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ABSTRACT

Aperiodic data collection received little attention in wireless sensor
networks, compared to its periodic counterpart.

The recent Crystal system uses synchronous transmissions to
support aperiodic traffic with near-perfect reliability, low latency,
and ultra-low power consumption. However, its performance is
known under mild interference—a concern, as Crystal relies heav-
ily on the (noise-sensitive) capture effect and targets aperiodic
traffic where “every packet counts”.

We exploit a 49-node indoor testbedwhere, in contrast to existing
evaluations using only naturally present interference to evaluate
synchronous systems, we rely on JamLab to generate noise patterns
that are not only more disruptive and extensive, but also repro-
ducible. We show that a properly configured, unmodified Crystal
yields perfect reliability (unlike Glossy) in several noise scenar-
ios, but cannot sustain extreme ones (e.g., an emulated microwave
oven near the sink) that instead are handled by routing-based ap-
proaches. We extend Crystal with techniques known to mitigate
interference—channel hopping and noise detection—and demon-
strate that these allow Crystal to achieve performance akin to the
original even under multiple sources of strong interference.
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1 INTRODUCTION

Aperiodic data collection received little attention in wireless sensor
networks, compared to its periodic counterpart. A notable excep-
tion is our Crystal system, recently proposed in [15]. Originally
designed to exploit the synergy with data prediction, Crystal uses
synchronous transmissions [8] to support aperiodic and sparse traf-
fic with near-perfect reliability, low latency, and ultra-low power
consumption.
Is Crystal resilient to strong interference? However, the re-
markable performance of Crystal was reported only under mild in-
terference; we ran experiments on channel 20 and 26 which “showed
very similar performance [...] during the night runs; however, the day-
time results were inconsistent and difficult to assess” and therefore
“the results only from night runs on channel 26” were included [15].

Statements like these are not uncommon in the related literature,
as discussed later. However, this is of particular concern here be-
cause interference i) potentially undermines Crystal at the core by
hampering the capture effect it heavily relies on, and ii) increases
the overhead of achieving near-perfect reliability of aperiodic and
sparse traffic in which “every packet counts”, possibly precluding
ultra-low power consumption.

Hence, whether the remarkable performance in [15] holds under
strong interference is an open question, answered in this paper by
analyzing the performance of Crystal under several, increasingly
disruptive noise patterns and introducing techniques to boost its
resilience to strong interference without sacrificing ultra-low power
consumption.
Natural vs. Generated Interference. We report experiments in a
49-node indoor testbed and exploit its natural interference, mostly
WiFi, in line with the evaluation of well-known synchronous trans-
missions systems [8, 9, 16, 27].

Actually, reliance on natural interference is the only method-
ology hitherto adopted for evaluating them. Despite Glossy and
derivatives being commonly considered highly resilient to inter-
ference, the extent to which this holds has never been ascertained
under noise patterns that are i) repeatable, and ii) more extensive
and disruptive than natural ones.

We raise the standard of evaluating synchronous transmissions
under interference by reporting, for the first time, results based
on the reproducible generation of realistic noise patterns. We use
JamLab [1], described in §2, to emulateWiFi devices and microwave
ovens in our experimental setup (§3).
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PerformanceMetrics and Comparison Baselines. We evaluate
Crystal using packet delivery rate (PDR) and duty cycle (DC) as
metrics for reliability and energy consumption, respectively. More-
over, as Crystal relies on unmodified Glossy, we indirectly evalu-
ate it with the same experiments under interference; as mentioned
above, we argue this is a contribution per se.

We observe that none of the proposals tackling interference
found its way into the mainstream. Hence, we choose the readily-
available RPL [25] and ORPL [6] as baselines (§4), in line with
analogous works [18, 20, 28].
Results and Contributions. We show (§5) that all protocols sus-
tain natural interference, but only Glossy and Crystal achieve near-
perfect PDR, with a much lower DC. Under JamLab-emulated WiFi,
RPL reliability degrades even with a single jammer; with several
covering the entire testbed, ORPL also degrades, while Crystal still
achieves near-perfect PDR. Interestingly, roles are reversed when
an emulated microwave oven is placed 1m from the sink; ORPL
achieves near-perfect PDR, while Crystal falls below 80%.

These results pushed us to explore two techniques to improve
the resilience of Crystal (§6). The first allows nodes to escape
interference by executing each transmission-acknowledgement
pair—a core Crystal constituent—on different channels, based on a
network-wide hopping sequence. This approach, which uses Glossy
unmodified, is notably different from protocols in the literature that
apply channel hoping inside Glossy [7, 17, 21]. Second, noise de-
tection at all nodes enables them to schedule extra transmissions
in a decentralized way, increasing packet delivery. This fights in-
terference, effectively providing a “safety net” when channel hop-
ping alone is insufficient, but may keep nodes unnecessarily active,
which detrimental in the sparse traffic targeted by Crystal.

Our experimental results (§7) show that the combination of these
two techniques, to the best of our knowledge novel in the context
of synchronous transmissions, achieves near-perfect reliability in
the very challenging scenarios where both microwave ovens and
WiFi are simultaneously present. Overall, we confirm that the origi-
nal Crystal (and the underlying Glossy) can tolerate the moderate
levels of interference commonly found in office environments. How-
ever, Crystal can also be modified with relative ease to sustain
much stronger interference patterns while retaining its ultra-low
power consumption.

Finally, we concisely survey related work (§8), before ending the
paper with brief concluding remarks (§9).

2 BACKGROUND

We offer the necessary background on synchronous transmissions
and Crystal, along with the JamLab infrastructure used to generate
reproducible interference patterns.

2.1 Synchronous Transmissions: Crystal

Synchronous transmission protocols, pioneered by Glossy [8], build
on two properties of the IEEE 802.15.4 PHY: constructive interfer-
ence and capture effect. These occur when packet transmissions
by neighboring nodes are initiated within a tiny temporal inter-
val (0.5µs and 160µs, respectively) and yield a successful reception
instead of a collision. Constructive interference works when the
packet is the same, yielding high reliability due to the combination

Table 1: An aperiodic, sparse traffic profile; number and frac-

tion of epochs withU concurrent senders.

U 0 1 2 5 10 20

epochs # 84.3K 15.5K 2.2K 606 46 1
% 82.1 15.1 2.2 0.14 0.038 0.005

of the identical signals; the capture effect, instead, works with differ-
ent packets, one of which is received with a probability depending
on the density of neighbors and their signal strength.

Glossy exploits these properties to construct network-wide floods
that are extremely i) fast, as each node receiving a packet immedi-
ately rebroadcasts it, preserving the required tight timing ii) reliable,
due to the above PHY-level properties, and the inherent spatial and
temporal redundancy of flooding. To increase reliability, packets are
retransmitted by each nodeN times; the value ofN is the main knob
to control the tradeoff between reliability and energy consumption.
Aperiodic, sparse data collection. Crystal [15] builds a sched-
ule atop Glossy that, unlike works geared towards periodic data
collection [9, 24], is designed to efficiently support aperiodic, sparse
traffic like the one stemming from applying data prediction [13, 22]
to regular, periodic traffic. Prediction quenches the majority of ap-
plication messages, inducing sporadic traffic interleaved with long,
quiescent intervals. However, a sudden change in the monitored
phenomena may invalidate the prediction model, which must be
regenerated and sent to the sink, possibly by multiple nodes at
once. Table 1, adapted from [15], shows an example traffic profile
resulting from applying data prediction to the well-known 36-day
Intel dataset [14] containing temperature samples gathered with
a period of 30s, hereafter called epoch. After data prediction is ap-
plied, the majority (82.1%) of the total 102686 epochs is empty, as
the sink can predict the next value based on the last model reported
by each node. However, in a non-negligible fraction of epochs,U >1
concurrent senders must send model updates. Further, as packets
carry models rather than raw data, the loss of a single one has a
much larger impact on the reliability of the overall system.
Crystal in a nutshell. To reconcile these requirements, Crystal
builds a network-wide transport protocol, in which i) a transmis-
sion (T) slot is used by U concurrent senders to disseminate their
packet; these floods “compete” until, thanks to the capture effect
and Glossy redundancy, one reaches the sink with high probability
ii) a subsequent acknowledgment (A) slot is used by the sink to flood
the identifier of the sender whose packet it received, informing the
others whether re-transmission is needed because their packet was
“overcome” by another or no packet was received at the sink.

