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Abstract— We consider the problem of accurate and high-
rate self-localization for a mobile robot. We adaptively combine
the speed information acquired by proprioceptive sensors with
intermittent positioning samples acquired via ultra-wideband
(UWB) radios. These are triggered only if and when needed
to reduce the positioning uncertainty, itself modeled by a
probabilistic cost function. Our formulation is agnostic w.r.t. the
source of uncertainty and enables an intuitive specification of
user navigation requirements along with stochastic guarantees
on the system operation. Experimental results in simulation and
with a real platform show that our approach i) meets these
guarantees in practice ii) achieves the same accuracy of a fixed
periodic sampling but with significantly higher scalability and
lower energy consumption iii) is resilient to errors in UWB
estimates, enabling the use of low-accuracy ranging schemes
which further improve these two performance metrics.

I. INTRODUCTION

The accurate estimation of the position of a robot is key
for its correct navigation [1]. In outdoor scenarios, absolute
localization is provided by GPS, often complemented by
a magnetometer-based compass. However, indoor and other
GPS-denied scenarios demand alternative localization tech-
nologies and approaches. Several have been developed to
date, with different tradeoffs concerning, e.g., accuracy, in-
frastructure requirements and cost, and energy consumption.
Why UWB in Robotics? Ultra-wideband (UWB) radios
are rapidly gaining traction, thanks to a new generation
of smaller and cheaper transceivers, e.g., the DecaWave
DW1000 [2], offering decimeter-level accuracy. In com-
parison with other techniques, e.g., LiDAR [3] or vision
on natural [4] and artificial [5], [6] landmarks, UWB en-
ables both distance estimation (ranging) and communication
among devices within the same radio chip. This is a major
asset in system design, especially in robotics applications
where concerns about weight, form factor, and complexity
dominate, e.g., drones and space exploration. Other radio-
based technologies, for example WiFi [7], offer the same
asset but with an order of magnitude decrease in accuracy
and significantly higher energy consumption.
Motivation. Nevertheless, the control of a robot requires
the acquisition of positioning information at relatively high
frequency, typically in the range 10–50 Hz. In this respect,
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the application of UWB to robotics faces two key chal-
lenges. First, positioning entails several message exchanges
with nearby anchors. The commonly-used two-way ranging
(TWR) in the IEEE 802.15.4 standard [8] requires 2 packets
per estimate in its simplest form (single-sided TWR, SS-
TWR); 4 packets are often used (double-sided TWR, DS-
TWR) to improve accuracy. A positioning estimate from N
anchors therefore requires 2N or 4N messages, respectively.
As these occur on the shared wireless medium, the scalability
to scenarios with multiple robots is intrinsically at odds with
the achievable update rate, i.e., tracking accuracy [9]. Further,
although UWB has relatively low energy consumption w.r.t.
WiFi, it still consumes hundreds of mW, often prohibitive for
small and lightweight robots where the energy budget mat-
ters [10]. Based on these considerations, reducing the UWB
sampling rate without compromising accuracy is imperative
for the practical application of this localization technology.
Approach. This paper tackles both challenges by com-
bining the speed information acquired by low-cost, low-
accuracy proprioceptive sensors, e.g., tachometers, IMU
and/or odometers, with the distance information obtained
by high-cost, high-accuracy UWB devices. Ego-motion es-
timators are widely used in robotics and can usually be
executed at high frequency, but unfortunately suffer from
drift phenomena induced by dead-reckoning.

The key idea of this paper is to use UWB measurements
intermittently and adaptively, by triggering them only if
and when needed to keep the positioning uncertainty under
control. We model uncertainty directly by estimating the a-
posteriori probability density function (PDF) based on an
Unscented Kalman Filter (UKF). This enables us to provide
stochastic guarantees and to empower the robot user with the
ability to intuitively specify application requirements in terms
of an accuracy threshold combined with a confidence level,
as in “a positioning error ≤20 cm in ≥90% of the samples”.
After concisely illustrating the assumptions and problem for-
mulation (Section II), we outline our intermittent localization
approach (Section III). We then provide a detailed model for
a specific robotic setup and UWB system (Section IV). The
latter is used to evaluate the performance of our approach via
simulation (Section V) and then validate these results with
real-world experiments (Section VI) exploiting the ground
truth offered by a high-precision optical system.
Related Work and Contribution. The combination of
ego-motion estimators and localization sensors is relatively
common in robotics [11] and typically achieved by using the
localization sensor, UWB in our case, at a rate lower than
needed by control, leveraging the ego-motion estimates in be-



