
1

Socially-aware Routing for Publish-Subscribe in
Delay-tolerant Mobile Ad Hoc Networks

Paolo Costa Member, IEEE Computer Society, Cecilia Mascolo Member, IEEE Computer Society,
Mirco Musolesi Member, IEEE Computer Society and Gian Pietro Picco Member, IEEE Computer Society

Abstract— Applications involving the dissemination of informa-
tion directly relevant to humans (e.g., service advertising, news
spreading, environmental alerts) often rely on publish-subscribe,
in which the network delivers a published message only to the
nodes whose subscribed interests match it. In principle, publish-
subscribe is particularly useful in mobile environments, since it
minimizes the coupling among communication parties.

However, to the best of our knowledge, none of the (few)
works that tackled publish-subscribe in mobile environments
has yet addressed intermittently-connected human networks.
Socially-related people tend to be co-located quite regularly. This
characteristic can be exploited to drive forwarding decisions in
the interest-based routing layer supporting the publish-subscribe
network, yielding not only improved performance but also the
ability to overcome high rates of mobility and long-lasting
disconnections.

In this paper we propose SocialCast, a routing framework for
publish-subscribe that exploits predictions based on metrics of
social interaction (e.g., patterns of movements among commu-
nities) to identify the best information carriers. We highlight
the principles underlying our protocol, illustrate its operation,
and evaluate its performance using a mobility model based on
a social network validated with real human mobility traces. The
evaluation shows that prediction of colocation and node mobility
allow for maintaining a very high and steady event delivery
with low overhead and latency, despite the variation in density,
number of replicas per message or speed.

I. INTRODUCTION

Modern communication technologies foster application sce-
narios where humans exchange information not only through
natural means (e.g., verbally), but also through the mediation of
computer networks. E-mail is the most evident example of this
shift. However, pervasive and ubiquitous computing scenarios are
pushing situations where it is the recipient (not the sender) of
the information who determines whether and how to seize data
flowing in the network. Thus, for instance, services can be freely
advertised without a priori knowledge about who is going to
exploit them: it is up to a given application (or user) to bind to
a service based on its description. News and advertisements can
be issued without specifying the recipients but only by declaring
the type of the message content.

The design of the programming and networking infrastructure
enabling these new forms of computer-mediated communication
is still a topic of active research. However, the publish-subscribe

Paolo Costa is with the Department of Computer Science, Vrjie Uni-
versity, The Netherlands (e-mail: costa@cs.vu.nl). Cecilia Mascolo
is with the Computer Laboratory, University of Cambridge, UK (e-mail:
cecilia.mascolo@cl.cam.ac.uk). Mirco Musolesi is with the In-
stitute of Security Technology Studies, Dartmouth College, USA (e-mail:
musolesi@cs.dartmouth.edu). Gian Pietro Picco is with the Dipar-
timento di Ingegneria e Scienza dell’Informazione, University of Trento, Italy
(e-mail: gianpietro.picco@unitn.it).

paradigm recently emerged as a particularly promising solution.
In such a paradigm, the information producers and consumers are
sharply decoupled, as they are fully agnostic of each other. The
information producer or publisher (e.g., the service advertiser)
simply injects a message in the network. Routing protocols no
longer revolve around node identifiers, since these are not spec-
ified in the message. Instead, the network delivers the message
to the interested subscribers (e.g., the components interested in
services of a given type) based on some characteristic of the
message, such as its topic or even its very content.

Thanks to its decoupling properties, publish-subscribe is in-
herently suited to dynamic environments where the set of com-
municating parties changes over time and may be disconnected
at the time the message is originated [11]. These most notably
include mobile delay tolerant systems. However, dealing with the
network challenges posed by publish-subscribe makes its practical
realisation in this kind of networks difficult. As a result, few
approaches exist [19], [38], surveyed in Section VI. Moreover,
in these approaches, the social angle is never taken into consid-
eration. Information needs are ultimately driven by users, which
in a mobile environment exhibit patterns of movement dictated
by their social behaviour. These typically lead to intermittently
connected networks, where, however, connectivity can be ensured
precisely by relying on the social ties of users. Users that belong
to the same “group” (e.g., co-workers, friends, fans of a sport
team) may move far apart from each other and experience long
periods of disconnection, but are very likely to eventually meet
again. This fact can be leveraged to opportunistically deliver
messages related with the group’s main interest. Section II defines
precisely our assumptions about the kind of systems we consider.
To give an example, messages containing advertisements of rugby
events can be disseminated from host to host by exploiting the
social contacts of the fellow people (i.e., people interested in
rugby might all be interested in advertisements of rugby events
and are bound to meet quite regularly).