Figure 1 illustrates the concept in a simplified setting with only
2 nodes and the sink. A synchronization (S) phase is performed
at the beginning of each epoch to ensure time synchronization.
Communication occurs via the aforementioned TA pairs, which
are repeated by fewer and fewer senders until all have successfully
transmitted their packet and the entire network goes to sleep for the
rest of the epoch. This termination condition is in principle easily
identified by the first silent pair, i.e., one without transmissions in
T and whose A contains a negative acknowledgment. In practice,
matters are complicated by packet losses in either T orA, whichmay
cause a node or the sink to become prematurely inactive. Therefore,
Crystal detects termination after R consecutive silent pairs; larger



Interference-Resilient Ultra-Low Power Aperiodic Data Collection Conference’17, July 2017, Washington, DC, USA

Table 2: Crystal configurations used in the paper. The val-

ues ofWx and G are in milliseconds.

Power NS NT NA WS WT WA G R Z

High

3 2 3 10 6 8

0.15 2 43 3 3 10 8 8

Low

3 3 3 12 10 10
4 4 4 14 12 12

values improve reliability but with higher energy consumption.
Other parameters are described in [15], e.g., the durationG of guards
and the number Z of consecutive missed acknowledgements.
Baseline configuration. In essence, Crystal builds a reliability
layer atop Glossy, which strikes different tradeoffs w.r.t. energy
consumption by exploiting the interplay between the two layers.
As in Glossy, the number N of retransmissions in each flood is key,
but in Crystal this can be set independently (NS , NT , NA) for each
phase; the same holds for the maximum slot durationW , another
key Glossy parameter.

The configuration used in the paper (Table 2) is adapted from the
original. First, our testbed has a larger diameter than Indriya, used
in [15]. This forced us to use larger values for the intervalsWT and
WA to allow Glossy floods to complete; we determined the optimal
value using the methodology of [15]. Second, we experiment with
combinations of NT and NA values to explore the impact of the T
phase w.r.t. interference. The values of the remaining parameters
WS , G, R, Z are unchanged.

Finally, we use two power settings, high (0dBm) and low (−7dBm);
the former is the default throughout the paper.

2.2 Generating Interference: JamLab

As we argued in §1, the ability to reproduce interference patterns is
key to our study. Therefore, we rely on JamLab [1], which achieves
this goal using the same mote-class nodes available in a testbed, and
whose software faithfully emulates various types of interference
relevant to IEEE 802.15.4, including Bluetooth,WiFi, andmicrowave
ovens. These have very different characteristics. Bluetooth inter-
feres with all IEEE 802.15.4 channels, as it uses a channel hopping
scheme. WiFi spans 4 IEEE 802.15.4 channels with interference that
is significantly stronger than Bluetooth, but also based on the type
of data traffic. Microwave ovens, depending on model and load,
may interfere with several consecutive channels, if not all, and
induce very strong, continuous interference for 5-10ms, alternated
with inactive periods of 10-15ms [1, 12]. According to [1], channels
20–26 are affected the most.
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Figure 1: Crystal in a nutshell.

Hereafter, to put ourselves in the worst-case scenario, we focus
only on WiFi and microwave ovens, as they yield the strongest
interference. Similarly, we select the most challenging of the WiFi
patterns offered by JamLab (JL_WIFI4) and configure the jammers
to transmit modulated carrier at the maximum power (0dBm).

One criticism of JamLab is that the interference sources it can
mimic are limited, and real environments may contain different
ones. While this is true, the aforementioned characteristics of WiFi
and microwave are different enough to cover a broad spectrum of
noise patterns; further, by combining them, we create an even more
challenging interference scenario for our experiments.

Another JamLab limitation is that real interference sources often
interfere with many contiguous IEEE 802.15.4 channels at the same
time; in contrast, a JamLab node generates noise on a single channel.
The majority of the proposed protocols, including the synchronous
transmissions ones described in §2.1 and the mainstream ones in §4,
operate on a single channel; therefore this limitation does not affect
the experiments in §5. However, in §7 we explore channel hopping
and address this JamLab limitation with a channel mapping strategy.

Finally, although we use the maximum TX power (0dBm) of
motes, this is much smaller than real interference sources (e.g.,
25 and 60dBm for WiFi and microwave ovens, respectively). As
suggested in [1], we use therefore multiple motes, strategically
placed in our testbed (Figure 2).

3 TESTBED INTERFERENCE SCENARIOS

The experiments we report were performed in our local testbed,
composed of 49 TMote Sky nodes deployed (Figure 2) in a 60×40 m2

office area, subject toWiFi interference. Similar to other reports [18]
the latter i) is more intense during the day and less at night and dur-
ing the weekends, and ii) varies depending on the channel consid-
ered. In addition to this natural interference, we leverage controlled
JamLab generated interference, enabling repeatable experiments.
Overall, we define four types of interference (Table 3). The choice of
channels for natural interference derives from an extensive, cross-
channel measurement campaign, which identified the best (26) and
worst (18) channels during night and day, respectively. The gen-
erated interference is created at night on channel 26 (i.e., under

40m

60m

1 (sink)

13

7

12
20

2231

37
42

41

49

Figure 2: Position of the jammers in the testbed.
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Table 3: Types of interference.

Type of interference Description

Natural

t-low testbed at night/weekends, channel 26
t-high testbed during the day, channel 18

Generated

j-wifi JamLab WiFi interference (JL_WIFI4)
j-mwo JamLab microwave oven interference

natural t-low interference). Our evaluation uses varying numbers
of JamLab jammers for each type and combines different types in
the same experiments, to obtain challenging, realistic setups. Node 1
is the sink in all experiments.

Figure 3 quantitatively compares the various types of interfer-
ence while Figure 4 shows its effect on the number of links, their
qualities and the network radius (Glossy hopcount). The natural
t-low (Figure 3a) exhibits an average noise of −93dBm, rather
stable and uniform across the network. The interference in natu-
ral t-high is drastically different (Figure 3b). The average noise
is −88dBm, but several nodes are exposed to much higher noise,
reaching −50dBm. This affects the network topology by reducing
the number of perfect links by 1/3, yielding a 10% increase in the
average hopcount (Figure 4).

The interference generated via JamLab yields stronger noise than
the natural one. Figure 3c shows the j-wifi interference generated
by node 7 alone, the closest (1m) to the sink. Figure 3d shows instead
the effect of 6 j-wifi jammers, including node 7, chosen to cover
the entire testbed (Figure 2). Compared to Figure 3b, j-wifi subjects
the network to a noise slightly higher in average (−86dBm) and
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(a) t-low: channel 26, night.
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(node 7,42) combined.