tween samples. However, selecting the appropriate sampling
period is tricky if robots do not move at constant velocity.
The sampling rate must be dimensioned for the worst-
case, yielding an inefficient average performance; further, the
system may still fail to meet the required guarantees if the
worst-case is incorrectly estimated. In contrast, our approach
adapts the sampling rate to the current uncertainty, without
requiring a priori estimation and regardless of its nature. By
triggering UWB samples only when needed we achieve the
same accuracy at a fraction of the cost (<50% in many cases,
Section V–VI). Moreover, as the sampling rate is not fixed
and bound a priori, we can cope with unexpected changes
due to environmental factors, e.g., the presence of uneven or
slippery terrain, or the malfunctioning of the odometer.

To the best of our knowledge, the only adaptive combina-
tion of odometry and UWB is presented in [12], where UWB
samples are triggered based on the maximum eigenvalue of
the covariance matrix estimated via an Extended Kalman
Filter (EKF). In comparison, our approach offers significant
advantages: i) formulating user requirements in terms of
error threshold and confidence level rather than maximum
eigenvalues is remarkably more intuitive, simplifying the
robot configuration and operation, and ii) the technique
in [12] is unnecessarily conservative, triggering UWB sam-
ples when not required and ultimately significantly reducing
the potential improvements, as we show quantitatively in
Section V. Moreover, the work in [12] uses DS-TWR to
improve the accuracy of UWB samples and hence of the
overall localization. Instead, we show experimentally that in
our approach uncertainty is dominated by the odometry error
(Section VI). This is a key finding, enabling the use of the
lower-accuracy SS-TWR scheme—further slashing in half
the bandwidth and energy demands—without detriment to
localization accuracy.

The paper ends with brief concluding remarks and an
outlook on future work (Section VII).

II. ASSUMPTIONS AND PROBLEM FORMULATION

We begin by discussing our assumptions about the robot
model and by formalizing the problem we address.

A. Model

The fixed, right-handed reference frame for platform lo-
calization is referred to as 〈W 〉 = {Ow, Xw, Yw, Zw}, as
shown in Fig. 1. The robotic vehicle is regarded as a rigid
body B moving on the plane Xw × Yw. Let ts denote the
sampling period, assumed common for all onboard sensors.
The generalized coordinates of the robot at time kts are
denoted by pk = [xk, yk, θk]T , with (xk, yk) being the
coordinates of the origin of frame 〈B〉 = {Ob, Xb, Yb, Zb}
attached to the robot, and with θk representing the angle
between Xb and Xw. The kinematic model of a generic drift–
less, input–affine robot can be written as:{

pk+1 = pk +Gk(pk, uk + εk)

zk = h(pk) + ηk
(1)

Ow Xw

Yw

(xk, yk)

θk

Xb

Yb

B

Fig. 1. Platform model represented as a rigid body B moving on the
Xw × Yw plane with an attached reference frame 〈B〉.

where pk is the robot state, uk is the input vector, assumed
piecewise constant between (k − 1)ts and kts, εk is the
additive zero-mean uncertainty term affecting the input quan-
tities and Gk(·) is the input vector function. At any sampling
period, the robot samples its internal sensors (e.g., encoders,
IMU), but the estimate of the state is affected by the dead-
reckoning effect modeled in the term εk. To prevent the
drift of the estimate, the robot is also allowed to collect a
measurement of a quantity zk from an exteroceptive sensor,
the UWB localization system in our case, every ts time
units. The quantity zk is related to the state through the
non-linear function h(·). We assume that i) the measurement
zk is affected by a noise term ηk ii) h(pk) ensures non-
linear observability of the robot state pk in 〈W 〉, and iii) each
measurement of zk has a cost c(zk). For UWB localization,
the cost term accounts for the communication bandwidth
used for every measurement, which reduces the number of
robots that can use the system at the same time, and for
the energy consumed in transmitting and receiving packets,
which reduces the robot autonomy.

