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ABSTRACT

We propose Chorus, a new ultra-wideband (UWB) localization

scheme in which the target device computes the time difference of

arrival (TDOA) of signals sent concurrently by localization anchors

in known positions. This scheme, similar to GPS, is the opposite of

existing TDOA schemes for UWB, where the target transmits the

signal and anchors compute the time difference. This reversed per-

spective enables several advantages in Chorus, including support

for countless targets.

The cornerstone and novelty of Chorus is the use of concurrent
transmissions from anchors; distance information is acquired at the

receiver based on the channel impulse response (CIR) resulting from

the fused signals. We contribute i) an analytical model enabling

a priori estimation of the CIR resulting from the superposition of

concurrent signals ii) techniques to accurately extract the time-of-

flight information necessary for localization from the measured

CIR, and iii) real-world experiments that validate the model as well

as assess the practical feasibility and performance of Chorus.

Experiments with the DW1000 UWB chip show that Chorus

achieves sub-meter positioning accuracy. However, ourmodel shows

that performance is limited by idiosyncrasies of the DW1000 that, if

removed in next-generation UWB hardware, could unlock an order

of magnitude improvement in accuracy.
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1 INTRODUCTION

Global navigation satellite systems like GPS are arguably the most

successful localization systems to date. One of their key features

is that the localization infrastructure, provided by satellite-based

anchors, supports an arbitrarily large density of users. The reason is

that GPS and the like do not require transmissions from localization
targets; the latter are passive listeners processing the signals from a

satellite constellation. Therefore, the number and density of targets

does not impact the capacity of the communication channel, which

depends only on the configuration of the localization anchors.

However, GPS cannot operate in many so-called GPS-denied

environments notably including indoors, where people work and

dwell most of the time. This limitation has fueled decades of re-

search on alternatives, among which those based on wireless radio

communication are arguably the most popular [22], boosted by

the pervasiveness of this technology on our personal devices and,

increasingly, on the Internet of Things ones deployed around us.

Radio-based localization: Conflicting tradeoffs. Nevertheless,

to date no radio-based localization system has satisfactorily ad-

dressed accuracy and scalability as effectively as in GPS. Systems

based on RSSI estimation [1, 36] operate on a similar principle;

the signal from several anchors (e.g., WiFi access points or BLE

beacons) is processed on the (passive) localization targets. However,

accuracy is generally poor (meters); it can be significantly improved

by fingerprinting [11] but at the cost of a significant overhead and

rigidity in the system deployment and management. Recent WiFi-

based approaches based on channel state information (CSI) improve

up to decimeter-level accuracy, but require dedicated hardware.

On the other hand, ultra-wideband (UWB) radios recently re-

turned to the forefront of academic and commercial interest, thanks

to their pulse-based operation enabling higher ranging accuracy

(<10 cm), and the availability of small, cheap, and low-power UWB

radios. However, the localization schemes commonly used with

UWB have their own limitations. Two-way ranging (TWR), ar-

guably the most common scheme and part of the IEEE 802.15.4 stan-

dard [12], is based on request-reply exchanges estimating the time

of flight between the localization target and all anchors (Figure 1a).
This inherently limits the scalability of the system, especially when

a high rate of localization is required. Alternate schemes, like time

difference of arrival (TDOA) provide higher scalability, in that they

require a single packet transmission from the target, whose receipt

is timestamped at each localization anchor (Figure 1b). Location can

be determined based on the difference between these timestamps,

caused by the different distance of anchors w.r.t. the target. How-

ever, i) this requires anchors precisely time-synchronized, typically

via an out-of-band wired infrastructure, and ii) does not entirely
remove scalability issues, since the transmissions from multiple

tags must be properly scheduled to avoid collisions, problematic in

https://doi.org/10.1145/3302506.3310395
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dense environments and/or with high-rate localization. We discuss

further this necessary background and related work in §2.

Reconciling tradeoffs with concurrent UWB transmissions.

We propose Chorus, a system that i) exploits the superior accuracy
of UWB, but ii) in a scheme where, similar to GPS, the localization

target is a passive listener and never transmits.

In a nutshell, Chorus can be regarded as a sort of “flipped” TDOA,

still relying on the difference between timestamps but completely

reversing the perspective: the TDOA computation is performed at
the localization target, based on signals that are sent simultaneously
by all anchors—as in a chorus, hence the name.

Simultaneous transmissions from multiple senders to the same

receiver is problematic for radio communication, due to collisions

preventing the signal decoding. However, the authors of [5] re-

cently observed that this is not necessarily the case for UWB, and

demonstrated empirically that the channel impulse response (CIR)

information made available by UWB chips enables successful recon-

struction of the time of arrival of signals belonging to concurrent

transmissions, and therefore distance estimation. In [5], this was

demonstrated in the base TWR scheme (Figure 1c). Instead, in Cho-

rus the use of concurrent transmissions is precisely what enables

TDOA computation at the target (Figure 1d).

Chorus unlocks several advantages currently not found together

in any other indoor localization system:

• accurate localization, inherited from UWB;

• infinite scalability in the number and/or density of localiza-

tion targets, as in GPS;

• location privacy, as positioning data remain local to the target

as in GPS and TWR, and unlike mainstream TDOA;

• efficient use of the communication/ranging channel, occupied
only for the duration of a single packet exchange, as in TDOA.

This enables very high localization rates, precluded to TWR;

• no need for scheduling target transmissions, required instead

by TWR and TDOA, as Chorus is entirely passive like GPS;

• on-demand localization as the target can decide autonomously
if and when to locate itself without fear to disrupt schedules.

This enables adaptive schemes where the localization system

changes its positioning rate dynamically or is even switched

off for prolonged periods, e.g., to reduce energy consumption.

Challenges and contribution. A fundamental contribution we

put forth is the definition of the Chorus TDOA scheme enabling

the unprecedented advantages above. However, while this scheme

is conceptually simple, its realization poses significant challenges:

Ch1. the accuracy of distance estimation degrades with concurrent

transmissions, due to their mutual interference [5];

Ch2. to compute a position, we must identify the individual pulses

corresponding to each concurrent transmission in themerged

signal and map them to the corresponding anchor;

Ch3. UWB chips are designed to provide an accurate time of arrival

(TOA) estimation for a single pulse in the CIR, while Chorus

requires it for all concurrent pulses found in the same CIR;

Ch4. UWB chips are not designed with concurrent transmissions

in mind, which are therefore hampered by hardware charac-

teristics that do not bear an impact on isolated transmissions.

We tackle challenge Ch2 and Ch3 directly with our design of Chorus

(§3). We exploit an existing [6] TOA estimation technique and

adapt it for concurrent transmissions, showing experimentally its

effectiveness (Ch3). This contribution goes beyond Chorus, and is

generally applicable to concurrent ranging [5]. As for Ch2, inspired

by recent work [7], we empirically demonstrate that pulse shaping

is not a viable mechanism for pulse identification, due to multi-path

components (MPC), and show instead the effectiveness of response

position modulation, i.e., the introduction of known, ns-level time

shifts among the concurrent transmissions.

The complexity of Ch1 andCh4, instead, requires amulti-pronged

approach (§4) that goes beyond the evaluation of our Chorus pro-

totype based on the DecaWave DW1000 UWB chip. A cornerstone

of this approach is a model (§5) that, based on isolated CIR signals,

estimates the CIR resulting from their concurrent transmission.