Figure 3: Noise levels for the scenarios in Table 3.

variance (Figure 3d); this affects significantly the network topology,
increasing the average hopcount by 20% w.r.t. t-high (Figure 4).

Figure 3e shows the noise generated by a j-mwo jammer on
node 7. About 1/4 of the network (obviously including the sink) is
severely affected, with an average noise from −80 to −65dBm, far
higher than the previous scenarios. We experiment with alternate
placements of the j-mwo jammer which clearly affects differently
the sink, but also has different global effects on the network (Fig-
ure 4). Moreover, we also experiment with the combination of 2 j-
mwo and 4 j-wifi; the resulting noise (Figure 3f) is significantly
higher than in all previous scenarios, yielding a stronger impact
on network topology (Figure 4). This scenario combined with a
reduced TX power of the network nodes (LP in Figure 4) is the
most challenging we consider in this paper. Further, when study-
ing specific effects of different jammers and their combinations
on protocols, to eliminate the topology bias, we stick to a single
43-node network with the remaining 6 nodes being either active as
jammers or switched off. Obviously, the 43-node network is more
challenging as it is less connected (Figure 4).

4 BASELINE MAINSTREAM PROTOCOLS

We describe the protocols we use as a baseline to compare against
Crystal, along with the configuration used in the experiments. All
protocols in this paper run atop Contiki.

4.1 Protocol Descriptions

RPL [25], the Routing Protocol for Low-power Lossy Networks, is
an IETF standard. RPL can be seen as an evolution of CTP [10] that,
instead of a tree, maintains a directed acyclic graph rooted at the
sink. Therefore, each node maintains multiple parents towards the
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Figure 4: Link quality distribution (PRR) and network ra-

dius (mean/max) in various interference scenarios.
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root; a preferred one is used for actual packet forwarding, while
the others are kept as backup routes.
ORPL [6] is an opportunistic routing protocol that inherits many
design choices from RPL but replaces unicast forwarding with
anycast. Instead of relaying a packet to the parent, the forwarder
broadcasts it; any neighbor closer to the sink is free to catch the
packet, acknowledge it, and forward it in the same way. This in-
creases resilience to interference; packets following different paths
dynamically avoid noisy areas.

4.2 Protocol Configurations

MAC wake-up interval. Both protocols rely on ContikiMAC [4]
for medium access control and duty cycling; the value of the wake-
up interval is therefore a key parameter affecting performance.
We initially chose a value of 8Hz; this is the default, commonly
used in the literature. Although our goal in this paper is not to
explore the best configuration of these mainstream protocols, we
experimented also with values of 1, 2, 4 Hz, as they may provide
better performance under interference. We observed this to be the
case for ORPL, which performs best at 2Hz. Therefore, hereafter
we report only about wake-up intervals of 2Hz and 8Hz; in general,
these also strike a different balance between PDR and DC, and are
therefore interesting to compare. The other configurations always
perform worse, and are omitted due to space constraints.
Choosing the right CCA. The Clear Channel Assessment (CCA)
mechanism is used by CSMA link layers to deter a packet transmis-
sion if the medium is busy. Its configuration significantly affects
the interference resilience of the stack.

The CC2420 radio offers three modes where the CCA reports a
busy medium upon detecting 1) energy above threshold 2) valid
IEEE 802.15.4 data, regardless of energy threshold 3) energy above
threshold or valid IEEE 802.15.4 data.

We verified that the default −90dBm energy threshold in Contiki-
MAC yields unacceptable performance; baseline protocols achieve
PDR<30% even with natural t-high interference. We tested them
with several values ranging from −60 to −90 dBm under t-high
and generated interference. The value of −77 dBm yielded the best
performance and is our choice; in fact, this is the default for CC2420.

As for the CCA mode, the protocols considered use mode 3,
the default. With JamLab nodes, the question arises whether the
noise patterns they emit can be detected by other nodes as legit
IEEE 802.15.4 data, instead of interference. We performed dedicated
experiments comparing results obtained with CCA modes 1 and 3,
observing essentially the same performance. Therefore, hereafter
we used the default mode 3.
Retransmissions. RPL and ORPL employ different strategies w.r.t.
layer 2 retransmissions; a maximum of 7 is allowed by RPL when
an acknowledgment is not received, and 4 by ORPL. However, a
retransmission can be triggered also by a CCA detecting a busy
channel, in which case a few subtleties of the Contiki operating
system come into play. Contiki v.3.0, used by RPL, considers 5 busy
CCAs as equivalent to a failed transmission. The two events are
completely unrelated in Contiki v.2.7, used by ORPL, allowing for
an unlimited number of CCAs till the channel is free.

We did not modify these settings, as changing these default
parameters may have unexpected and undesired effects whose

analysis is outside the scope of this paper. We mention them here
because they are useful in interpreting the results we present in the
next section, e.g., the superior performance of ORPL under strong
interference next to the sink.

5 CRYSTAL VS. THE MAINSTREAM

We compare the protocols in §4 against Crystal, and indirectly
Glossy, when exposed to the same interference. Aside from the
intrinsic value and novelty of this experimental comparison, this
serves a stepping stone towards a Crystal design tolerating stronger
interference, discussed in §6.

5.1 Experimental Setup

We analyze Crystal and the baseline protocols in the interference
scenarios described in §3. We setup a number U of concurrent
senders between 0 and 48;U =0means absence of trafficwhileU =48
offers a stress case where all nodes but the sink are senders. These
parameters match the use cases described in [15] in which a data
prediction scheme is applied to periodic data collection applications
(e.g., sensing light in a road tunnel or temperature in an office
environment). Data prediction reshapes traffic from periodic into
sporadic; yet, in a single epoch,U nodes may need to transmit data.
The PDR of Glossy is derived from Crystal experiments as the PDR
of the T phase whenU =1 (Table 7).

In Crystal, allU senders attempt their data packet transmission
at exactly the same time, i.e., in the first T phase of the epoch,
whose duration we set to E=2s. Baseline protocols have much
higher latency, especially under interference; we set a longer E=10s
for them, denoting solely the period according to which packets
are generated. In reporting DC, we re-scale the values measured
for Crystal to 10s, to enable direct comparison between the two
protocol classes. Unlike Crystal, the epochs of baseline protocols
are not synchronized.

Finally, all results are based on several 1-hour runs. For baseline
protocols, these are preceded by a 30-minute period since boot-
strap, allowing network topology to stabilize. For Crystal, the
total number of packets sent per configuration varied from 5000
to 500k, but typically was around 5k–40k. PDR is computed over
the total number of packets sent. Instead, DC is the averaged over
values from each 1-hour run, whose variation is anyway negligible.

5.2 Natural Interference: t-low

We first consider the t-low scenario (§3), which is akin to sev-
eral evaluations in the literature, including [15], and offers a good
baseline to compare higher interference against.

The performance of mainstream protocols in t-low (Table 4,
left) is in line with experiments in the literature [6, 11]. As expected,
the MAC wake-up interval bears a significant effect: RPL performs
best at 8Hz, while ORPL achieves near-perfect PDR at 2Hz. Further,
its DC is much lower than RPL thanks to opportunistic behavior.