In this paper we introduce SocialCast, a routing protocol
expressly devised to support publish-subscribe in intermittently
connected human networks. In a nutshell, SocialCast comple-
ments the information about the receivers’ interests, necessary
to routing information, with data about the social ties of people
and their consequent predicted movements. The dissemination
of these interests and social information, as well as its use for
message forwarding and buffering, is described in Section III. In
SocialCast, Kalman filter forecasting techniques [3] are used to
predict the future evolution of the movement based on previous
observations on some attributes characterising social behaviour
(e.g., connectivity changes, colocation), as we illustrate in Sec-
tion IV. These predictions are used to estimate which hosts
are potentially good message carriers, i.e., may enable indirect
connectivity by moving into connected portions of the network

2

containing subscribers. SocialCast exploits forecasting techniques
to identify the best carriers which are also used in CAR [24].
However, CAR is a unicast delay tolerant routing protocol and it
does not support group communication. Section V demonstrates
the effectiveness of our approach by presenting an evaluation
through simulation over a realistic social mobility model [26]
validated against real traces [6]. Section VII contains brief con-
cluding remarks, including options for future work.

II. SYSTEM MODEL AND ASSUMPTIONS

We assume a network composed of N nodes. For simplicity
of treatment we assume they all have the same capabilities, in
particular to store messages in a buffer of maximum size β. Nodes
are mobile and interconnected by wireless links. The mobility of
a node is determined by the user carrying it.

A user, and therefore a node, may act as an information
publisher or subscriber1. Publishers and subscribers are in general
not aware of each other. A node subscription identifies the node’s
interest (e.g., “Rugby” or “Computer Science”). We assume that
each user in the system has at least one interest. When a message
is published (e.g., “Six Nations Results”), it is tagged with
the related interest. The goal of our protocol is to deliver the
message to the nodes with at least one interest matching the
one in the message. As such, delivery is driven by the message
content. In this work we base matching on interests specified
as message topics, but we conjecture that extensions allowing
for more sophisticated and direct matching against the message
content can be easily integrated in our approach.

Key to this work is the assumption that users with common
interests tend to meet with each other more often than with other
users [22]. This can be observed in practice in our everyday life.
Examples are people interested in information concerning the
department where they work, or friends sharing the same sport
interest. In other words, we assume that the mobility of users is
driven by their social behaviour that, in turn, is determined by
their common interests.

Apart from the aforementioned social behaviour, nodes can
move with arbitrary (not necessarily random) directions and
speeds, and in doing so they may cause an arbitrary number of
network partitions. Furthermore, for what concerns communica-
tion we rely solely on the basic ability of a node to communicate
within its 1-hop neighbourhood, by broadcasting a message to all
the neighbours or unicasting it to a specified one.

III. ROUTING IN SocialCast

In this section, we describe the main characteristics of our
routing protocol. This relies on the notion of utility for the
selection of message carriers in order to enable store-and-forward
communication. The utility of a node n with respect to interest i
represents how good of a carrier n is for messages matching i. The
utility values in SocialCast are linked to movement patterns and
colocation with other hosts: as the basic assumption is that hosts
which have same interest spend time co-located, the SocialCast
routing aims at exploiting as carrier for messages hosts which
have been co-located often with the interested subscribers. The
calculation of utilities are described in detail in the next section.

Routing in SocialCast consists of three phases: interest dis-
semination, carrier selection, and message dissemination. The

1A node can be, at the same time, a publisher and a subscriber.

distinction in phases is only for illustration purposes, as in
practice each phase is executed one after the other. The whole
sequence is repeated periodically after T units, without requiring
synchronisation across nodes. Figure 2 contains the pseudo-code
for the routing protocol while Figure 1 contains the necessary
variable definitions.