B. Problem Formulation

Our problem can be formalized in the following terms.
Given a robot with kinematic model (1), produce an estima-
tion p̂k for the state such that: i) the cost c(zk) is minimized,
and ii) the uncertainty is upper-bounded by a threshold
Λk with a confidence ψk. The accuracy is modeled by a
non-negative performance function Hk(·) of the localization
error ek = p̂k − pk. The performance function Hk(·) is
generally multi-dimensional: Hk : R2 × S → Rn, where
R2 is the dimension of the state space, S the space of angles
in the plane, and n the number of constraints required. The
confidence is defined as a probability, i.e., ψk ∈ [0, 1]. Hence,
the accuracy requirement is analytically expressed as:

Pr [Hk(ek) < Λk] ≥ ψk, ∀k. (2)

The performance function Hk(ek) is time-varying, as it
depends on changing conditions of the application scenario.
For instance, if the robot is moving along a corridor oriented
along Xw, it is reasonable to upper-bound the error along Yw,
to avoid collisions with the walls, and the orientation θk, to
ensure that the robot moves along the chosen direction. A



possible performance function could be:

Hk(ek) =

[|ŷk − yk|
|θ̂k − θk|

]
≤
[
λyk
λθk

]
= Λk, (3)

with confidence ψk. In other cases, we may want to limit
the position error on the plane, e.g., to safely enter a room
through the door. We could model this by:

Hk(ek) =
√

(x̂k − xk)2 + (ŷk − yk)2 ≤ λk = Λk. (4)

The possible choices of Λk and ψk are evidently limited by
the intensity of the noise ηk as per (1).

III. APPROACH

Let fk(e) denote the PDF of the estimation error ek =
p̂k−pk at timestamp kts. We can rewrite (2) as the Riemann
integral: ∫

Ek
fk(e)de > ψk, ∀k, (5)

over the state subspace:

Ek =
{
e ∈ R2 × S : Hk(e) < Λk

}
. (6)

Importantly, (5) can be used as a trigger event for the
measurement of zk = h(pk). As long as

∫
Ek fk(e)de > ψk,

the degradation is not sufficient to violate the accuracy
constraint, so no external measurement is needed. However,
in the absence of external measurements the dead-reckoning
effect “inflates” the probability distribution of the error, with
fk(e) → 0 and, since Ek is a closed set,

∫
Ek fk(e)de → 0.

Thereby, after a sufficient number of steps the threshold ψk
is approached. When this event occurs, the zk measurement
is triggered to reset the error to acceptable levels. This
policy evidently ensures that the accuracy constraint is never
violated and limits remarkably the number of expensive
queries to the UWB localization system.

A different solution proposed in the literature [12] consid-
ers the maximum eigenvalue of the covariance ellipsoid as a
trigger for the sampling event of zk. A first serious problem
with this approach is that it is difficult to establish a link be-
tween the switching logic, the application requirements and
the environment constraints, which in our approach is quite
naturally captured by the triple (Hk(ek), λk, φk). Further, as
shown in the next section, the use of the ellipsoid could lead
to an overly conservative triggering of measurements.

IV. A DETAILED MODEL FOR A PRACTICAL CASE

We now apply our approach to a case of practical interest,
which is the subject of our evaluation via simulation (Sec-
tion V) and real-world validation (Section VI).

For the robot kinematics, we assume a unicycle model.
The robot planar coordinates (xk, yk) correspond to the mid-
point of the traction wheels, assumed to be the origin Ob
of the body frame 〈B〉. The Yb axis points through the left
wheel, while the Xb axis is oriented in the forward direction,
as shown in Fig. 2 for the robot used for the experiments.
Assuming that relative encoders are attached to each wheel
shaft, measuring respectively the left and right wheel angular
displacements δlk and δrk in the time interval [kts, (k+ 1)ts],

XwYw
Ow

Xb

Yb

(a1x, a
1
y)

Fig. 2. Unicycle-like vehicle adopted in the experiment and representation
of the reference system. UWB anchors are depicted as well.

we can compute the linear motion of the left or right wheel
as Lk = φl

2 δ
l
k and Rk = φr

2 δ
r
k, being φl and φr the wheels

radii. With reference to the generic model (1) and assuming
for simplicity that in ts the speed of the wheels is constant,
we can safely assume that the inputs are uk = [Lk, Rk]

T .
As a consequence, the non-linear input vector is given by

Gk =

rk (sin (θk−1)− sin (θk−1 + γk))
rk (cos (θk−1 + γk)− cos (θk−1))

γk

 ,
where rk = Rk+Lk

2 +
εRk+εLk

2 and γk = Rk−Lk
b +

εRk−εLk
b .