The input CIRs can be gathered empirically, from in-field experi-

ments, or be generated analytically, in our case via the well-known

UWB model in the IEEE 802.15.4 standard [24]. This contribution

allows us to fully ascertain the potential of our technique i)without
the effort of experiments and the bias of the environment (Ch1),

and ii) unconstrained by hardware limitations (Ch4). Further, it is

applicable to concurrent ranging approaches [5].

Chorus is evaluated in §6 by leveraging both our prototype

and the aforementioned model(s). Experiments with the former in

two different setups at our premises show sub-meter localization

accuracy. This is a good result compared to the state of the art,

considering the several advantages Chorus brings. Further, it is ob-

tained despite the 8 ns uncertainty in TX scheduling of the DW1000

chip, known [5] to negatively affect the accuracy of ranging based

on concurrent transmissions—an instance of Ch4.

This is precisely where models come into play. We show that

the model in §5 can be used to estimate accurately the prototype

performance, regardless of the method used for gathering the input
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Figure 1: Basic localization schemes and concurrent trans-

mission variants. Solid (dashed) lines denote unicast (broad-

cast) transmission; numbers denote temporal ordering.
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CIRs. This enables us to push our investigation further by exploring

the effect of alternate values of the TX scheduling uncertainty, ef-

fectively exploring what alternate hardware designs could achieve,

and show that i) this uncertainty is the main limiting factor for

Chorus, and ii) its removal unlocks significantly higher accuracy.

In a sense, although we do not solve directly challenge Ch4, we em-

power hardware designers with knowledge of the requirements and

tradeoffs involved. Our model shows that if this uncertainty is com-

pletely eliminated in hardware, localization accuracy is improved

by an order of magnitude w.r.t. with 8 ns uncertainty.

The paper ends (§7) with concluding remarks reflecting on the

potential of Chorus and the implications of these findings on next-

generation UWB hardware.

2 BACKGROUND AND RELATEDWORK

We provide the necessary background on UWB radios and review

related work on state-of-the-art localization systems.

Impulse Radio UWB. UWB radios based on impulse radio trans-

mit a time-hopping sequence of very short pulses [32], typically

≤2 ns, spreading the signal energy across a bandwidth ≥500 MHz.

This very large bandwidth provides excellent time resolution and

allows UWB radios to accurately measure the time of arrival (TOA)

of a signal and distinguish the direct path from multipath compo-

nents (MPC), especially by measuring and analyzing the channel

impulse response (CIR). As a result, UWB radios are commonly

used for precise distance estimation based on ranging schemes.

IEEE 802.15.4 UWB PHY Layer. The IEEE 802.15.4-2011 stan-

dard [12] provides an UWB PHY layer based on impulse radio. A

UWB frame is composed of two parts: i) a synchronization header

(SHR) encoded in single pulses, and ii) a data portion, including the
PHY header and data payload, sent using a combination of burst

position modulation (BPM) and binary phase-shift keying (BPSK).

The SHR includes a preamble for synchronization and the start

frame delimiter (SFD) to delimit the end of the SHR and the begin-

ning of the data portion. The preamble consists of the repetition

of a pre-defined symbol drawn from a ternary alphabet {−1, 0,+1}

(positive, absent, and negative pulse) and associated to a preamble

code. The symbol duration depends on the pulse repetition fre-

quency (PRF ). The standard provides two preamble code lengths:

31 elements (PRF = 16 MHz) and 127 (PRF = 64 MHz). The preamble

symbol elements are then spread by interleaving each element with

zeros. The highest frequency at which a compliant device shall

emit pulses is 499.2 MHz (fundamental frequency), which defines

the standard chip duration of ≈2 ns.

UWB Ranging. The IEEE 802.15.4 standard also specifies a two-

way ranging (TWR) scheme between two devices, an initiator and

a responder. In its simplest form, single-sided TWR (SS-TWR), the

initiator sends a poll message and stores its TX timestamp t1. The
responder replies with a response, including in the data payload

the poll RX timestamp (t2) and the response TX timestamp (t3).
When the initiator receives the latter, with RX timestamp t4, it can
compute the time-of-flight τ = 1

2
((t4 − t1) − (t3 − t2)) and estimate

distance as d = τ × c , where c is the speed of light in air.

To ameliorate the impact of clock drift in SS-TWR [13, 20], other

schemes have been proposed, e.g., double-sided TWR (DS-TWR),

which requires 3 or 4 message exchanges to compute the distance

at the responder or the initiator, respectively. To estimate its 2D

location, the initiator must perform TWR with at least 3 anchors,

although more are used in practice to increase localization accuracy.

Concurrent Ranging. Distance estimation against N anchors

therefore requires between 2 × N (SS-TWR) and 4 × N (DS-TWR)

messages; these long and energy-expensive exchanges limit scala-

bility w.r.t. number of users and update rate, further reduced by the

signalling required, e.g., to discover the neighbors to range with.

Concurrent ranging [5] tackles these issues with the N anchors

transmitting concurrently their response to a poll broadcast by the

initiator, which can then estimate distances based on the received

CIR. This scheme reduces the initiator messages to only 2, saving

energy and time. The accuracy obtained is lower than with stan-

dard schemes, but still sub-meter. This is due to the TX scheduling

precision of the radio chip (ϵ = 8 ns in the DW1000); while this

is normally compensated by attaching the timestamps in the data

payload, this is possible only for one of the N concurrent signals.

Other challenges highlighted in [5] include the reliable detection

of the direct path of each response and the identification of the

anchor corresponding to each path. These are tackled in [7], respec-

tively via i) pulse shaping, to map the shape of CIR peaks to anchor

identities, and ii) response position modulation, to facilitate path

detection in multipath environments by artificially time-shifting

responses. Further, the actual detection of responses and therefore

of their time of arrival (TOA), is based in [7] on a simplified version

of the well-known Search and Subtract algorithm [6].

Inspired by concurrent ranging [5], Chorus exploits a similar

notion in a completely different scheme in which mobile tags do

not transmit at all and compute their own position based on the

reception of a single (concurrent) message, significantly reducing

energy and time costs w.r.t. standard schemes but also w.r.t. concur-

rent ranging. Our design takes inspiration also from the techniques

in [7], although we show that real-world environments with multi-

path hampers their applicability, and propose effective adaptations

or alternate techniques.

Localization Systems. UWB localization systems can be catego-

rized in ranging-based [15, 16] and TDOA-based [14, 26, 28]. Poly-

Point [16] and SurePoint [15] exploit antenna and channel diversity

to increase ranging accuracy; however, they require even longer

message exchanges, trading off accuracy for energy. Systems based

on TDOA require tight time synchronization of anchors, achieved

via wired [14, 26] or wireless [23, 29] mechanisms. The custom

receiver design in Harmonium [14] exploits bandstitching to in-

crease the bandwidth of the received signal and therefore the time

resolution for TDOA estimation. Slocalization [26] extends band-

stitching to transmitters and exploits backscatter communications

to achieve sub-µW localization at the cost of significantly reducing

(milli-Hz) update rates. Atlas [28, 29] extends conventional TDOA

with a one-way wireless time synchronization technique similar to

the one we use in Chorus. In all these TDOA schemes anchors listen

and mobile tags transmit, which either incurs scheduling costs or

unreliability due to collisions [28]. These drawbacks are removed

by Chorus, as the tag is a passive listener; further, the tag hardware

could consist of the receiver only.