During Interest Dissemination, each node broadcasts the list of
its interests to its 1-hop neighbours, along with the corresponding
list of utility values (as a control message as indicated in the
pseudocode of Figure 2. These are first locally re-computed
based on the current node context before dissemination (Figure 2,
function updateOwnUtilities). This information is stored in the
routing tables of the neighbours, and is key in determining
message forwarding decisions. In this phase, the identifiers of
the last λ messages received are also piggybacked on the utility
message (Figure 2, received[n]).

During Carrier Selection, the utility of the local node, Ui, is
recomputed for all interests i. This utility Ui is compared, for
each interest i, against the highest among those communicated by
neighbours, say Un,i as reported by a neighbour n. If Un,i > Ui
+ ε, this means that, for interest i, n is a better carrier than the
local node (line 3). ε is an hysteresis threshold which forbids that
the message is bounced back and forward between hosts with
similar fluctuating utilities. Otherwise, the local node is still the
best carrier for messages tagged with i.

During Message Dissemination, the content of the buffer is re-
evaluated against the new subscriptions and utilities, and messages
are forwarded to the interested nodes (line 5) and/or the best
carrier (line 8). A copy of messages matching an interest i is
immediately sent to all neighbours whose subscriptions contain
i. Note how this ensures that nearby interested nodes receive
messages, but does not imply that these also become a carrier for
messages. In other words, messages are delivered to the above
application layer but not inserted in the nodes’ buffer. Indeed,
carrier role (and buffer insertion) are determined by the outcome
of the previous phase. If the local node is still the best carrier, no
action needs be taken. Otherwise, all messages tagged with i are
removed from the local node’s buffer (line 9) and sent to n, the
best carrier, where they are inserted in its buffer (line 5 of receipt
of DATA message). An issue arises if n is also a subscriber for
i. In this case, the matching messages can be properly flagged to
inform the receiving carrier n that they must be inserted in its
buffer instead of being simply delivered to the application.

To avoid unnecessary traffic, a message is forwarded only
if the recipient has not previously received that message. This
can be easily verified by checking the list of the last λ mes-
sages piggybacked during the message delivery phase (line 4).
Moreover, to prevent messages from remaining forever in the
system, we rely on a time-to-live (TTL) based on hop counts.
Clearly, other solutions are also possible. For instance, in some
applications it could be useful to have the publisher explicitly
specify an expiration time, (e.g., a concert advertisement is useful
only before the time it starts).

Finally, Message Publishing consists simply of inserting the
published message into the local buffer. The message will then be
taken care and forwarded to the interested subscribers as well as
“moved” to a better carrier, if and when encountered, according
to the routing protocol we described thus far. In other words,
SocialCast works based on whatever the content of the buffer
is, regardless of how it got inserted in it. Moreover, to ensure

3

high delivery, a publish operation actually inserts γ copies of
the message. Each copy is routed independently, i.e., whenever a
better carrier is encountered only one copy is removed from the
local buffer and sent to the new carrier, to ensure that the copies
are spread over time and space across the system. Note that the
publisher is the only node that duplicates messages, and does so
only at publish time. Therefore, at any time the network contains
at most γ copies of the message. This approach to message
distribution is shared by other approaches such as Spray&Wait
[29].

IV. COMPUTING UTILITIES FROM SOCIAL PATTERNS AND

MOBILITY

In this section, we illustrate the definition of the utilities used to
select message carriers. We argue that social patterns and mobility
can be used to measure the suitability of a host as message carrier
for subscribers to a given interest.

First of all, we define an attribute as a scalar representation of
a dimension of the problem that affects the utility of a host as
a potential message carrier. The utility is in general a function
of multiple attributes representing the different dimensions of the
problem (mobility, colocation, battery level, etc.). The primary
utility attribute we leverage is the probability of a user to be co-
located with another sharing the same interest. In this case, co-
location enables direct delivery of messages matching the shared
interest. This aspect is captured by the probability of subscriber
co-location. However, as in real life, a person meeting many
people has more options to disseminate information. Therefore,
we also exploit the change degree of connectivity as another
utility attribute to base forwarding decision upon. A node has a
high change degree of connectivity if it frequently changes its
neighbour set (e.g., because it is moving, or is static in a very
dynamic area).