As reported in [13], the additive white Gaussian noise
covariance matrix Ek of εk = [εLk , εRk ]

T can be computed
as:

Ek =

[
k2L |Lk| 0

0 k2R |Rk|

]
, (7)

with εLk and εRk being uncorrelated.

A. Measurement System

As a global localization system, we use UWB sensors.
This system is capable of carrying out ranging measurements
from a set of fixed anchors. Let us assume to have m
anchors, each with known plane position (aix, a

i
y), with

i = 1, . . . ,m; an actual deployment of UWB anchors is
shown in Fig. 2. Therefore, the measure zk is composed by
the distance measure coming from m different anchors, i.e.,
zk = [z1k, z

2
k, ..., z

m
k ], where

zik =

√
(xk − aix)

2
+
(
yk − aiy

)2
.

The zero-mean, white Gaussian noise ηk affecting each
measurement is described through the covariance matrix:

Nk = diag
{
ν1k , ν

2
k , . . . , ν

n
k

}
, (8)

where νik ∈ R≥0 is the variance of the i-th ranging measure
and the noise terms of the anchors are assumed uncorrelated.

B. Stochastic Guarantees

One widely adopted solution for collecting both a lo-
calization estimate p̂k and the associated pdf of the error
fk(e) is to resort to Bayesian filters, which are able to
coherently fuse the prior on the odometry with the triggered
measurement from the UWB sensing system. Due to the non-
linear nature of the model and of the measures, we select
the Unscented Kalman Filter (UKF) [14]. This enables us
to capture the posterior mean p̂k and covariance Σk up to



TABLE I
ANCHOR POSITIONS EXPRESSED IN 〈W 〉.

Anchor i

1 2 3 4 5

ai
x[m] 1.76 -7.2 -7.2 1.9 -1.9

ai
y[m] -5.3 -5.3 1.9 1.9 5.3

the 3rd order of the Taylor series expansion for the non-
linearities, modeled as a Gaussian. Without loss of generality,
we adopt as performance function Hk(e) the position error
defined in (4), hence deriving for (6) the following

Ek =
{
e ∈ R2 × S :

√
(x̂k − xk)2 + (ŷk − yk)2 < λ

}
,

(9)
where λ is assumed here to be constant. Ek is a cylinder
contained in the state space R2×S, and it can be equivalently
represented with Ak × S, being Ak the base of the cylinder
in the Xw × Yw plane. (5) can be written as:∫

Ek

1√
2πdpk

e−
(p−p̂k)TΣ

−1
k

(p−p̂k)

2 dp, (10)

where dpk = det(Σk). By marginalizing along θ and defining
as Σxyk the top 2 × 2 matrix of Σk, (10) can be simplified
as:

1√
2πdxyk

∫
Ak
e−

(pxy−p̂xy
k

)TΣ
xy
k

−1(pxy−pxy
k

)

2 dpxy, (11)

where pxy and p̂xyk are the entries related to the cartesian
positions of p and p̂k, respectively, while dxyk = det(Σxyk ).
Expressing the previous integral in cylindric coordinates
where v(ψ) = [cos (ψ), sin (ψ)]T is the unit vector indicating
the integration direction, (11) can be rewritten as

1√
2πdxyk

∫ 2π

0

∫ λ

0

ρe−
ρv(ψ)TΣ

xy−1
k

ρv(ψ)

2 dρ dψ. (12)

The integral in ρ can be solved analytically leading to:

1√
2πdxyk

∫ 2π

0

eλ
2C(ψ) − 1

2C(ψ)
dψ (13)

where C(ψ) = −v(ψ)TΣxyk
−1
v(ψ)/2. Very efficient ad-hoc

numeric solutions can be designed for this integral within
the desired level of accuracy.