SnapLoc [8] also exploits concurrent transmissions for TDOA-

based localization in a way very similar to Chorus; the two systems,

developed independently, have been published simultaneously in
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the same venue. Differences include implementation details, eval-

uation methodology, and the (complementary) slant of the contri-

bution. SnapLoc tackles the DW1000 TX scheduling uncertainty

by compensating it with dedicated wired and wireless mechanisms

relying on the deployed infrastructure. The model (§5) we con-

tribute in this paper, instead, provides a foundation for analyzing

and predicting the impact of this uncertainty and, in general, the

accuracy attainable in a given environment. Interestingly, the re-

sults in [8] are in agreement with our model, mutually reinforcing

the soundness of both approaches.

Finally, in recent years WiFi-based systems have also achieved

decimeter-level error by exploiting channel state information (CSI)

in TDOA [34], angle-of-arrival [17], or time-of-flight [30] schemes.

However, CSI techniques either require expensive SDR solutions or

exploit complex MIMO systems, increasing monetary and energy

costs [10]. Similarly, time-based WiFi techniques suffer from the

lower bandwidth of WiFi w.r.t. UWB, and require bandstitching

and frequency hopping to increase time resolution [30, 34].

3 CHORUS DESIGN

We describe the core principles (§3.1) of Chorus, followed by the

techniques (§3.2–§3.4) tackling the challenges outlined in §1.

3.1 Basic Principles of Operation

We assume an infrastructure of N ≥ 4 anchors with known location

and able to communicate with each other. We assign conventionally

the initiator role to anchor 1.

Localization Primitive. Chorus is based on a communication

primitive involving the transmission of two messages from the an-

chor infrastructure: one for time synchronization and the other for

localization. The synchronization message, however, could be omit-

ted using a wired time synchronization infrastructure as in [14, 26].

Mobile tags are entirely passive and estimate their own position by

only listening to the second message.

The initiator transmits a poll message at time tp to synchronize

all anchors in range. Anchors estimate the TX time as tp = ta − τia ,
where ta is the RX timestamp and τia = ∥pa − pi∥ /c is the known
time of flight between the initiator i and anchor a, determined based

on the known positions pa and pi, and the speed of light in air, c .
After the poll message, all anchors (including the initiator)

schedule the TX of a response message at time tTX = tp + δTX ,
where δTX is a fixed delay required to process the poll message

and prepare the transceiver to transmit.

Mobile tags do not transmit any message in Chorus; to com-

pute their own position they only need to listen for the response

message. Tags may also periodically listen for poll messages to

learn the precise time when response messages are going to be

transmitted. As multiple anchors transmit their response concur-

rently, there may be RX errors due to collisions. However, this does

not affect Chorus; tags compute their position based on the CIR of

response messages, which is available even when RX errors occur.

The localization update rate therefore depends solely on the

frequency at which this two-message primitive is repeated, and on

the processing time required to compute the position at the tags.

Position Estimation. As mobile tags are passive listeners not

tightly synchronized with the infrastructure, they cannot directly

measure their distance from anchors. Instead, once they have es-

timated the TOA of the N anchor transmissions (§3.3), they can

compute N − 1 non-redundant TDOA measurements

∆tai = ta − ti =
∥p̂ − pa∥ − ∥p̂ − pi∥

c
(1)

by selecting one anchor (e.g., the initiator) as time reference. The

geometric representation of Eq. 1 is a hyperbola whose foci are

the position of the anchors (pa and pi) and where the mobile tag

is located (p̂). In the absence of noise, the intersection of at least

3 hyperbolas yields the unique tag position [3]; however, in the

presence of noise, the set of TDOA equations yield inconsistent tag

positions and cannot provide a solution. To determine the tag posi-

tion p̂, we solve the non-linear least squares problem by minimizing

the squared difference between the measured TDOA estimates ∆̂tai
and the theoretical TDOA measurements ∆tai as

p̂ = argmin

p

N∑
a=2

(
∆̂tai − ∆tai

)
2

(2)

Large-scale deployments. We assume that mobile tags roam in

a confined area with at least N ≥ 4 anchors in range—a common

assumption in the literature. However, Chorus can scale to larger,

non-confined settings if its two-message exchanges are properly

scheduled across multiple “cells” of anchors. This can be achieved,

e.g., by i) using different per-cell RF configurations (e.g., complex

channels [21]), requiring extra coordination to enable tags to dy-

namically switch to the right cell setting, or ii) exploiting a time-

slotted schedule coordinating transmissions from nearby cells, at

the cost of reducing the maximum achievable update rate. We are

currently evaluating these alternatives as part of our ongoing work.

3.2 Anchor Identification & MPC Avoidance

As Chorus relies on multiple anchors transmitting concurrently,

the CIR at the receiver contains information from the direct path

of each anchor transmission and the associated multi-path com-

ponents. If all anchors transmit at the same time tTX and are at

similar distances from the tag, their peaks in the CIR overlap [5],

making it difficult to i) accurately identify the anchor associated to

each peak, and ii) correctly discern the direct path of each anchor

transmission from other responses and/or strong MPC. Next, we

discuss techniques to address these issues.

Pulse shapes. The DW1000 offers the option to change the TX

pulse width via the 8-bit register TC_PGDELAY [21]. This is exploited
for concurrent ranging in [7], by encoding the anchor IDs as dif-

ferent pulse shapes; a matched filter is then used to map the pulse

shapes observed in the CIR with the anchor ID. Inspired by this

work, we measured 3 pulse shapes (0x93, 0xc8, and 0xe6 using

channel 7) in an open field, to avoid MPC. For each pulse shape,

we attached a 30 dBm attenuator to the transmitter, and performed

1000 wireless TX, collecting 1000 CIR signals. We then removed the

direct CIR pulse from the CIR and averaged the 1000 aligned pulses,

obtaining a template for every pulse shape as in [7]. We tested the

effectiveness of the pulse shapes to identify the anchor ID using

the same dataset. Across 3000 CIR pulses, we only obtained a single

mis-identification, yielding a 99.97% identification accuracy. We

then evaluated the reliability of this procedure in the same real

multipath environment used in §6 (Figure 8b). The 5 anchors all
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Figure 2: TOA estimation from concurrent responses.

used pulse shape 0x93 for TX, while the tag used 0x93, 0xc8, and

0xe6 to detect the anchor ID with the matched filter. Across 513× 5

CIR samples, 0x93 was correctly identified only in 36.1% of the

cases; otherwise, it was mistaken for 0xc8 (59.7%) and 0xe3 (3.3%).

The reason is that, in real multipath environments, we can-

not assume the channel to be always separable [6, 33], that is

|τi − τj | < Tp , for some i , j , whereTp is the TX pulse duration, and

τi , τj the time delays along different paths. Therefore, we cannot

always separate the direct path from closely-spaced MPC, which

deforms the received pulse shapes and causes an ambiguity in the

matched filter output, where a low-bandwidth pulse can be a su-

perposition of time-shifted high-bandwidth pulses. We conclude

that, unlike what reported in [7], this technique is unreliable in real

MPC environments, where it likely mis-identifies anchors.

Response Position Modulation.We therefore resort to another

technique from [7]: adding an artificial time shiftTa (≈100s of ns) to

the response TX time tTX . We define Ta = (a − 1)T , where a is the

anchor ID; the real TX time of anchor a becomes tTX a = tTX +Ta .
By applying this response position modulation, the CIR at the tags

contains an ordered sequence of responses shifted based on i) the
time of flight of each anchor to the tag, and ii) the time shift Ta .