Knowledge about the current values of these social attributes
is helpful, but only to a limited extent. In fact, what really
matters are the values that the attributes are likely to assume in
the future. We compute these predicted values using forecasting
techniques based on Kalman filter [18]. These techniques do not
require the storage of the entire past history of the system and are
computationally lightweight, making them suitable for a resource-
scarce mobile setting. We exploit the fact that colocation patterns
with subscribers to a certain topic i are not random, but they are
based on the social network that link all the individuals carrying
the devices.

Kalman filters are a technique for discrete signal processing
that provides optimal estimates of the current state of a dynamic
system described by a state vector. The state is updated using
periodic observations of the system, if available, by a set of
prediction recursive equations. Our prediction problem can be
expressed as a state space model: a time series of observed values
is used to represent the evolution of the attributes taken into
consideration, from which we can derive a prediction model based
on an inner state described by a set of vectors. Formally, given
the current input observed value Yt and the current state Xt, a
predictor based on Kalman filters is able to provide an estimate
for the next value of the time series bYt+1.bYt+1 = f(Xt,Yt)

We assume that the lag between two subsequent samples Yt
and Yt+1 of the time series is equal to τ . Trend and seasonal

components [3] could be added as well. The prediction is re-
evaluated periodically according to the (configurable) value of τ .
We use a Kalman filter predictor for each attribute. The filter takes
as input the current value at time t of the time series representing
a particular attribute and returns the estimated value of the time
series at time t+ τ as output.

A summary of the forecasting model is presented in the
appendix of this article and a comprehensive presentation of these
techniques can be found in [24]. However, it is fundamental to
present how a host computes the input values to the Kalman filter,
i.e., the value of the utility at time t, for which the filter computes
the predicted value at time t+ τ .

The colocation of h with a subscriber for interest i is

Ucolh,i
(t) =

1 if h is co-located with a subscriber for i;
0 otherwise

A value of 1 indicates that h has been co-located with subscribers
for i at time t.

The change degree of connectivity of a host h is

Ucdch
(t) =

|n(t− τ) ∪ n(t)| − |n(t− τ) ∩ n(t)|
|n(t− τ) ∪ n(t)|

where n(t) is h’s neighbour set at time t. If |n(t − τ) ∪ n(t)| =
0 (i.e., the node was isolated in both the previous and current
instants of time), Ucdch

(t) is set to 0. The formula yields the
number of hosts that became neighbours or disappeared in the
time interval [t − τ, t], normalised by the total number of hosts
met in the same time interval. A high value means that h recently
changed a large number of its neighbours.

These values are fed into Kalman filter predictors, which yield
the predictions bUcolh,i

and bUcdch
of these utilities at time t+ τ .

These are then composed into a single utility value using results
from multi-criteria decision theory [20], as

Uh,i = wcdch
bUcdch

+ wcolh,i
bUcolh,i

which represents how good of a carrier h is for messages matching
i. The weights w denote the relative importance of each attribute.
Their value depends on the application scenario and we assess
their impact in Section V.

Our protocol relies on predictions about the future values of the
attributes. However, in some conditions predictions are not reli-
able, e.g., because the time series describing a particular attribute
is random or exhibit a behaviour that cannot be forecasted with
accuracy (i.e., within a given prediction error) using the model
used. Therefore, it is important to assess the confidence level
of predictions, and modify forwarding decisions accordingly. To
assess the quality of predictions we use the technique presented
in [25], based on the analysis of the prediction error [7]. A
predictability component receives in input both the observed value
(at time t) of a attribute and the predicted value (computed at
t − 1). The analysis over time of the difference between these
two values enables to determine whether the prediction model
(the Kalman filter in our case) has enough information to predict
the next value of the time series with the required accuracy.

Another important note is that the framework used for predic-
tion is general enough for inclusion of other attributes, beyond the
ones used (colocation and change degree of connectivity), such
as for example battery which might be very important for sensor
network applications [28].

4

Variables
• self : node’s own id
• N : set of node’s current neighbours
• I: set of node’s interests
• R: set of the identifiers of the last λ messages received
• B: the message buffer
• U [i]: node’s own utility associated to interest i
• interests[n]: the set of neighbour n’s interests
• received[n]: the set of message received by neighbour n
• utility[n, i]: the utility value of neighbour n, associated to interest i

Messages
• DATA< i, replica, next >: a data message tagged with interest i. next identifies the neighbour to forward the message to, while replica

is a boolean flag indicating whether the message is being forwarded to a new carrier (replica = TRUE) or carried (replica = FALSE).
• CONTROL< U, I,R, n >: control message disseminated periodically by each node. It contains the utility values (U), the interests (I) and the

identifiers of the last λ messages received (R) of the sender node n.
Functions
• updateOwnUtilities (): update node’s own utility for interest i based on its mobility and its co-location
• send (m, r): send message m to recipient r
• broadcast (m): send message m to all 1-hop neighbours
• deliver (m): deliver message m to the application

Fig. 1. Pseudo-code definitions of the SocialCast routing protocol.