V. SIMULATION-BASED EVALUATION

To evaluate the proposed approach, we developed a sim-
ulator by assuming that the model noise of the odometer
εk and the UWB measurement noises ηk are generated
by white, zero-mean Gaussian stochastic processes, and
by imposing parameters mirroring the actual experimental
platform described in Section VI. The covariance matrix of
εk in (7) is computed with kL = kR = 0.004 m1/2, while for
the covariance matrix of the UWB noise ηk in (8) we have
νik = 10−2 m2, ∀i = 1, . . . ,m, with m = 5. The anchors
are deployed in the environment as reported in Table I.

Fig. 3. Time evolution of the marginal PDF of fk(e) for a robot
moving along a straight line parallel to Xw . Both, the actual (dashed line)
and estimated (solid line) trajectories are reported. At the fourth depicted
position, the integral in (13) exceeds the given confidence ψ due to dead-
reckoning, hence the UWB system is triggered and the PDF narrows down
(fifth depicted PDF).

We first impose a straight line trajectory originating from
position (−4.5,−1.8) m and moving along increasing coor-
dinates of the Xw axis (Fig. 3) with λ = 0.2 m for (4) and
ψ = 0.75 for (5), both constant in time. In Fig. 3 we see
that along the actual motion (dashed line) the PDF of the
error marginalized w.r.t. S increases due to dead-reckoning,
and the estimated trajectory (solid line) therefore deviates
from the actual path. In the same figure, the base of the
cylinders Ak are depicted as well (blue circles). When the
robot reaches the fourth depicted position, the integral in (13)
goes below the confidence ψ; a reading from the UWB
system is therefore triggered, causing the PDF to narrow
down (last depicted PDF in Fig. 3).

Fig. 4 shows the cumulative distribution function (CDF)
of the localization error as a function of the user-defined
confidence ψ and threshold λ (Fig. 4a) as well as the impact
of the dead-reckoning εk and UWB ranging uncertainty ηk
(Fig. 4b). Note that the CDFs reported are computed by
collecting the error values at their maximum right before
triggering an UWB measurement, i.e., in the worst-case sce-
nario. Our technique easily adapts to changing performance
metrics (ψ, λ) or increasing the odometry or ranging un-
certainty (εk, ηk), tightly satisfying the user-defined bound.
Increasing the uncertainty, however, has a remarkable effect
on the frequency at which the UWB system is triggered
(Table II). The UWB sampling frequency is dominated by the
odometry uncertainty, while the UWB ranging uncertainty
plays a significantly minor role. This allows us to use more
energy- and time-efficient (although less accurate) ranging
schemes like SS-TWR instead of DS-TWR as in [12], saving
energy and increasing scalability w.r.t. the state of the art.

Besides the discussed intrinsic robustness of our approach,
we now show how the algorithm effectively reduces the com-
munication bandwidth utilization w.r.t. a periodic sampling
using a trajectory with time-varying velocity. The rationale
is to further highlight the adaptability of the solution at hand:
when the trajectories are regular and the velocity is almost
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Fig. 4. Localization accuracy under different (ψ, λ, k, ν). Our solution
adapts the CDFs (top) to the user-defined threshold λ and confidence ψ,
highlighted with crossed circles on each plot. Changing the encoder or
ranging uncertainty for λ = 0.3 m and ψ = 0.8 (bottom) barely affects the
resulting localization error.

TABLE II
FREQUENCY OF UWB TRIGGERING AS A FUNCTION OF THE

UNCERTAINTY εk AND ηk .

kL = kR[m1/2]