The constant intervalT is crucial. In Chorus, it relates directly to

the target area and the time span of the measured CIR, and should

be sufficiently large to avoid that two responses overlap in the

CIR. We suggest usingT > 2dMAX/c , where dMAX is the maximum

distance between any two anchors. Information about the typical

multipath delay spread in the target area also helps in determining

a good value for T .
Figure 2 shows a CIR with 5 concurrent transmitters using

T = 128 ns where a sequence of 5 main peaks ordered by the an-

chor IDs, and some significant MPC in between, can be clearly seen.

Note how this technique also helps separating the response peaks

from MPC from previous responses. By estimating the direct path

of the first anchor, we can retrieve the anchor ID associated to each

CIR peak based on the time shift w.r.t. the first main CIR peak.

3.3 Time of Arrival Estimation

Estimating the TOA of a UWB signal in real multipath environments

is not trivial; several techniques exist, e.g., based on thresholds [9]

or maximum likelihood estimation [6, 18]. In Chorus, accurate TOA

estimation is critical; further, we need to extract from the CIR the

TOA of N signals transmitted concurrently, instead of a single one.

We describe now the information provided by the radio that is

useful for our CIR analysis, and how we use it to develop our TOA

estimation algorithm.

CIR estimation. The DW1000 measures the CIR upon packet RX

with a sampling periodTs = 1.016 ns and stores it in a large (4096 B)

internal buffer. The time span of the CIR is the duration of a pream-

ble symbol: 1016 samples for a 64 MHz pulse repetition frequency

(PRF) or 992 for a 16 MHz PRF. Each sample is a complex number

whose real and imaginary parts are 16-bit signed integers.

First path index (FP_INDEX). The DW1000 performs a leading

edge detection (LDE) algorithm on the CIR to detect the direct

path (i.e., the TOA of the transmitted signal), and stores its CIR

sample index (FP_INDEX) in the RX_TIME register [21]. LDE detects

the direct path when the sampled amplitude first goes above a

dynamically adjusted threshold, whose value is also made available

by the DW1000. This threshold is based on two factors: i) a noise
threshold η based on the estimated noise standard deviation σn of

the CIR and ii) a peak multiplier that further increases the first path

threshold based on the noise peak value. DecaWave, however, offers

little detail about their LDE algorithm, and may employ additional

mechanisms for direct path estimation.

Ordering the CIR buffer. Given the time shifts applied to anchor

transmissions, in Chorus the FP_INDEX should contain the direct

path of the first responder, i.e., the initiator. However, this is not

necessarily true. For a single transmitter, we observed that the

DW1000 arranges the CIR buffer so that FP_INDEX ≈ 750. However,

in rare occasions, the DW1000 reports FP_INDEX to be at index 1015,
i.e., the end of the buffer. For concurrent responders, we observed

that the response located around sample≈ 750 is the one associated

to the successful anchor transmission, i.e., the one whose message

is received, and not necessarily the first path from the initiator. For

example, when using 5 concurrent responders with a time shift of

128 ns, this would cause the peaks of the last 2 responders to be

(circularly) shifted at the beginning of the CIR buffer, which can

confuse TOA estimation algorithms.

For these reasons, we exploit knowledge about the ID of the

succesful sender reported by the DW1000 (i.e., the ID of the anchor

whose response is received) and the known time shifts we apply

(§3.2) to re-arrange the CIR buffer, placing the response of the

initiator at the beginning of the buffer. In case of RX errors, for

which there is no successful response, we use FP_INDEX and search
back for possible previous responses using the noise threshold η
and the time shift T . At the end of this procedure, the CIR buffer

is ordered starting with the initiator response, followed by the

assigned sequence of anchor responses, e.g., as depicted in Figure 2.
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Figure 3: CDF of σn .

Dynamic threshold. To distin-

guish the anchor CIR pulses from

noise and/or minor MPC from

previous responses, we exploit

the noise threshold η = 12 × σn
used by the DW1000 in its LDE

algorithm, where σn is the esti-

mated noise standard deviation

in the CIR measured during a

packet reception. In certain occasions, however, we noticed that the

DW1000 overestimates σn , providing abnormally high noise thresh-

olds that prevent us from reliably detecting the anchor responses.

Therefore, we constructed a distribution of σn from multiple CIR
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measurements with concurrent transmissions (Figure 3), and set

a maximum value for σn as the 97
th
percentile of the distribution.

Hence, whenever the DW1000 outputs an abnormal measurement

for σn , we correct it by setting σn to the 97
th
percentile.

TOA estimation algorithm. To estimate the TOA of the direct

paths from all responders, we adapt the Search and Subtract (SS)

algorithm from [6]. This algorithm can be used to accurately es-

timate the direct path in a non-separable channel. We follow the

original design, enforcing that considered pulses go over the noise

threshold η. The key steps of our adapted algorithm are:

S1. Upsample the rearranged CIR using FFTwith upsampling factor

L = 30.

S2. Segment the CIR in chunks of length equal to the time shift T ,
to isolate the sub-CIRs from each responder.

S3. For each chunk, apply the SS algorithm with K iterations. Once

the K strongest paths from the chunk have been estimated,

select the direct path as the one with minimum time index, i.e.,

the earliest. Note that we consider the paths from SS only if

they go over the noise threshold η.
S4. When all chunks corresponding to the number of responders

N have been analyzed and the time indexes of the first paths

obtained, subtract the assigned time shiftsTa from each anchor

TOA and end the process.

3.4 Sources of Error

There are two main sources of error in Chorus localization esti-

mates: i) the clock drift among concurrent transmitters, and ii) the
transmission scheduling precision.

Clock drift. In Chorus, all anchors must schedule their TX to

start with a given delay δTX after the initiator’s poll TX time tp .
However, the crystal oscillator of each anchor incurs a different

clock drift e , causing an anchor a to transmit at tp + δTX (1 + ea ),
and inducing an error w.r.t. initiator i in the measured TDOA:

∆̂tai − ∆tai = δTX (1 + ea ) − δTX (1 + ei ) = δTX (ea − ei ) (3)

Compared to SS-TWR [13, 20], the clock drift has twice more im-

pact in Chorus. In the DecaWave EVB1000 platformwe use, the crys-

tal oscillator has a frequency offset of 10 ppm. Using δTX = 300 µs,

the resulting error is 3 ns. We analyze the impact of clock drift in an

indoor experiment with 4 nodes (3 anchors plus the initiator) placed

in the corners of the Indoor environment, used in our evaluation

(§6). We time synchronize the anchors w.r.t. the initiator using

the poll message of the Chorus primitive, setting the initiator to

transmit a poll periodically every 100 ms. Anchors receive this

message and send the RX timestamp to a central server computing

the clock offset and drift of each node w.r.t. the initiator (node 1).

Figure 4 shows the measured clock drift of the 3 anchors. Based

on our results, and assuming a maximum clock drift of 3 µs/s and

δTX = 300 µs, the TDOA error would be 0.9 ns. To reduce the effect

of the clock drift and its impact on Chorus, the response delay must

be then minimized by increasing the data rate and reducing the

preamble length, the data payload, and the required processing

time after receiving the poll message from the initiator.