These results were derived with a single sender, U =1. Table 6
shows results for other values of U ; we consider only ORPL as
the performance of RPL is significantly lower. The PDR of ORPL
decreases when traffic increases; ORPL still achieves a good PDR=
97.8% withU =20, but drops to PDR=73% when all nodes transmit
in each epoch. DC similarly increases sharply withU .
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Table 4: Natural interference: Baseline,U =1.
t-low t-high

protocol wake-up PDR DC PDR DC
(Hz) (%) (%) (%) (%)

RPL 2 92.0 1.36 49.3 1.60
RPL 8 93.7 1.2 92.5 1.53
ORPL 2 99.8 0.380 98.2 0.71
ORPL 8 98.7 0.737 98.6 1.45

Table 5: Natural interference: Crystal.

t-low t-high
NT WT U PDR DC PDR lost 1 DC

(%) (%) (%) pkt in (%)
2 6 0 — 0.293 — — 0.297
2 6 1 100 0.387 100 ∞ 0.396
2 6 2 100 0.479 100 ∞ 0.491
2 6 5 100 0.751 100 ∞ 0.773
2 6 10 100 1.205 99.9988 83659 1.233
2 6 20 100 2.107 99.9993 134077 2.162
2 6 48 100 4.883 100 ∞ 4.982
3 8 0 — 0.332 — — 0.334
3 8 1 100 0.442 100 ∞ 0.451
3 8 2 100 0.551 100 ∞ 0.564
3 8 5 100 0.868 99.9984 61482 0.890
3 8 10 100 1.391 100 ∞ 1.421
3 8 20 100 2.448 99.9995 209201 2.475
3 8 48 100 5.596 100 ∞ 5.719

Table 6: Natural interference:

ORPL (2Hz) vs.U .

t-low t-high
U PDR DC PDR DC

(%) (%) (%) (%)
0 — 0.295 — 0.571
1 99.8 0.380 98.2 0.710
5 98.9 0.859 97.4 1.312
10 98.9 1.497 98.4 2.140
20 97.8 2.977 86.3 4.718
48 73.0 6.845 65.5 7.402

These trends are expected;
however, Table 5 shows that,
in the same conditions, Crys-
tal performs significantly
better, in line with [15].
Regardless of the ⟨NT ,WT ⟩

combination used, Crystal
always achieves perfect PDR,
even in the extremeU =48. In
these experiments, not a sin-
gle packet was lost of total
600k sent. This is largely to
be ascribed to the excellent performance of the underlying Glossy
layer (Table 7). Further, Crystal achieves a DC lower than ORPL,
itself the best among the mainstream protocols considered. For
instance, for U =48 the improvement is 18% with NT =3, and 29%
with NT =2. With no data sent (U =0), the DC of ORPL is, however,
comparable with NT =2, and even lower than NT =3.

Note how the Crystal sink is duty cycled, like other nodes; this
is an asset in deployments where powering the sink is complicated.
In contrast, the results shown throughout the paper for mainstream
protocols use an always-on sink; we verified this provides them
with highest PDR and lowest DC.

5.3 Natural Interference: t-high

Next we discuss experiments assessing the same protocols during
daytime, which presents higher levels of interference mostly arising
from WiFi traffic, as discussed in §3.

Table 7: PDR of Glossy.

scenario NT ,WT PDR (%)

t-low 2, 6 100
3, 8 100

t-high 2, 6 99.971
3, 8 99.985

j-wifi 1 jammer 3, 8 100
j-wifi 6 jammers 3, 8 99.32

j-mwo 42 3, 8 99.88
j-mwo 13 3, 8 100
j-mwo 7 3, 8 67.90
j-mwo 7 6, 12 83.86
j-mwo 7 10, 17 99.76

Concerning the mainstream baseline protocols, Table 4 shows a
generalized decrease in PDR accompanied by significant increases
inDC. As in t-low, ORPL is the protocol with the best performance.
The price to pay, however, is the nearly twofoldDC increase for both
2 and 8Hz, as a result of longer idle listening and retransmissions
induced by interference. Varying the numberU of senders (Table 6)
shows a similar trend of decreasing PDR and increasing DC.

Instead, Crystal performs quite well (Table 5). PDR is perfect
or near-perfect regardless of the value ofU ; the occasional (4 out
of total 700k) packet loss for some values ofU is likely due to the
unpredictable nature of t-high. Further, DC is nearly identical to
the t-low case. For instance, in the worst-case scenario of NT =3
andU =48, the increase in t-high w.r.t. t-low is a negligible 0.22%.
This is partly ascribed to the inherent reliability of the Glossy pro-
tocol Crystal builds upon. However, our experiments also show
that Glossy by itself does not achieve perfect PDR. The superior
reliability of Crystal is due to its redundancy mechanisms built
atop Glossy, overcoming daytime noise with little additional over-
head. Another way to look at this is to observe that even in the
configuration with NT =2, i.e., less reliability in the Glossy layer,
Crystal still achieves the same PDR as NT =3, while of course
enjoying better DC.

5.4 Generated Interference: j-wifi

We turn our attention to noise patterns we can control via JamLab
(§3). We first analyze a single j-wifi jammer next to the sink, then
6 of them fully covering the network. We focus onU =1 as this is
sufficient to draw the observations motivating the further work
described in the next sections.
Single jammer next to the sink. We use a single jammer, node 7
in Figure 2; its placement is challenging, at only 1m from the sink.
RPL shows a reasonable PDR=84%, while ORPL yields near-perfect
PDR with both 2 and 8Hz, and a DC comparable to t-high (Table 8).
In the same conditions, Crystal achieves perfect PDR and lower
DC than ORPL (Table 9). This remarkable performance is mainly a
consequence of the perfect performance of Glossy (Table 7).
Six WiFi jammers covering the entire network. We next con-
sider 6 JamLab nodes generating WiFi interference across the entire
network like t-high, but with significantly higher noise (§3). As
RPL showed low performance even with a single jammer, we focus
on ORPL, which has significant difficulty overcoming this noise
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Table 8: Generated noise: Baseline,U =1.
node ID protocol wake-up (Hz) PDR (%) DC (%)

j-w
if
i

7 RPL 8 84 1.50
2 89 1.30

7 ORPL 8 99.7 1.31
2 99.9 0.59

6 jammers ORPL 8 60 3.91
2 64 1.70

j-m
w
o

42 ORPL 8 98.3 2.13
2 98.6 0.844

13 ORPL 8 99.7 1.84
2 98.0 0.67

7 ORPL 8 99.1 2.23
2 99.8 0.67

Table 9: Generated noise: Crystal,U =1.
node ID NT ,WT R PDR (%) DC (%)

j-w
if
i 7 3, 8 2 100 0.457

2, 6 2 100 0.403

6 jammers 3, 8 2 100 0.497
2, 6 2 100 0.443

j-m
w
o

42 3, 8 2 100 0.507
2, 6 2 99.52 0.430

13 3, 8 2 100 0.459
2, 6 2 100 0.405

7 3, 8 2 78.5 0.453
2, 6 2 78.6 0.425

7 3, 8 6 100 1.11
7 6, 12 2 100 0.839

level, regardless of the wake-up interval; in the best case, 2Hz
achieves PDR=64% (Table 8).

Glossy achieves near-perfect PDR (Table 7), becoming perfect
once combined with the Crystal mechanisms built atop, yielding
a DC only 12% higher than t-low (Table 9). However, when U >1
(results omitted due to space limitations) Crystal experiences a
slight PDR decrease of 1–2%. The reason is that, with very high
interference throughout the network, no alternate, good paths exist
for packets to reliably reach the sink.

5.5 Generated Interference: j-mwo

We study the impact of a JamLab-emulated microwave oven, caus-
ing interference much stronger thanWiFi and with different tempo-
ral patterns (§3). We move the jammer progressively closer to the
sink, yielding increasingly challenging scenarios. Given the results
in the previous section, our comparison against mainstream proto-
cols considers only ORPL, as RPL yields unacceptable performance.
Jammer far from the sink, node 42. We first use a jammer on
node 42, far from the sink, in a corner of the network, and amid a
dense neighborhood; its noise affects neighboring nodes, but bears
limited influence to the rest of the network.