ν[m2] 0.0004 0.004 0.04

0.0004 0.02 Hz 0.07 Hz 0.52 Hz
0.01 0.02 Hz 0.08 Hz 0.6 Hz

constant (see odometer model (7) and its effect in Table II), a
low-frequency periodic sampling is sufficient; when instead
the trajectories become more challenging, a high-frequency
sampling is needed. Therefore, a periodic sampling approach
should be fine-tuned on the worst-case scenario, which leads
to an overuse of the shared UWB system. The adaptability
of the proposed solution, instead, automatically enables the
use of the UWB system only when strictly needed. The
example we use in our analysis is taken from an industrial
warehouse application and assumes that the robot moves on
a planned path with a bound of 0.5 m/s2 in the forward
and lateral accelerations, a maximum speed of 1.5 m/s, and
by starting and stopping with zero velocity. The resulting
velocity profile (Fig. 5) is composed of a region in which
the robot is moving straight at full speed in the middle of two
turning sections. The obtained pseudo-frequency distribution
of UWB measurements, i.e., the inverse of the local sampling
periods, is depicted in Fig. 6. The frequency distribution is
in the interval [0.6, 1.5] Hz with a mean value of 1.08 Hz.
Lower frequencies are relative to the slow-paced region of
the velocity profile, whereas high frequencies are due to the
fast-paced region (grey area in Fig. 5). Fig. 7 shows the
worst-case localization error CDFs for this scenario obtained
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Fig. 5. Velocity profile.
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Fig. 6. UWB sampling pseudo-frequencies distribution.

with our adaptive mechanism w.r.t. periodic UWB sampling
at fixed rates. The periodic rates are respectively selected
based on the minimum, mean, and maximum frequency in
Fig. 6. When the robot moves at 1 m/s (left), all the CDFs
comply with the user-defined bound (ψ = 0.8, λ = 0.2 m).
However, increasing the velocity to 1.5 m/s (right) makes the
periodic approaches with fs < 1.5 Hz unable to cope with
the fast speed of the robot. Our technique, instead, adapts
its sampling rate as needed and satisfies the requirements
irrespective of the actual working conditions.

Finally, we compare our proposed technique against the
one in [12], which is based on the eigenstructure of the
localization error covariance. In particular, we take the
greater axis of the ellipse which includes the ψ probability to
scale the greater eigenvalue of the (x, y) position uncertainty
matrix obtained with Principal Component Analysis. The
conservativeness of the methods relying on the eigenvalues
is reported in Fig. 8, where the CDFs of the two methods
are compared. It is evident that our method follows the
requirements more tightly in both tested configurations. In
the first case, λ = 0.25 m and ψ = 0.8, our technique
requires a mean UWB triggering frequency of 0.16 Hz
instead of 0.25 Hz; in the second case, λ = 0.2 m and
ψ = 0.9, the proposed adaptive system frequency is 0.38 Hz,
while the eigenvalue technique yields 0.50 Hz. Therefore, our
technique can potentially reduce the required UWB sampling
rate by a 24–36% factor w.r.t. state-of-the-art techniques
based on the eigenvalue.

VI. EXPERIMENTAL RESULTS

To validate our technique, we ran an experimental cam-
paign in an environment equipped with 14 OptiTrack cam-
eras [15] covering a 12 × 8 m2 area and providing mm-
level localization at 125 Hz. The unicycle-like wheeled robot
used for the experiments and the testing arena equipped
with 5 UWB anchors are reported in Fig. 2. The robot
had a UWB tag in its center position and measured its
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Fig. 7. Comparison between periodic and adaptive UWB sampling with the
robot moving at 1 m/s (left) and 1.5 m/s (right). Our adaptive mechanism
satisfies the user requirements despite changes in the robot velocity.
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Fig. 8. Comparison with the state of the art (SoA) for different (ψ, λ).
SoA techniques based on the eigenvalue are conservative, over provisioning
UWB measurements, increasing consumption, and decreasing scalability.

ego-motion by wheel encoders sampled at a frequency of
50 Hz. The UWB tag performs SS-TWR in a round-robin
fashion with all m = 5 anchors at a ranging frequency of
200 Hz, providing a maximum positioning rate of 40 Hz.
SS-TWR involves a two-way message exchange between the
tag and an anchor. The firmware is implemented atop Contiki
OS [16] for the DecaWave EVB1000 platform [17], equipped
with an STM32F105 MCU, the DW1000 transceiver, and a
PCB antenna. UWB and odometry data are sent via WiFi to
a laptop, which also stores the ground truth data acquired
from the OptiTrack system. We recorded positioning infor-
mation from 6 different generic trajectories, yielding ∼13000
location samples overall.