TX scheduling precision. The DW1000 UWB transceiver pro-

vides the capability to schedule delayed transmissions, however, it

ignores the lowest 9 bits of the delayed TX time [21]. As a result,

the chip is only able to schedule a packet TX with a precision of
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Figure 4: Clock drift.

4/(499.2 × 10
6) ≈ 8 ns. This directly affects concurrent transmis-

sions from anchors, with an error ϵ ∈ [0, 8 ns], which translates to

a distance error up to ≈ 2.4 m. This is the most significant source

of error in Chorus, whose impact we assess in our evaluation (§6).

4 FROM PROTOTYPE TO MODEL—AND BACK

The novelty of Chorus and the challenges outlined in §1 require

a multi-pronged approach to its evaluation, exploiting both the

realism and practical value of our prototype implementation as well

as the abstraction power of models. Figure 5 outlines our approach.

The core of Chorus is constituted by the two colored compo-

nents, executed on some processing hardware (e.g., a smartphone)

connected with the UWB chip. The first component performs TOA

estimation (§3.3) and anchor identification (§3.2) on CIRs generated

by concurrent transmissions, and outputs the TOA value for each

anchor. These data are fed to the actual localization computation,

performed via our TDOA solver (§6.1).

These core components are the same for both our prototype and

model-based evaluations; what is different is the nature of the CIRs

input to them. In our DW1000-based prototype, concisely described

in §6, the CIRs containing concurrent transmissions are acquired

directly by the UWB transceiver. In our model-based evaluation,

instead, they are generated by fusing the CIRs from isolated trans-

missions based on the model in §5 and on the same time shifts used

in our prototype configuration. In this paper, we feed the model

with two types of isolated CIRs. Empirical ones are acquired by the

DW1000 via dedicated in-field experiments in the same environ-

ments where we evaluate our prototype. Synthetic ones are instead
generated via the well-known IEEE 802.15.4 UWB model [24], and

therefore free from the bias induced by specific hardware platforms

and deployment environments.

Before delving in the evaluation, we describe our model for

concurrent transmissions, which plays a central role in our findings.

TOA estimation & 
anchor identification

TDOA 
solver

CIRs from concurrent TX 
(DW1000)

concurrent TX 
model 

CIRs from isolated TX
(DW1000)

CIRs from isolated TX
(IEEE 802.15.4 model)

OR

OR

Figure 5: Prototype, model, and evaluation toolchain.
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5 CONCURRENT TRANSMISSIONS MODEL

We model the impact of concurrent transmissions on channel im-

pulse response (CIR) estimation.

Single Transmission. In the case of a single transmitter, the re-

ceived signal r (t) at the receiver can be modeled as

r (t) = s(t) ∗ hi (t) + n(t) (4)

where hi (t) is the CIR, s(t) is the transmitted signal, n(t) added
noise, and ∗ the convolution operation. The CIR hi (t) is

hi (t) =
L∑
l=1

γle
−jθl δ (t − tl ) (5)

where L here is the total number of paths and γl , θl , and kl are
the attenuation, phase shift, and time delay associated to path l ,
respectively. In our case, as we are purely interested in the CIR

estimation, we consider that the transmitted signal s(t) corresponds
to the preamble, which is the only part of the packet required to

estimate the CIR at the receiver. The IEEE 802.15.4a standard [12]

defines the preamble as a number of repetitions of a pre-defined

symbol which is composed of single pulses (§2). By measuring

the received signal r (t) and knowing the preamble signal s(t), the
receiver can estimate the CIR h(t) using, e.g., the deconvolution
operation [27] or maximum likelihood-based methods [35].

Concurrent Transmissions. In the case of N signals transmitted

concurrently by N transmitters, we consider an additive collision

channel as in [31], according to which the received signal becomes

r (t) =
N∑
i=1

si (t) ∗ hi (t) + n(t) (6)

where si (t) andhi (t) correspond to the transmitted signal of sender i
and the associated CIR. Hence, the received signal becomes a su-

perposition of the convolution of the transmitted signals with the

CIRs that model their propagation, plus the added noise.

In concurrent ranging [5], the concurrent transmitters employ

the same preamble signal but incur different delays due to the

distinct propagation time of the signal from each transmitter to

the receiver. Similarly, if transmitters employ response position

modulation [7] the signal is time shifted based on an assigned

delay. In these cases, the transmitted signal of sender i becomes

si (t) = s(t − ti ). Due to commutativity [25] of the convolution

operator of a linear time-invariant (LTI) system, we can simplify

Eq. 6 to

r (t) =
N∑
i=1

s(t) ∗ hi (t − ti ) + n(t) (7)

Applying the distributive property [25] of convolution on Eq. 7, we

can obtain the overall CIR as

h(t) =
N∑
i=1

hi (t − ti ) (8)

This models the impact of concurrent transmissions on the CIR

estimation and analytically explains the empirical observations

found in previous concurrent ranging work [5, 7]. Using this model,

we can estimate the resulting h(t) when multiple si (t) signals are
transmitted concurrently.
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h(t) measured in an indoor environment with two concur-
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Figure 7: Model amplitude error.

Small-scale Validation. We validate our model in a small-scale

experiment; the results we present in §6, where prototype exper-

iments closely align with the model, can be considered a further,

large-scale validation.

We deploy 3 nodes in a line along a corridor; the initiator and

2 anchors A1 and A2 respectively at d1 = 4 m and d2 = 8 m from

the initiator. Nodes perform concurrent ranging as explained in §2.

We consider 3 values (0 ns, 100 ns, and 150 ns) for the time shift T
modulating the response of A2 w.r.t. A1. For each value of T , we
collect 100 h1(t) and h2(t) signals with each anchor transmitting

in isolation and 100 h(t) signals with both anchors transmitting

concurrently. Then, we merge the individual signals using Eq. 8,

obtaining 100 modeled CIRs
ˆh(t). To compare

ˆh(t) against the mea-

sured h(t), we upsample both signals by a factor L = 30, align them

with a correction for the TX scheduling precision of DW1000, and

measure the amplitude error at each time delay sample as

ˆh(t )−h(t )
max(h(t ))

considering only the signal section of interest.

Figure 6 compares a CIR
ˆh(t) obtained using our model with

the measured h(t) with no artificial time shift. We observe that our

model overestimates the amplitude of the peaks from the closest

transmitter but captures well the CIR from the farthest. Figure 7

shows violin plots for each T value, with the measured amplitude

error distribution across all merged signals. Our model is slightly

conservative and tends to overestimate the amplitude of the direct

paths and multipath components (Figure 6). Nonetheless, we ob-

serve that the model
ˆh(t) follows closely the measured h(t), and

serves our purpose of analyzing Chorus in §6 without the intrinsic

limitations of current UWB transceivers.
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Figure 8: Evaluation deployments with fixed tag positions.

Black lines represent walls and the grey line the metallic

balustrade in Terrace.

6 EVALUATION

We present our experimental setup and main evaluation metrics

(§6.1–§6.2) and validate our TOA estimation algorithm (§6.3) against

the LDE algorithm executed on the DW1000. We analyze the per-

formance of our Chorus prototype in two different environments

(§6.4). Finally, we assess the full potential of Chorus using our mod-

els fed with empirical traces (§6.5) and CIR signals generated via

the IEEE 802.15.4 UWB channel model (§6.6).