ORPL performs well in this scenario (Table 8) althoughwith aDC
increased w.r.t. lower-noise scenarios. This is due to its buffering
and continuous attempts to re-transmit packets until it finds the
channel free (§4.2). Recall that the j-mwo scenario induces periods
of strong interference alternated to periods with no interference
(§2.2). Therefore, the buffering and infinite CCA retries in ORPL

effectively delay packets when the microwave oven interference is
active, enabling their transmission during no-interference periods.
Nevertheless, these retransmissions do increase the DC.

Crystal instead achieves perfect PDR (Table 9). Nevertheless,
the underlying Glossy layer is affected by interference (Table 7);
therefore, reliability in Crystal comes at the cost of a higher DC.
This cost is even higher than with 6 WiFi jammers, although in the
latter case the PDR of Glossy is worse. The reason is the position
of node 42; being in a corner of the network, its strong interfer-
ence causes the loss of acknowledgments in that neighborhood,
triggering retransmissions from the corresponding senders and un-
necessarily keeping the entire network awake to help forwarding.
Instead, in the scenario with 6 WiFi jammers covering the entire
network, packet losses are spatially and temporally distributed,
and the redundancy brought by both Glossy and Crystal enables
packets to more easily find routes “around” the interference.
Jammer close to the sink, node 13. We now move the jammer to
node 13 at ≈4m from the sink. Intuitively, this is likely to be more
disruptive than the far away node 42, but less than an even closer
placement, discussed next.

Yet, our results tell a different story. The PDR of ORPL is nearly
perfect (Table 8) and achieved with a DC ≈20% lower w.r.t. node 42
above. The same holds for Crystal (Table 9), which achieves perfect
PDR with a DC ≈9% lower w.r.t. node 42, thanks to the perfect
reliability of Glossy (Table 7). This improved performance arises
from jammer position. Node 13 is closer to the sink than 42 and
induces stronger interference on it, but it is also more “central”,
allowing packets to follow routes “around” it. Instead, node 42 is
in the network corner, where noise disruption is much harder to
compensate via alternative routes.
Jammer next to the sink, node 7. When moving the j-mwo jam-
mer on node 7, at 1m from the sink, the PDR of Crystal significantly
degrades for the first time, causing a 21.5% packet loss (Table 9),
mainly due to the fact that, unlike previous scenarios, the under-
lying Glossy layer loses 32.1% of the packets. The reason is that
the interference on node 7 is so strong and so close that Glossy
cannot overcome it. Receiving packets via alternate routes, as with
node 13, is no longer an option because all routes are jammed by
interference, given that the sink is basically at the center of it.

In contrast, ORPL achieves near-perfect PDR also in this case
(Table 8) and with a DC only marginally different w.r.t. the inter-
ference source on node 13. From the point of view of ORPL, the
two situations are virtually the same: i) both node 7 and 13 are
in the center of the network, unlike the more challenging corner
placement of node 42, and ii) in both cases, buffering and retrans-
missions guarantee that a packet not received by the sink due to
interference is eventually received in the periods without it.

Instead, Crystal dissemination is designed to be as fast as pos-
sible, even with the redundancy it builds atop the even shorter
one-shot Glossy floods. Consequently, Crystal and Glossy cannot
exploit a “wait-and-see” strategy as in ORPL.

5.6 Is There a Better Configuration?

We study a configuration yielding perfect PDR in the worst scenario
for synchronous transmissions, i.e., node 7 as j-mwo jammer. We
explore two options: in Crystal, and in the underlying Glossy.
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Crystal: Keeping the network awake. We observed that an
asset of ORPL is that it can retransmit until interference ceases.
The Crystal analogous comes from increasing R, i.e., the number
of consecutive silent TA pairs detected before determining that
communication is over and it is safe to enter sleep mode until the
next epoch (§2.1). Increasing R keeps the network awake longer,
evenwhen the sink reports via itsA slot that no packet arrived in the
previous T slot. This gives senders more opportunities to attempt
retransmission under interference. Indeed, Table 9 shows that R=6
enables perfect PDR. However, keeping the network awake for 3x
longer than before causes a nearly 3-fold increase in DC.
Glossy: Increasing redundancy. An alternative is to make the
underlying Glossy layer more reliable. The main knob to achieve
this is to increase the number N of retransmissions during a flood,
and increase the slot durationW to ensure the flood has enough
time to complete (§2.1). We verified that, when pure Glossy is used
in isolation, a setting N =10,W =17 yields PDR=99.76%. However,
the reliability provided by Crystal atop Glossy enables the use of a
smaller N , considerably reducing DC. Table 9 shows that with NT =
6,WT =12, Crystal achieves perfect PDR (despite Glossy yielding
only PDR=83.86%, see Table 7) but nearly doubles DC, as each
packet is transmitted twice as many times w.r.t. NT =3.

In summary, a proper static configuration of Crystal or Glossy
parameters enables perfect reliability but with unacceptable power
consumption w.r.t. ORPL (which however does not achieve perfect
PDR). Ideally, perfect PDR should come without increasing signif-
icantly the DC observed in the other scenarios in Table 9, i.e., at
most 0.50%. Further, over-provisioning for the worst case, as these
static configurations do, is undesirable. Ideally, Crystal should
dynamically adapt to interference, bearing extra energy costs only
when needed.

6 TAMING STRONG INTERFERENCE

We illustrate a technique to escape interference and a complemen-
tary one to fight it after detecting its presence.
Escaping Interference: ChannelHopping. Exploiting frequency
diversity is a well-known technique for interference resilience. In-
terference usually affects only some of the 16 channels available in
IEEE 802.15.4 (§2.2). Therefore, a channel-hopping sequence can
be used network-wide to enable subsequent TA pairs to move to
different channels, reducing the probability that two consecutive
ones both execute on noisy channels. This simple modification does
not affect any Crystal parameters.

Channel hopping is driven by the S phase (Figure 5); the channels
of TA pairs in the epoch depend on the S channel, itself based on
a predefined sequence. This mechanism realigns all nodes to the
same channel at the epoch start, independent of the number of TA
phases they executed in the previous one.

A key decision is which channel to use next. WiFi andmicrowave
ovens are common noise sources, jamming 4 and 7 adjacent chan-
nels, respectively (§2.2). Spacing the current and next channel apart
by 4 channels is sufficient to escape WiFi, but not microwave ovens.
Therefore, our implementation uses a hopping sequence with 7-
channel spacing; alternate hopping sequences can exploit a priori
knowledge about interference. Notably, selecting the number of
channels to hop over requires little knowledge compared, e.g., to

approaches that probe the environment and limit themselves to
channels with the least interference [28].
Fighting Interference: Noise Detection. Our next technique re-
lies on the ability to detect abnormally high noise levels. Recall
from §2.1 that, in Crystal, the distributed termination condition
relies on counting silent pairs and missed acknowledgements. Un-
der high noise, these missing-packet conditions often occur even
when a packet was transmitted, but encountered interference. If
noise strikes during the T phase close to the sink, the sender will
re-transmit the packet in the next T slot. If the sink still does not
receive the packet in R consecutive T slots, it mistakenly detects ter-
mination and puts the whole network to sleep. Instead, noise in the
network periphery may cause a node to similarly miss Z acknowl-
edgements and go to sleep, likely before the sink. In both cases, data
may remain un-delivered because termination was falsely detected.