Interest Dissemination

1: updateOwnUtilities ()
2: create new message c: CONTROL< U, I,R, self>
3: broadcast (c)

Invoked on receipt of a CONTROL message from neighbour n.
receive CONTROL< U, I,R, n >

1: received[n]← R
2: utility[n]← U
3: interests[n]← I

Carrier Selection

1: for all m ∈ B do
2: m.next←⊥
3: if ∃n, i s.t. n ∈ N ∧m.i = i ∧ utility[n, i] > U [i] + ε ∧m 6∈ received[n] ∧

(6 ∃n′ ∈ N s.t. utility[n′, i] > utility[n, i] ∧m 6∈ received[n′]) then
4: m.next← n

Message Delivery

1: for all m ∈ B do
2: m.replica← FALSE
3: for all x ∈ N do
4: if ∃i s.t. m.i = i ∧ i ∈ interests[x] ∧m 6∈ received[x] then
5: send (m,x)
6: m.replica← TRUE
7: if m.next 6=⊥ then
8: send (m,m.next)
9: B ← B \ {m}

Invoked on receipt of a DATA message from neighbour n.
receive DATA< i, replica, next >

1: if i ∈ I then
2: deliver (m)
3: m.TTL← m.TTL+ 1
4: if m.replica =TRUE ∧ m.TTL < maxTTL then
5: B ← B ∪ {m}

Message Publishing.

1: insert γ instances of the published message into B

Fig. 2. Pseudo-code of the SocialCast routing protocol.

V. EVALUATION

In this section we report about an evaluation of SocialCast
based on a social mobility model.

A. Simulation Settings

We evaluated the performance of our protocol using OM-
NeT++ [33], an open-source discrete event simulator written in

C++2.
1) Mobility Model: Traditionally, mobile wireless networks

simulators assume a mobility model in which nodes move ran-
domly in the space. This, however, does not suit our needs:
SocialCast exploits prediction of co-location and movement,

2Our simulation code is publicly available to the research community at
www.cs.ucl.ac.uk/research/mobile/socialcast.

5

the use of a purely random mobility model would prevent an
effective analysis of the protocol. To this end, we adopted the
Community based mobility model [26], characterised by mobility
patterns founded on social networks. The model is based on the
following observation: in mobile networks, devices are usually
carried by humans, so their movement is necessarily based on
human decisions and social behaviour. To capture this type of
behaviour, the model is based on the social network that links
these individuals. In other words, the movements of both groups
as well as single hosts is driven by social relationships.

The key problem is the generation of a synthetic social network
with realistic characteristics in terms of clustering and average
paths between the members of communities (i.e., clusters of nodes
present in the social network). Our approach is based on the so-
called Caveman model proposed by Watts in [35] to generate a
network characterised by a realistic clustering degree. The social
network is built starting from a certain number of fully connected
graphs representing communities living in isolation, like primitive
men in caves. According to this model, every edge of the initial
network in input is re-wired to point to a node of another cave
with a certain probability p. The re-wiring process is used to
represent random interconnections between the communities. The
result of this process is a square matrix representing the social
network with a row (and a column) for each host. The value in
position i, j describes the relationship between the hosts i and j.
Real values between 0 and 1 are used to describe the intensity
of the relationships among the individuals. 1 represents a very
strong relationship, 0 no relationship at all.

The second step is the detection of the communities in the
synthetic social network: in order to do so, we use the Girvan-
Newman clustering algorithm [27]. The number of these commu-
nities may be lower than the initial caves used as seeds of the
networks given the re-wiring phase. The generation of the social
network and the detection of the communities take place during
the setup phase of the simulation (i.e., at time 0).