6.1 Experimental Setup

Environments.We perform our experiments in two different en-

vironments: i) Indoor, a 6.4 × 6.4m2
area inside an office building,

and ii) Terrace, a larger 10.4 × 8m2
open area next to a building

and surrounded by a wall on one side and a metallic balustrade on

the other. Note that Terrace is by no means free of strong MPC

and in fact presents larger power decay profiles than Indoor. In

both environments, we deployed 5 anchors. Although 4 anchors are

the minimum for TDOA, the extra one enables localization in cases

where we are unable to detect one TOA estimate; recent research

on UWB TDOA considers even higher number of anchors in similar

areas [28]. We consider 20 and 18 different tag positions in Indoor

and Terrace, respectively. About half of these positions actually

represent a sort of worst-case, as they are placed on the boundary

of the areas, on the line between anchors. Figure 8 shows both

deployments along with the fixed tag positions. We set all UWB

nodes at a 50 cm height from the ground.

UWB Settings. In all experiments, we set the DW1000 to use

channel 7 with center frequency fc = 6489.6 GHz and bandwidth
1

1081.6 MHz. We use the shortest preamble length of 64 symbols

with preamble code 17, the highest PRF = 64MHz, and the highest

6.8 Mbps data rate. Finally, we set the response delay δTX = 280 µs.

Chorus Configuration. Unless otherwise stated, we use a time

shift T = 128 ns for response position modulation (§3.2). This

corresponds to a distance of 38.36 m, sufficiently higher than the

maximum distance difference (13.12 m) among anchors. This shift

also allows us to include and distinguish up to 7 anchor responses

distributed over the time span of the CIR. For TOA estimation, we

set the number of iterations of the Search and Subtract algorithm

1
Note that the DW1000 receiver bandwidth is limited to 900MHz.

per CIR chunk to K = 3 and the noise threshold η = 12 × σn as per

the default DW1000 configuration suggested by DecaWave [21].

Implementation. We implemented Chorus atop Contiki OS [4]

using the DecaWave EVB1000 platform [19], equipped with the

DW1000 transceiver, an STM32F105 ARM Cortex-M3 MCU, and its

own PCB antenna. To collect the log files, we connect a laptop to

the EVB1000 tag, which logs via the USB interface RX packets and

errors along with the estimated CIRs. We collect 8 CIR signals per

second as this requires reading over SPI and logging over USB a

4096B buffer. We run all analysis offline using Python and Matlab.

Positioning Solver.To determine the tag location, we implemented

a non-linear least squares solver that uses the Trust Region Reflec-

tive algorithm [2]. Given our evaluation environments (Figure 8),

our solver disregards outlier TDOA measurements ∆t̂ai > 50 ns

as they are not possible (even with the TX scheduling error of the

DW1000) in our target areas. These rare outliers appear due to late

and strong MPC from previous anchor responses in the CIR. Our

solver is also able to choose other anchors besides the initiator as

the time reference to compute the TDOAs and then the tag position.

This is useful in case the initiator response cannot be detected but

we have ≥ 3 TDOA estimates for localization.

6.2 Metrics

To evaluate Chorus, we look into two main metrics: i) the measured

TDOA error and ii) the localization error. For each metric, we report

statistics such as the average error µ and standard deviation σ as

well as different percentiles for the absolute errors.

TDOA Error. We compute the TDOA error of each anchor a w.r.t.

the reference (i.e., the initiator i) as ∆t̂ai − ∆tai , where ∆t̂ai is the
TDOA value estimated by Chorus from the CIR and the ∆tai the
theoretical TDOA computed using Eq. 1. The TDOA error informs

us about the precision of our TOA estimation algorithm and gives

us indications about the localization accuracy attainable by Chorus.

Localization Error. For each CIR signal, we compute the absolute

positioning error as ∥p̂ − pr∥, where p̂ is the position estimate

obtained by Chorus and pr is the known position of the tag.

Besides these two metrics, in our real-world experiments (§6.4)

we also consider the localization success rate as the fraction of CIR

signals where we obtain enough information (≥ 3 TDOA estimates)

to compute the tag location. This last metric helps us understand

the reliability and robustness of Chorus in real environments.

6.3 TOA Estimation Baseline
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Figure 9: TOA algorithm esti-

mation comparison.

Before looking into the accu-

racy of Chorus, we compare

the performance of our TOA

estimation algorithm against

the FP_INDEX provided by the

LDE algorithm from DecaWave.

This serves to validate our im-

plementation and also as a TOA

estimation baseline. To this end,

we collected a total of 9262 non-

concurrent CIR signals in Terrace, ≈100 CIR signals per anchor

and tag position pair. Then, we estimated the TOA of the individual
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signals using our algorithm (§3.3), and measured the difference

between our TOA estimate and the FP_INDEX from the DW1000.

Figure 9 shows a normalized histogram of the estimated differ-

ences. Compared to LDE, our algorithm underestimates the TOA by

0.59 ns on average. This is the result of conceptual differences be-

tween the algorithms. The LDE algorithm estimates the direct path

as the first path whose amplitude goes over a dynamically adjusted

threshold that depends on the measured noise in the CIR. This leads

to measuring the direct path at different relative amplitudes of the

first CIR pulse. Instead, our algorithm is based on peak detection,

and selects the TOA at the beginning of the first CIR pulse. Overall,

the standard deviation of the estimation difference is σ = 0.29 ns

with a maximum absolute difference of 1.9 ns, demonstrating the

ability of our algorithm to correctly estimate the TOA using K = 3

iterations. Changing K to 1 or 2 iterations yields a maximum differ-

ence of 42.4 ns and 26.1 ns, respectively. These significant errors

are the result of strong and late MPC that are selected by the Search

and Subtract algorithm as the direct path. These errors underline

the importance of selecting K ≥ 3.

6.4 Prototype-based Evaluation

We report the results obtained with Chorus in Indoor and Terrace,

establishing the performance achievable with today’s commercially

available UWB radios. For each tag position, we collected ≈515 CIR

signals with 5 concurrent transmissions using T = 128 ns. This

amounts to a total of 10294 signals in Indoor and 9263 in Terrace.

Localization Accuracy. Figure 10 shows the cumulative density

functions (CDFs) of the localization errors obtained in both tested

environments. Overall, Chorus achieves sub-meter localization er-

ror in 73.5% and 74.6% of the cases in Indoor and Terrace, re-

spectively, despite the TX scheduling precision ϵ = 8 ns of the

DW1000. Recall that ϵ = 8 ns can lead to a distance error of ≈ 2.4m.

However, we observe that performance increases considerably if

we only consider the center tag positions p ∈ [1, 9], which are
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Figure 10: Chorus localization accuracy for different set of

tag positions in Indoor (top) and Terrace (bottom).

arguably the positions of interest for most applications. In these

positions, Chorus yields sub-meter error in 88.28% and 81.7% of

the cases in Indoor and Terrace, respectively. The CDFs converge

with 99.4th ≈ 2.4 m, i.e., the distance error produced by the TX

scheduling precision ϵ . The remaining positions p ∈ [10, 20] can

be considered as worst-case as they are on the border of the target

area, where the distance difference among anchors increases and,

in many cases, next to a wall, suffering from stronger MPC and

increasing the localization error.