Adding noise detection and changing termination conditions
fights these cases. Noise detection can be easily achieved by peri-
odically checking the CCA pin of CC2420; in our implementation,
all nodes perform the CCA every 64µs while listening during T or
A phases, and define high noise when RSSI>−60dBm is detected
at least 80 times. This threshold is designed to detect only very
high noise, e.g., a microwave oven; lower thresholds would un-
necessarily trigger the scheduling of extra TA pairs, e.g., in the
WiFi scenarios of §5, where even the unmodified Crystal achieves
perfect reliability.

As for distributed termination, intuitively, in the presence of
noise missing packets do not count towards termination, keeping
the network awake and allowing more opportunities for data and
acknowledgments to escape the interference. Recall that receiving
any packet keeps a node awake to serve as a forwarder. We make
the following modifications to Crystal:
• define Rnoise as the maximum number of consecutive slots
i) without a packet and ii) with high noise.
• change the termination rule at the sink; the network goes to
sleep when either i) R non-noisy no-data T slots occur since
the last received data, or ii)max (R,Rnoise ) consecutive noisy
no-data T slots occur.
• change the termination rule elsewhere; a node goes to sleep
when either i) it receives a sleep command from the sink, or
ii) it detects Z non-noisy no-data slots since the last packet
received in T or A, or iii)max (Z ,Rnoise ) consecutive noisy,
silent A slots occur.

We empirically determined that Rnoise=6 strikes a good balance
between reliability and energy consumption.
Fighting and Escaping Interference. Although both these tech-
niques improve performance along some dimension, it is only
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through their combination that very strong interference can be
effectively overcome with very low energy consumption, as shown
next. Indeed, frequency diversity reduces the probability of the sink
to be exposed, in consecutive TA pairs, to high noise levels from
the same source, mitigating the above drawback of noise detection.
On the other hand, the ability to detect and react to noise is helpful
in reducing packet loss when hopping from one bad channel to
another one.

7 UNDER STRONG INTERFERENCE

We now evaluate the techniques in §6 and show that they not
only overcome the interference scenarios considered in §5, but also
sustain much higher noise levels, detailed next.

7.1 Experimental Setup

We extend our experimental setup along two dimensions.
Channel mapping. Testing our channel hopping mechanism in
principle requires reproducing interference across multiple chan-
nels, something JamLab cannot do (§2.2). We overcome this limita-
tion via a mapping between the 16 channels of IEEE 802.15.4 and
those in the testbed. Whenever our channel hopping mechanism
decides to switch to a channel c , a corresponding channel creal is
instead used for communication, based on a predefined mapping
c→creal based on the interference types and channels affected we
want to reproduce. For instance, when emulating a microwave oven,
we map channels 20–26 to the real one used by j-mwo jammers.
More challenging interference scenarios. As described later, ex-
tending Crystal with the techniques in §6 allows it to sustain much
stronger interference than the one in §5, which considered the sep-
arate effect of generated j-wifi and j-mwo interference. Therefore,
we now focus on the combined effect of these two interference types.
We combine them in two ways, yielding the scenarios in Table 10.
The first, combinedsplit , combines the two types of interferences
by placing each on different real channels. This significantly re-
duces the chances that channel hopping finds a good channel, and
increases the likelihood to hop from one type of interference to
the other. The second scenario, combinedn, is even more challeng-
ing, placing j-mwo and j-wifi jammers on the same real channel,
generating noise that is the sum of the two. Increasingly challeng-
ing scenarios can be generated by determining the number n of
channels this strong interference is mapped to. Table 10 shows we
experiment with n ranging from 7 (i.e., when j-mwo and j-wifi
fully overlap) to 16 (i.e., all channels jammed by the same combined
interference).

Besides combining interference types, we also strengthen j-mwo,
the most disruptive one, by using 2 jammers simultaneously, the
worst in §5: node 7 next to the sink, and node 42 in the corner. As for
j-wifi, using the scenario with 6 jammers would force us to remove
8 nodes in total, further reducing the network size. Therefore, we
used 4 j-wifi jammers that, we verified, yield a noise pattern close
to natural t-high.

As mentioned at the end of §3, we use the resulting 43-node
network across all scenarios. To re-establish our ORPL baseline,
Table 11 (left) reports experiments with 4 j-wifi, 2 j-mwo, and their
combination over a single channel. ORPL performance is good also

Table 10: Scenarios with combined interference generated

by 2 j-mwo and 4 j-wifi.

scenario #channels jammed description2 j-mwo 4 j-wifi
combinedsplit 7 6 jammers on different real chan-

nels based on type, mapped on
different sets of channels

combinedn n ∈ {7, 10, 13, 16} all jammers on one real channel,
itself mapped on n channels

Table 11: ORPL (2Hz) in a 43-node network,U =1.

scenario TX Power 0 dBm TX Power −7 dBm
PDR (%) DC (%) PDR (%) DC (%)

t-low 99.6 0.497 97.0 0.454
t-high 98.5 0.776 — —
4 j-wifi 61.0 1.35 39.5 6.192
2 j-mwo 97.8 1.19 94.8 1.503

2 j-mwo 4 j-wifi 65.0 2.14 39.6 5.375

with 2 j-mwo, but degrades significantly even with only 4 j-wifi
jammers, instead of the 6 used in §5.4.

7.2 Channel Hopping

We are now ready to study Crystal extended with channel hopping
as discussed in §6. We call this variant Crystalch, to distinguish
it from the original single-channel one, and call Crystalchnd the
variant that also adds noise detection.

Table 12: Crystal
ch

,

under t-high.

NT U PDR DC
(%) (%)

2 0 — 0.294
2 1 100 0.392
2 2 100 0.486
2 5 100 0.766
2 10 100 1.221
2 20 100 2.122
2 48 100 4.906

Table 12 reports experiments under
natural t-high interference, without
channel mapping and with Crystalch
hopping across all 16 channels. A com-
parison with Table 5 shows that Crys-
tal achieves perfect PDR (no packets
lost of total 150k sent) regardless ofU ,
and does so with NT =2, which gen-
erally yields worse PDR w.r.t. NT =3.
Further, DC is 1–2% lower than the
single-channel version under t-high.

A bigger question lingering from §5 is whether Crystalch can
overcome j-mwo interference next to the sink. We first analyze
the performance in the combinedsplit scenario (Table 13). Recall
this subsumes the scenario with j-mwo on node 7 (end of §5) by
adding a second jammer on node 42, defining a much more chal-
lenging setup. Indeed, when hopping out of j-mwo interference,
found with a 7

16=43.75% probability, there is still a 37.5% chance
to stumble on j-wifi interference, and only a 18.75% chance to en-
joy t-low interference. Nevertheless, Crystalch achieves perfect
PDR forU =1 and three-nines reliability forU >1, NT =3. Further,
this is achieved with only a slight increase in DC w.r.t. our lowest-
interference scenario, t-low: 14.3% and 12.6% for NT =2 and NT =3,
respectively.

The next step is to identify the limit of Crystalch, which clearly
depends on the type of interference applied and number of chan-
nels affected. Table 15 explores this limit by using the combinedn
scenario of Table 10. The interference is stronger, as it is the sum
of 2 j-mwo and 4 j-wifi, which in Table 13 are instead split on
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Table 13: Crystal
ch

, under

combinedsplit .