The simulation area is divided into a grid formed by a cer-
tain number of squares. Each group detected using the Girvan-
Newman clustering algorithm is then placed in one of these
squares. Each host then selects a goal (i.e, a way-point like
in the Random Way-Point model) inside the square and moves
towards it in a straight line. When this goal is reached, the next
goal is chosen inside the square associated to the group of hosts
that exerts the highest “social” attraction towards it (including
the current one). This group attraction is calculated by summing
the values that express the intensity of the relationship between
the hosts and the members of the community (extracted from
the matrix that describes the social network). The hosts moves
towards to the new goal in a straight line as before until it reaches
it. Then, we have a new decision point and the selection process
of the new goal is repeated.

The model was validated against real traces provided by Intel
Research [6].

2) Default Parameters: In real life, people sharing similar
interests happen to be co-located more frequently among each
others than with others. This property is crucial to our protocol
as it can be exploited to perform accurate predictions over future
movements of nodes. To reproduce this behaviour in our simula-
tor, we map one interest to each community of the synthetic social
network described in the previous section, such that nodes have
more probability to be co-located with other nodes having the

TABLE I
SIMULATION PARAMETERS

Simulation Environment Parameters Default value
Simulation area 4 km × 4 km
Number of hosts 100

Hosts speed [1− 6] m/s
Transmission range 250 m

Percentage of publishers 50 %
Percentage of subscribers 50 %

Publishing interval 60 s
Number of interests 10
Simulation duration 8 hours

Protocol Parameters Default value
Weight change degree of connectivity utility (wcdc) 0.25

Weight colocation utility (wcol) 0.75
Buffer size (β) ∞

Number of copies (γ) 3
Size buffer last messages IDs received (λ) 100

Retransmission interval (T) 20 s
Hysteresis threshold (ε) 0.2

same interests. Moreover, we assumed that a node can subscribe
to at most one interest: since messages belonging to different
interests are routed independently, multiple interests do not bring
new insights. Finally, publishers are uniformly chosen among all
the nodes in the simulation space.

We assume that half of the nodes are subscribers and half,
possibly with some overlapping, are publishers. The number of
possible interests in the network is 10. The publishing interval is
set to 60 s. To enable proper message dissemination, messages are
published during the interval [3000 s, 3500 s] over a total period of
28800 s (8 hours). A summary of all the simulation parameters is
presented in Table I. The simulation area 4 km× 4 km has been
chosen in order to have a sufficiently sparse and disconnected
network. The default values of the utility weights wcdc and wcol
are those providing the best performance in terms of delivery ratio
in our simulations.

With respect to the Community based mobility model, in our
default simulation scenario, the simulation area is 4km × 4km

and is divided into a grid—20 × 20. In the default scenarios we
consider 10 initial caves with a re-wiring probability equal to
0.1 as in [26]. The re-wiring probability is a measure of the
connectivity among individuals of different communities (i.e.,
the initial caves). 0.1 means that the probability of having a
relationships between individuals of different communities is 0.1.

Finally, we averaged results over 20 runs, using different seeds
for each scenario. We do not show the confidence interval in the
graphs, since they are very small. In fact, the maximum standard
deviation for the delivery is 0.016, whereas for the overhead is
3, 212 .

To provide more insights, we compare SocialCast with a
variant in which prediction is not used and where the next
carrier is selected on a random basis. This variant is implemented
as follows. As in SocialCast, each node periodically tries to
retransmit the copies of the messages contained in its buffer. The
mechanisms are identical to SocialCast except for the fact the
node selects a random entry in the routing table (also considering
itself). Then the message is sent to the selected node where it is
stored (or is maintained in the buffer of the node) for a subsequent
retransmission. Similarly to SocialCast, if subscribers are in the
neighbourhood, messages are forwarded to them too. This enables
us to assess the contribution of prediction.

6

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

D
el

iv
er

y

Numbers of copies (γ)

No Prediction SocialCast

(a) Delivery

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 5 10 15 20 25 30 35 40 45 50

N
et

w
or

k
T

ra
ffi

c

Numbers of copies (γ)

No Prediction SocialCast

(b) Overhead

Fig. 3. Delivery and overhead against number of replicas.

B. Simulation Results

We now present the results of our simulations of SocialCast. In
all our experiments, we mainly concentrate on message delivery
and network traffic. The former accounts for protocol effectiveness
and is defined as the ratio between the actual number of messages
delivered to the interested subscribers and the ideal one. The
network traffic, instead, is constituted by the number of forwarded
messages and measures the efficiency of the protocol.

