
simo Beltramo. We are also grateful to Luca Andreini,
Jonathan Loroni and Lorenzo Vassallo who contributed in
the early stages of the project and to the development of the
prototypes.

References

[1] P. Argos and T. Etzold. SRS, an indexing and retrieval
tool for flat file data libraries.Computational applied bio-
sciences, (9):49–64, 1993.

[2] A. Bairoch and R. Apweiler. The SWISS-PROT protein se-
quence data bank and its supplement TrEMBL in 1998.Nu-
cleic Acids Research, 26(1):38–42, 1998.

[3] M. Baldi and G. P. Picco. Evaluating the Tradeoffs of Mo-
bile Code Design Paradigms in Network Management Ap-
plications. In R. Kemmerer, editor,Proceedings of the 20th

International Conference on Software Engineering, pages
146–155. IEEE CS Press, Apr. 1998.

[4] D. Chess, C. Harrison, and A. Kershenbaum. Mobile agents:
Are they a good idea? research report, IBM Research Divi-
sion, 1995.

[5] B. Donnelly. Data integration technologies: an unfulfilled
revolution in the drug discovery process? InBIOSILICO,
Drug Discovery Today, pages 59–63. Elsevier Science, May
2003.

[6] R. Feldman, Y. Regev, E. Hurvitz, and M. Finkelstein-
Landau. Mining the biomedical literature using semantic
analysis and natural language processing techniques. In
BIOSILICO, Drug Discovery Today, pages 69–80. Elsevier
Science, May 2003.

[7] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding
Code Mobility. IEEE Transactions on Software Engineer-
ing, 24(5):342–361, May 1998.

[8] R. S. Gray, G. Cybenko, D. Kotz, R. A. Peterson, and
D. Rus. D’agents: applications and performance of a
mobile-agent system.Softw. Pract. Exper., 32(6):543–573,
2002.

[9] R. Jha and S. Iyer. Performance comparision of implemen-
tation mechanisms for e-commerce applications: Towards
a hybrid approach. InProceedings of the 2nd Asian Inter-
national Mobile Computing Conference (AMOC’02), May
2002.

[10] D. Kotz, G. Jiang, R. Gray, G. Cybenko, and R. A. Pe-
terson. Performance analysis of mobile agents for filter-
ing data streams on wireless networks. InProceedings of
the 3rd ACM international workshop on Modeling, analysis
and simulation of wireless and mobile systems, pages 85–94.
ACM Press, 2000.

[11] T. Kulikova, P. Aldebert, N. Althorpe, W. Baker, K. Bates,
P. Browne, A. van den Broek, G. Cochrane, K. Duggan,
R. Eberhardt, N. Faruque, M. Garcia-Pastor, N. Harte,
C. Kanz, R. Leinonen, Q. Lin, V. Lombard, R. Lopez,
R. Mancuso, M. McHale, F. Nardone, V. Silventoinen,
P. Stoehr, G. Stoesser, M. A. Tuli, K. Tzouvara, R. Vaughan,
D. Wu, W. Zhu, and R. Apweiler. The EMBL nucleotide se-
quence database.Nucleic Acids Research, Database Issue,
32:D27–D30, 2004.

[12] S. Papastavrou, G. Samaras, and E. Pitoura. Mobile agents
for world wide web distributed database access.IEEE Trans-
actions on Knowledge and Data Engineering, 12(5):802–
820, Sep/Oct 2000.

[13] G. P. Picco. µCODE: A Lightweight and Flexible Mobile
Code Toolkit. InProceedings of Mobile Agents: 2nd Inter-
national Workshop MA’98, volume 1477 ofLecture Notes
on Computer Science, pages 160–171, Stuttgart (Germany),
Sept. 1998. Springer.

[14] G. P. Picco. Mobile Agents: An Introduction.Journal of Mi-
croprocessors and Microsystems, (25):65–74, 2001. Invited
contribution to a special issue on mobile agents.

[15] J. M. Ponte and W. B. Croft. A language modeling approach
to information retrieval. InProceedings of the 21st annual
international ACM SIGIR conference on Research and de-
velopment in information retrieval, pages 275–281. ACM
Press, 1998.

[16] C. Sigrist, L. Cerutti, N. Hulo, A. Gattiker, L. Falquet,
M. Pagni, A. Bairoch, and P. Bucher. PROSITE: a doc-
umented database using patterns and profiles as motif de-
scriptors.Brief Bioinform, 3(3):265–274, 2002.

[17] www.ebi.ac.uk/embl/. EMBL Home Page.
[18] www.ebi.ac.uk/interpro/. InterPro Home Page.
[19] www.ebi.ac.uk/swissprot/. SwissProt Home Page.
[20] www.ncbi.nlm.nih.gov/BLAST/. BLAST Home Page.
[21] www.ncbi.nlm.nih.gov/entrez/query.fcgi. PubMed Home

Page.