As a baseline, we first present the positioning results
along the predefined trajectories when the UWB system is
activated periodically and in isolation, i.e., without fusing
UWB ranging information with the wheel encoders data.
Fig. 9 shows the characterization of the ranging precision
of UWB (left) and the positioning results (right) when
measurements are collected at the maximum positioning
frequency of 40 Hz. The standard deviation of the UWB
ranging error is σ = 11 cm with a maximum error of 48 cm
(Fig. 9, left). The ranging measurements are used to retrieve
the position using a non-linear least squares solver, yielding
the positioning error, computed with (4), shown in the right
side of Fig. 9. The mean positioning error is µp = 9 cm with
a standard deviation of σp = 5 cm and a 90th percentile error
of 14 cm.

Fig. 10 shows the localization error when fusing odometry
and UWB ranging data with the UKF, considering different
periodic UWB sampling frequencies fs. With fs = 40 Hz
the accuracy obtained is the same as the positioning error
using only UWB (Fig. 9, right). Decreasing fs = 1 Hz,
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Fig. 9. UWB ranging (left) and positioning (right) error.
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Fig. 10. Localization error with periodic UWB sampling at different
frequencies.

the UKF yields a mean localization error µ = 12 cm with
a standard deviation of σ = 8 cm and a 90th percentile
error of 18 cm, slightly increasing the error w.r.t. the UWB-
only solution, but reducing fs by 97%. This, in turn, reduces
the energy consumption, while increasing the scalability of
the system. Unfortunately, the right sampling frequency that
satisfies a user-defined bound (ψ, λ) and fulfills the worst-
case scenario for robot navigation can only be speculated;
recall the analysis of the previous section, summarized in
Fig. 7.

Sample trajectories of the experiments are reported in
Fig. 11, while the resulting PDFs are reported in Fig. 12,
proving the applicability of the approach in an actual situa-
tion. Finally, Fig. 13 reports the mean frequencies and their
standard deviations as a function of the imposed performance
indices. Two final remarks are in order. First, the curve at
periodic 1 Hz sampling in Fig. 10 has a maximum error
λ = 20 cm with a probability of ψ = 90%. With the same
configuration of (λ, ψ) we obtain a frequency reduced to
almost one half, as shown in the second orange bar on the
left side of Fig. 13; this further confirms our claims in an
experimental scenario. Second, the results of our comparison
against [12], shown in Fig. 8, hold also in our experimental
setup; however, they are here not reported here due to space
limitations.

VII. CONCLUSIONS

We proposed a localization approach for mobile robots
that relies on fusing the relative information coming from
the encoders with absolute measurements coming from an
external UWB infrastructure. External measurements are
triggered adaptively only if and when the estimated position-
ing accuracy fails to meet the user-specified requirements.
Our mathematical framework directly estimates uncertainty
via the a-posteriori PDF and enables stochastic guarantees on
system performance. Simulation and real-world experiments



(a) (ψ = 0.9, λ = 20 cm) (b) (ψ = 0.9, λ = 50 cm) (c) (ψ = 0.9, λ = 100 cm)

Fig. 11. Localization tracking across three trajectories with ψ = 0.9 and different threshold λ. Each black cross represents a UWB anchor. The UKF
output (orange) follows accurately the ground truth measurements (blue). As we increase λ, the number of UWB measurements (brown) needed decreases.
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Fig. 12. Localization error with dynamic UWB sampling and ψ = 0.9
for different thresholds λ. The only measurements considered are taken just
before triggering UWB ranging (i.e., worst-case scenario).
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Fig. 13. UWB localization rate with m = 5 ranging exchanges for different
confidence intervals ψ and thresholds λ over all trajectories.

confirm the soundness of our technique and its effectiveness
in reducing the UWB sampling rate w.r.t. a fixed periodic so-
lution, with direct benefits in terms of scalability and energy
consumption. Further, our system allows for low-accuracy
ranging schemes, which further improve these metrics.

We are building on these results along several dimen-
sions. From a theoretical point of view, we are seeking a
formalization of the conditions under which our technique
yields an optimal sampling rate. From a system point of
view, we are quantitatively investigating the scalability our
technique can achieve in scenarios with multiple robots
and its dependency on their motion patterns. Finally, from
an application point of view, we are experimenting with
various definitions of Hk geared towards specific classes of
navigation tasks, concretely demonstrating the flexibility of
our approach.
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