NT U PDR lost 1 DC
(%) pkt in (%)

2 0 — — 0.335
2 1 100 ∞ 0.454
2 2 100 ∞ 0.583
2 5 99.949 1980 0.954
2 10 99.982 5620 1.568
2 20 99.979 4822 2.792
2 42 97.627 42 5.646
3 0 — — 0.374
3 1 100 ∞ 0.514
3 2 100 ∞ 0.661
3 5 99.952 2086 1.069
3 10 99.988 8374 1.750
3 20 99.941 1681 3.138
3 42 100 ∞ 6.434

Table 14: Crystal
ch

nd
, under

combined16 .

NT U PDR lost 1 DC
(%) pkt in (%)

2 0 — — 0.543
2 1 99.230 130 0.734
2 2 99.120 114 0.948
2 5 98.777 82 1.622
2 10 98.732 79 2.803
2 20 98.582 71 5.372
2 42 90.056 10 9.308
3 0 — — 0.739
3 1 99.515 206 0.927
3 2 99.361 157 1.145
3 5 98.914 92 1.693
3 10 98.394 62 2.825
3 20 96.640 30 5.206
3 42 94.397 18 9.952

separate sets of channels. Moreover, we apply this strong interfer-
ence to an increasing number n of channels, progressively reducing
the options to hop away from interference. Table 15 (left) shows
that when n=7, Crystalch achieves perfect PDR regardless of NT
and number U of senders, with a DC marginally smaller than in
combinedsplit . However, when only 6 channels are free and the oth-
ers subjected to combined10 interference, performance drastically
drops. WithU =1 sender active, PDR=94% is achieved at best, with
NT =3; asU increases, PDR plummets. Finally, with only 3 channels
free reliability reaches an unacceptable PDR<85% withU =1, and
at best PDR=13.9% with allU =42 senders.

7.3 Channel Hopping and Noise Detection

These scenarios are very challenging, both in absolute terms and
w.r.t. the literature, making the performance of Crystalch already
remarkable. Nevertheless, we can push reliability even further.
When interference affects so many channels that it becomes diffi-
cult to escape it, the only other choice to improve reliability is to
fight it with noise detection (§6).

Indeed, starting from 10 channels jammed, unlike the chan-
nel hopping alone, its combination with the noise detection (Ta-
ble 15, right) achieves two- to three-nines PDR withU =1. ForU >1
the performance gain is even more visible as Crystalchnd achieves
PDR>96.8% even with 13 channels jammed.

Noise detection becomes more important as the number n of
jammed channels increases. The extreme case is when all channels
are jammed by the same strong interference (Table 14); channel hop-
ping becomes pointless and reliability is provided entirely by noise
detection, which performs quite well. Indeed, the PDR achieved
here is only marginally lower than in combined13 , with the worst-
case U =42 achieving PDR=90%. To put this value in context, we
observe that it is i) comparable with what RPL achieves in t-low
withU =1 (Table 4), and ii) more than what ORPL achieves in the
natural t-high (no microwave ovens) withU =20 (Table 6).

The price to pay for this remarkable reliability is energy con-
sumption. A drawback of noise detection is that high noise keeps
the network awake even without packet transmissions (§6). This is
reflected in the DC increase as the number n of jammed channels

Table 15: Crystal
ch

vs. Crystal
ch

nd
, under combinedn.

Crystalch Crystalchnd
n NT U PDR lost 1 DC PDR lost 1 DC

(%) pkt in (%) (%) pkt in (%)
7 2 0 — — 0.328 — — 0.367
7 2 1 100 ∞ 0.444 100 ∞ 0.487
7 2 10 100 ∞ 1.574 100 ∞ 1.624
7 2 20 100 ∞ 2.746 100 ∞ 2.890
7 2 42 100 ∞ 5.848 100 ∞ 5.936
7 3 0 — — 0.370 — — 0.444
7 3 1 100 ∞ 0.501 100 ∞ 0.576
7 3 10 100 ∞ 1.749 100 ∞ 1.826
7 3 20 100 ∞ 3.142 100 ∞ 3.256
7 3 42 100 ∞ 6.494 100 ∞ 6.566
10 2 0 — — 0.347 — — 0.430
10 2 1 94.439 18 0.458 99.919 1237 0.544
10 2 10 71.201 3 1.289 99.962 2637 1.911
10 2 20 46.900 2 1.511 99.788 471 3.414
10 2 42 22.459 1 1.618 99.557 226 7.008
10 3 0 — — 0.386 — — 0.521
10 3 1 93.262 15 0.512 99.919 1230 0.660
10 3 10 74.722 4 1.469 99.646 282 2.130
10 3 20 54.497 2 1.878 99.252 134 3.730
10 3 42 30.353 1 2.271 98.402 63 7.464
13 2 0 — — 0.362 — — 0.483
13 2 1 84.992 7 0.467 99.748 397 0.621
13 2 10 36.581 2 0.844 99.719 356 2.322
13 2 20 19.497 1 0.817 99.409 169 4.132
13 2 42 9.277 1 0.882 97.577 41 8.456
13 3 0 — — 0.410 — — 0.628
13 3 1 85.775 7 0.522 99.919 1237 0.696
13 3 10 47.427 2 1.073 98.608 72 2.484
13 3 20 26.522 1 1.121 96.853 32 4.255
13 3 42 13.936 1 1.230 97.360 38 8.436

increases, which increases the likelihood of remaining unneces-
sarily awake. This is clearly undesirable for U =0; yet, it is key to
reliability as U increases, as seen by comparing the two sides of
Table 15. The actual impact of this increased DC on the overall
energy consumption depends on the aperiodic traffic at hand, as
we analyze in §7.5.

On the other hand, we also verified that under t-high, unlike
the extremely challenging scenario above, the DC of Crystalchnd
does not increase w.r.t. Crystalch (Table 12) since interference is
never strong enough to trigger our noise detection mechanism.

7.4 A Different Topology: Low Power

We present results with the lower transmission power of −7dBm.
This reduces the number of neighbors and increases network diam-
eter (Figure 4), yielding a more challenging topology.

To re-establish the ORPL baseline, we repeated experiments in
the new topology (Table 11, right). ORPL performs close to the high-
power setting with onlyminimal (t-low) or j-mwo interference, but
shows drastic performance degradation in the presence of j-wifi,
with an almost halved PDR.

We ran several Crystal experiments, confirming the trends
hitherto observed. However,DC increases slightly in all cases, as we
must use larger Glossy slots to handle the larger network diameter
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Table 16: Low power: Crystal
ch

nd
.

combinedsplit combined16
U NT PDR lost 1 DC NT PDR lost 1 DC

(%) pkt in (%) (%) pkt in (%)
0 3 — — 0.541 4 — — 1.072
1 3 99.992 11825 0.709 4 99.603 252 1.340
2 3 100 ∞ 0.865 4 99.218 128 1.696
5 3 100 ∞ 1.335 4 98.736 79 2.646
10 3 99.997 28889 2.125 4 97.640 42 4.194
20 3 99.987 7840 3.652 4 95.082 20 7.784
42 3 100 Inf 7.612 4 93.146 15 14.982

(Table 2). Due to space limitations, we focus only on Crystalchnd in
the final, most challenging scenarios.

Table 16 (left) shows results in the combinedsplit scenario. Com-
paring against Table 13 we see that NT =3 achieves a PDR similar
to the high-power case. However, to sustain the most challenging
scenario combined16 with all channels jammed, the redundancy of
the underlying Glossy must be increased to NT =4 (Table 16, right).
This enables Crystalchnd to achieve a PDR within 0.5–3% of the
high-power case: above 93% even with all 42 concurrent senders.

These results confirm the effectiveness of our techniques also in
the larger-diameter, lower-power setting considered.