TDOA Errors. In 96% of our TDOA estimates in both environ-

ments, the error is <8 ns, in line with the TX scheduling precision

ϵ = 8 ns. However, for 1% and 3% of our estimates in Indoor and

Terrace, respectively, the error is >20 ns. These large errors are

due to strong and late MPC, mostly in the stress positions on the

borders of the target area. Recall that our algorithm chops the CIR

into chunks of lengthT (i.e., the time shifts of the response position

modulation) then obtains the time delay of the K strongest paths,

selecting the earliest as the direct path. When there are large dis-

tance differences among anchors in environments with long power

decay profiles (i.e., with late and strong MPC), as in Terrace, our

algorithm could potentially select a multipath from a previous an-

chor response as the direct path. In Terrace, this occurs especially

in the corner positions (10, 12, 13, 15) where the distance difference

among anchors is large. Nonetheless, these large TDOA errors are

rare and can generally be discarded by the solver as impossible;

therefore, they bear reduced impact on localization accuracy.

Aggregating samples. The major source of error in Chorus is the

TX scheduling precision ϵ = 8 ns of the DW1000 (§3.4), which adds

a random shift to the TDOA estimates. To compensate this error,

we can aggregate the TDOA estimates fromM signals, compute the

median of each TDOA ∆t̂ai , and pass these aggregated TDOA esti-

mates to the solver. Figure 11 shows the localization accuracy when

aggregating M signals in Indoor. By collecting only M = 3 sig-

nals before computing the location, we improve the 75
th

percentile

from 1.03 m to 0.78 m, obtaining sub-meter accuracy in 84% of the

cases—including the worst-case border positions. In Terrace, we

obtain similar results, e.g., withM = 3 andM = 5 samples, Chorus

achieves sub-meter error in 85.83% and 89.2% of the cases, respec-

tively. Overall, increasing M improves the accuracy, but requires

more CIR signals, and therefore higher consumption and lower

update rate. WithM = 5, Chorus still requires less messages than

SS-TWR to obtain a location estimate.

Localization Success Rate. To compute a tag location, Chorus

first needs to accurately determine the TOA of the N signals trans-

mitted concurrently by the anchors. However, we observed that
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Figure 11: Localization error in Indoor after aggregating the

TDOA samples ofM CIR signals.
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Figure 12: Chorus localization success rate per tag position.

Note that in Terrace we only have 18 tag positions.

sometimes the CIR peaks associated to a given anchor response do
not appear in the CIR and therefore are not correctly detected. We

see 3 possible causes: i) the CIR pulses corresponding to the anchor

have low amplitude w.r.t. the noise floor and are disregarded based

on our noise threshold η ii) the interference among concurrent

transmissions cancels a given response from the CIR iii) the given
anchor does not successfully receive the poll message or fails to

transmit the response on time (very rare, if any). We observe this

effect especially in the boundary positions of Terrace, e.g., in posi-

tion 13, we only detected 28% of the TOA estimates from anchor 2.

Similarly, the detection rates are ≤ 78% for anchors 4 and 5 in posi-

tion 10. In these positions, again, there is a large distance difference

among anchors, resulting in different power loss and fading and

making it difficult for the corresponding CIR peaks to emerge from

noise and be detected. The failure to detect TOA estimates then

reduces the available information to compute the tag position in the

solver. Nonetheless, Chorus is able to estimate 94.79% and 88.37% of

the expected TOAs in Indoor and Terrace, respectively. Figure 12

shows the resulting localization success rate (i.e., the percentage

of signals where Chorus obtains ≥ 3 TDOA estimates) per tag po-

sition after discarding TDOA values > 50 ns. On average, Chorus

achieves a localization success rate of 96.7% in Indoor and 89.53%

in Terrace. Statistically, this means that in difficult positions, a tag
may need to listen for more than a single message to compute its

position reliably. Yet, the energy consumption of Chorus to estimate

a location remains lower than, e.g., SS-TWR, where tags need to

perform a two-way exchange with the N anchors.

Summary. Chorus achieves sub-meter localization error in ≥73.5%

of the signals where it detects at least 4 TOA estimates despite

the TX scheduling precision ϵ = 8 ns of DW1000 and even in our

challenging setup where half of the points are on the border. Aggre-

gating the information from several signals reduces the localization

error. Notwithstanding the adverse effects of self-interference, Cho-

rus is able to provide a location estimate in 89% of the cases in

Terrace and 96.7% in Indoor. Strong and late MPC combined

with large distance differences between the anchors to the tag can

produce significant, although rare, TDOA errors.

6.5 Model-based Evaluation: Empirical Traces

We now look into the performance of Chorus using our model (§5)

fed with empirical CIR traces obtained in Indoor and Terrace.

To this end, we first collected non-concurrent ≈100 CIR signals

for each anchor and tag position combination in the two target

environments. Then, we merged the individual CIR signals using

Eq. 8 considering the time shift T and the different time of flight
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Figure 13: TDOA and localization errors usingT = 128 ns and

K = 3 iterations in Indoor for different simulated transmis-

sion scheduling precisions ϵ .

from each anchor to the tag positions, obtaining 2049 CIR signals

for Indoor and 1810 for Terrace with 5 concurrent transmissions.

By using our model, we can easily assess the impact of i) the trans-
mission scheduling precision ϵ and ii) the time shift T .
TX Scheduling Precision. We analyze first the impact of the TX

scheduling precision ϵ of the DW1000 on TDOA and localization

accuracy. To this end, when we merge the individual CIRs, we add

a random time shift obtained from a uniform distributionU [0, ϵ) to
each anchor response. This time shift simulates the TX scheduling

precision. We change ϵ from 8 ns to 0 ns (i.e., no error) in steps of

2 ns, measuring the resulting TDOA and localization errors across

the two datasets in Indoor and Terrace. We first focus on Indoor.

Figure 13 shows the CDFs of the measured TDOA and localiza-

tion errors in Indoor for different scheduling precisions ϵ . The
first thing to observe is that, for ϵ = 8 ns (i.e., the precision of the

DW1000), the CDF is very similar to the one obtained with our pro-

totype (Figure 10a). This confirms that ourmodel faithfully captures
the real-world behavior of concurrent transmissions. With ϵ = 8 ns,

Chorus achieves 75
th = 4.2 ns TDOA error, obtaining sub-meter

error in 70.2% of the cases instead of 73.5% as in §6.4. With our

generated signals, we noticed that the overestimated amplitude of

MPC (§5) decreases the performance slightly w.r.t. our prototype.

Overall, increasing the TX scheduling precision lowers TDOA

and localization errors. For instance, with ϵ = 2 ns the TDOA

99
th = 4.99 ns, obtaining sub-meter accuracy in 99.4% of the cases

with µ = 0.26m and σ = 0.25m.With no error, ϵ = 0, Chorus yields

µ = 0.14 m with σ = 0.15 m. These results prove the potential of

Chorus to provide decimeter-level localization by simply increasing

the TX scheduling precision of the DW1000 chip. Fundamentally,

this implies changing the frequency of the TX scheduling clock

from 125 MHz to 250 MHz (ϵ = 4 ns) or 500 MHz (ϵ = 2 ns).