7.5 Back to Aperiodic Data Collection

We now reconcile the experimental results reported with the origi-
nal goal of supporting aperiodic, sparse data collection.

We use the traffic profile in Table 1 and adapt it for missing
values ofU in our experiments, replaced by the next higher value
available. For instance, the value 606 for U =5 is actually the sum
of the epochs with 3, 4, or 5 senders present. This yields worst-
case estimates of PDR and DC, as both increase withU . These are
aggregated over the entire dataset as

C=

∑N
u=0 c (u) × e (u)∑N

u=0 e (u)

where c (u) is the value of PDR or DC for a given number u of
concurrent senders (reported in previous sections) and e (u) is the
number of epochs in which u concurrent senders are present (from
Table 1). As the the original dataset uses an epoch E=30s, we re-
scaled DC accordingly (i.e., 13 of those hitherto shown) to enable
a comparison with the performance reported in [15], albeit in a
different testbed. In our results (Table 17), due to space limitations,
we consider only the extremes of the interference scenarios we
analyzed in the paper, viz. natural interference and generated inter-
ference in the combined16 scenario. These are however sufficient
to draw a few interesting observations.

First, in the t-low scenario DC≈0.1%; this confirms that our
results are in line with the per-mille DC originally reported in [15].
Interestingly, this is identical to daytime (t-high) when instead
the original Crystal behaved erratically, as quoted in §1. This con-
firms that the techniques presented in this paper effectively combat
interference without sacrificing ultra-low power consumption.

Finally, Table 17 shows that the PDR accrued over the 36-day
dataset remains near to 99.5% in combined16 , which is remarkable
given the very challenging nature of this interference scenario.

Table 17: Crystal
ch

nd
: performance with the aperiodic,

sparse, real-world traffic profile shown in Table 1.

interference NT =2 NT =3
scenario PDR DC PDR DC
t-low 100 0.105 100 0.119
t-high 100 0.105 — —

combined16 99.487 0.198 99.592 0.263

Further, this is achieved with DC≈0.2% depending on NT . This
is twice the baseline established by natural interference, but in
absolute terms it is remarkably small w.r.t. the energy consumption
commonly reported in the state of the art.

8 RELATEDWORK

We survey approaches that share our goal of making multi-hop
protocols for low-power wireless communication resilient to en-
vironmental interference. Interference has also been studied from
a security perspective by identifying several types of jamming at-
tacks and related countermeasures. Although not directly related to
our contribution, these techniques may inspire alternate resilience
mechanisms; we refer the interested reader to [19].
CSMA + Channel Hopping. Adding channel hopping to combat
interference is well accepted in the literature, with recent works
modifying standard, CSMA protocol stacks. MiCMAC [20] extends
ContikiMAC with channel hopping, resulting in a synchronization-
free MAC with high PDR under WiFi interference. MiCMAC mech-
anisms require transmitting and receiving nodes to synchronize in
time as well as across channels, increasing latency. Oppcast [18]
and MOR [28] offer full-stack alternatives to RPL and MicMAC,
combining channel hopping and opportunistic routing to combat
high latencies while also escaping high interference.

As MOR code is not available, we offer an informal, numeri-
cal comparison with the evaluation in [28], performed on Flock-
Lab with WiFi on one channel and an effective U =2.1. Using this
jammed channel plus two free ones, MOR shows the best results:
PDR=99.35% and DC=1.56%. We compare to a more challenging
scenario with constant, generated WiFi traffic on all channels in
our testbed where Crystal shows PDR=100% and DC=0.559 for
U =2. ThisDC is nearly three times smaller w.r.t. MOR, and achieved
without any interference avoidance mechanisms. Naturally, with
more concurrent packets, the DC of Crystal increases, however
the same is true for other protocols. Further, in the absence of traf-
fic, a common case in §7.5, Crystal maintains DC<0.4%, levels
that duty cycling protocols cannot achieve due to required periodic
channel probing. Finally, to manage latency, these protocols hop
among few channels, selected during pre-deployment evaluations.
In contrast, Crystalch can use all channels without affecting its
performance, allowing it to adapt to changing interference.
TDMA +Channel Hopping. TSCH [26] with Orchestra [5] sched-
uling offers a protocol in which all nodes follow a repeating, slotted
schedule, with local and independent slot allocation. The number
and type of slots is statically determined, according to expected
traffic. Results from Indriya show Orchestra with 47 slots maintains
PDR=99.99% with an average DC=0.4%, without interference; in
an analogous setting, Crystal consumes twice as much, DC=0.8%.
However, in Orchestra the duty cycle of nodes varies significantly
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across the network, with nodes closer to the sink reporting much
higher values. Further, Orchestra is designed for periodic data,
which is critical to statically configure slot parameters. In the aperi-
odic, dynamic scenarios considered in §7.5, Orchestra would over-
dimension for the worst case, unable to reduce DC under low traffic.
Finally, Orchestra has not been evaluated under interference.
Synchronous Transmissions + Channel Hopping. The combi-
nation of channel hopping and synchronous transmissions has also
been used to increase parallelism for bulk data dissemination in
Splash [2] and Pando [3]. Both protocols also see improvements
due to diverse noise levels across channels, but their approaches
are not competitive at low data rates.

In the context of the EWSN dependability competition [23], the
three winning approaches in 2017 [7, 17, 21] perform channel hop-
ping inside Glossy, a contrast to the noise resilience mechanisms
we designed on top of Glossy. However, these solutions were highly
specialized for the (single-sender) competition scenario and are
not immediately reusable towards our goals. Instead, we evaluated
Crystalchnd with concurrent senders and in a wide range of in-
tense interference. Analyzing and exploiting the interplay between
Glossy-level channel hopping and our Crystal-level techniques
is intriguing, but is beyond the scope of this paper, albeit in our
short-term research plans.

9 CONCLUSIONS AND FUTUREWORK

This paper set out to evaluate Crystal’s ability to sustain aperiodic,
sparse traffic under strong interference. As Crystal relies on Glossy,
we also offer a noise resilience evaluation for it, along with the two
mainstream protocols, RPL and ORPL, we chose as baselines.

Unlike existing works limited to natural WiFi interference, we
subjected these protocols also to the stronger noise generated by
JamLab-emulated microwave ovens, which exhibit different inter-
ference patterns similar to those found in real environments. In our
reproducible and controlled setup we showed, for the first time, that
ORPL is very resilient to this type of interference, while Crystal
is not. This motivated us to extend it with a combination of chan-
nel hopping and noise detection. We showed that our enhanced
Crystalchnd protocol achieves unprecedented, near-perfect reliabil-
ity even against the combination of emulated WiFi and microwave
ovens, along with a per-mille duty cycle in the aperiodic, sparse
traffic targeted by Crystal.

Regarding future work, a promising avenue is to distill the knowl-
edge gained from the experimental campaigns presented in this
paper into models able to identify the proper Crystal configuration
given a known or estimated pattern of interference; this could po-
tentially inform and greatly simplify in-field system configuration.

Furthermore, our work shows that effective strategies to over-
come interference can be implemented atop Glossy, in contrast with
the current trend of incorporating them inside it. A design similar
to ours could be applied, in principle, to other Glossy-based systems
(e.g., [9], [16]). However, a more fundamental research question,
implicitly opened by this paper, concerns the tradeoffs between
the two approaches; further study is required to identify under
which conditions the techniques considered are more effective if
implemented atop Glossy or, vice versa, inside it. The answer to this

question could enable a novel design combining both approaches,
yielding unprecedented levels of resilience to interference.

The source code of Crystal is freely available as open source at
https://github.com/d3s-trento/crystal.
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