Now, we switch the attention to the results from Terrace, which

proved to be more challenging for our system. Figure 14 shows the

localization error CDFs in this environment. Again, with ϵ = 8 ns,

the error curve is similar to that in our prototype (Figure 10b),

providing sub-meter localization error in 71% of the cases. The
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CDFs are also similar to the results obtained in Indoor, but with

slightly lower performance. With ϵ = 2 ns and ϵ = 0, Chorus

achieves sub-meter error in ≥98.5% of the cases, ≈1% less than in

Indoor. In Terrace, we observe that, for all considered ϵ , ≈2% of

the TDOA errors are ≥ 20 ns with 99
th ≥ 63 ns. These large errors

are outliers that appear due to strong and very late MPCs from

previous responses. These MPC are the same ones that provided

high maximum errors in our TOA baseline (§6.3) using K ∈ {1, 2}.

In these situations, when we run Search and Subtract in a CIR

chunk, we obtain the K strongest paths within the chunk, among

which delayed MPCs from previous anchor responses are selected.

Selecting the earliest path as the direct path (in this case the MPC

from previous anchor) produces larger TDOA errors, which lead to

higher localization errors 99
th = 1.4 m with ϵ = 0.

To tackle this issue, we analyze the impact of the response posi-

tion modulation time shift T on the TDOA and localization errors.

Impact of the Time Shift.We generate new CIRs from the mea-

sured individual signals, changing the time shift T from the default

128 ns to 224 ns, with steps of 32 ns. We cannot use higher values

with 5 concurrent transmitters as the 5
th
response would then over-

lap in the same CIR chunk with the 1
st
response due to the ≈ 1 µs

time span of the CIR. As previously mentioned, withT = 128 ns, 2%

of our samples suffer from strong MPC from previous responses,

producing higher TDOA and localization errors. As we increase the

time shift, the percentage of samples with high errors decreases.

Table 1 depicts the localization error for the different time shifts

T and ϵ = 0. For all time shiftsT ≥ 160 ns, the error is <40 cm in 99%

of the samples, demonstrating the potential of Chorus to reliably

achieve decimeter-level localization by increasing the hardware

scheduling precision. With the highest time shift T = 224 ns, how-

ever, the MPC from anchor 5 may affect the response of anchor 1

(initiator), resulting in slightly lower performance w.r.t. T = 192 ns.

Despite increasing the time shift, we still have a few outliers that

trigger the maximum TDOA error above 90 ns.

The best performance is withT = 192 ns, where the TDOA errors

yield 95
th = 0.99 ns and 99

th = 1.4 ns. In this case, across 7240

TDOA estimates we have a total of 5 outliers (0.069%) for which the

error is ≥52 ns. The remaining 7235 TDOA samples have an error

≤2 ns. This yields amaximum localization error of only 0.4 m, with

99
th = 0.32 m and an average of 0.12 m. Based on our results, even

using ϵ = 4 ns still yields sub-meter localization error in 99% of the

samples, which again would mostly require doubling the frequency

of the TX scheduling precision of the radio chip.

Summary. Increasing the TX scheduling precision of the radio chip

allows Chorus to achieve decimeter-level accuracy while providing
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Figure 14: Localization error using T = 128 ns and K = 3 in

Terrace for different TX scheduling precisions ϵ .

Table 1: Localization errors in Terrace for different time

shifts T with K = 3 iterations and ϵ = 0.

Localization Error [m]

T[ns] µ σ 50
th

75
th

90
th

95
th

99
th

Max

128 0.16 0.4 0.12 0.17 0.23 0.28 1.41 10.13
160 0.16 0.41 0.12 0.17 0.23 0.26 0.4 8.92
192 0.12 0.07 0.11 0.17 0.22 0.25 0.32 0.4
224 0.12 0.09 0.12 0.17 0.22 0.26 0.32 1.49

in principle location information to countless users in the target

area. The main challenge in real environments are late and very

strongMPC from previous responses, which can be easily addressed

by increasing the time shift T between consecutive responses. In

this regard, if the CIR span offered by the hardware were increased

to >1 µs, this would allow us to further extend T and provide op-

portunities for even more anchor concurrent transmissions.

6.6 Model-based evaluation: Synthetic Traces

In §6.5, we fed the model in §5 with empirical traces gathered in ex-

actly the same positions as the experiments in §6.4. This allowed us

to successfully validate the model, and is a reasonable methodology

for practical deployments. However, when many estimates across

the target area are required (potentially spanning its entirety), the

effort to gather the CIRs in all of them may become prohibitive.

Therefore, we turn our attention to the UWB channel model in

the IEEE 802.15.4 standard [24], which is well-known, very detailed,

offers configuration profiles for various target environments, and

is available as Matlab code. Replacing the empirical traces with

this model enables us to explore the performance of Chorus in

many more points, without deployment effort. Further, and equally

important, it allows us to validate our techniques on signals different

from those generated i) by the DW1000 chip ii) only in our two

deployments, therefore increasing confidence about the feasibility

and robustness of Chorus.

Methodology.We model the Terrace placement (Figure 8b) and

generate, for each anchor, 1000 CIRs from the model in [24]. We use

the configuration profiles for parameters and power decay defined

for residential, office, and industrial environments. We then select

1000 random positions in the target area and compute (§5) the fused

CIRs resulting from concurrent transmissions.

Results. Figure 15 shows the localization error for different val-

ues of the TX uncertainty ϵ . Despite the remarkable differences in

how the input CIR signals have been acquired, these results are

comparable to those in §6.4–§6.5. For ϵ = 8 ns, we achieve sub-

meter accuracy in ≥ 78% of the cases, except for the residential

profile (70.6%), due its very strong and delayed MPC. Neverthe-

less, even in this case the localization error is only µ = 0.83 m.

In general, the model in [24] yields
2
stronger MPC components

w.r.t. the empirical traces we collected in our deployments. This

complicates TOA estimation, requiring the use of K = 10 iterations

of our algorithm (§3.3) to obtain the results shown. Finally, Fig-

ure 15b confirms that reducing or eliminating the TX scheduling

error enables significantly higher accuracy.

2
The model in [24] pre-dates the DW1000 by a decade; a validation of the former

against the latter is outside the scope of this paper.
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Figure 15: Localization error with the IEEE 802.15.4 UWB

channel model [24].

7 CONCLUSION AND OUTLOOK

In this paper we i) propose Chorus, a novel and potentially revo-

lutionary localization scheme for UWB ii) contribute techniques
towards its practical realization and accurate modeling iii) evaluate
its good performance with readily available UWB technology and

model the one potentially attainable, and therefore ultimately iv) in-
spire the design of a next generation of UWB hardware designed to

exploit the peculiar and beneficial tradeoffs unlocked by concurrent

transmissions in general and Chorus in particular.

Chorus relies on a GPS-like scheme, hitherto unexplored in the

context of UWB, where the localization target is a passive listener

instead of an active transmitter. This change of perspective enables

several advantages, notably including the ability for countless target

devices to self-position in the area of interest.

The evaluation of our DW1000-based Chorus prototype shows

that it achieves sub-meter accuracy in real-world environments.

However, our analytical model for estimating the signal resulting

from concurrent transmissions enables us to investigate the ac-

curacy of Chorus beyond what enabled by UWB chips available

today. By replacing the concurrent CIRs gathered in-field with syn-

thetic ones, generated with two different techniques, we are able to

accurately predict the current performance of our prototype and,

therefore, simulate the one attainable were hardware limitations

removed. Results show that an order of magnitude improvement in

accuracy can be obtained via simple hardware modifications that

cater for the needs of concurrent transmissions.

Prototype experiments and model analysis therefore reinforce

each other, and are the basis from which to glimpse at what could

be the future of Chorus and UWB concurrent transmissions.
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