1) Number of Replicas: The first parameter we studied is the
number γ of replicas in the system. This is a key parameter,
because it has a large impact on the network traffic. Results
in Figure 3(a) show that, through prediction, SocialCast is able
to achieve high message delivery with less replicas than the
ones needed if prediction is not used. Indeed, 5 replicas are
sufficient for SocialCast to reach more than 90% of subscribers
while without prediction three times that number of replicas is
needed to obtain similar performance. Notably, although delivery
is greatly improved in SocialCast (e.g., with γ = 5 prediction
boosts delivery from 40% up to 93%), the network traffic is
not increased (see Figure 3(b)). The reason stems from the fact
that network traffic strongly depends on the number of replicas.
Therefore, since both SocialCast and its variant share the same
γ, the traffics are similar. However, leveraging off predictions,
SocialCast can select better carriers which enable reaching more
subscribers, thus achieving better performance without increasing
the traffic.

In these experiments, we conservatively assumed that publish-
ers are uniformly chosen among all the nodes in the simulation
space. However, we also replicated these experiments under a

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 4000

 0 5 10 15 20 25 30 35 40 45 50

La
te

nc
y

(s
)

Numbers of copies (γ)

SocialCast
SocialCast (publisher in group)

Fig. 4. Latency against the number of replicas.

different configuration in which publishers of a given event are
selected only among the subscribers for such event. We measured
the impact on SocialCast performance; if no prediction is used,
the performance are identical to the uniformly distributed scenario
as the location of the publisher is irrelevant in this case. As
expected, we did not observe significant differences in terms of
delivery and overhead because, even if the message is published
in a random location, our protocol is able to efficiently route
it in few hops towards the subscribers by properly identifying
the best carriers. On the other hand, when the publishing node
is also a subscriber for the published message, the dissemination
occurs much faster because subscribers are naturally good carriers
(their co-location is very high). Hence, as depicted in Figure 4,
the average latency of SocialCast to reach a subscriber decreases
considerably.

In the interest of space, from now on we will only show
results in the uniformly distributed publishers. Similar trends are
observable for the other case.

2) Time To Live (TTL): The Time To Live of a message (TTL)
represents the dual parameter of γ, as it provides complementary
information. Indeed, γ controls how many instances of the same
message are around, while TTL defines for how far, in terms
of hops, a message will be around. Clearly, given a fixed γ, by
increasing the number of possible hops, there are more chances to
reach other subscribers. Unfortunately, this comes at the price of
a higher overhead because the message will stay around longer.
Figure 5 shows the performance of our protocol against different
values of TTL. As expected, prediction enables decreasing the
TTL because a message is forwarded only when needed, i.e.,
when a better carrier or a subscriber is encountered. Conversely,
without prediction, messages are forwarded in a random fashion
and hence more hops are needed to successfully contact the
subscribers. This is confirmed in Figure 5(a): 15 hops per message
are enough to SocialCast to reach more the 90% of subscribers
while the variant without prediction requires at least 35 hops
per message. Clearly, the two traffic curves show similar trends
because the TTL (as well as γ) directly influences the traffic.
Notably, however, the network traffic generated by SocialCast
saturates for TTL > 25. Indeed, when all the best carriers and
the subscribers have been reached (i.e., the delivery hits 100%),
the messages are not replicated further. This happens for a value
of TTL equal to 25. The traffic generated by the variant without
prediction, instead, increases linearly with the TTL because it
continuously forwards messages, also when not needed. This is a
result of paramount importance because it demonstrates that our

7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

D
el

iv
er

y

TTL (hops)

No Prediction SocialCast

(a) Delivery

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5 10 15 20 25 30 35 40 45 50

N
et

w
or

k
T

ra
ffi

c

TTL (hops)

No Prediction SocialCast

(b) Overhead

Fig. 5. Delivery and overhead against time-to-live.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0-5
6-10

11-15
16-20

21-25
26-30

31-35
36-40

41-45
46-50

51-55
56-60

61-65
66-70

71-75
76-80

81-85
96-90

91-95
96-100

M
es

sa
ge

s
(%

)

hop count

SocialCast
No Prediction

Fig. 6. Hop count distribution.

protocol does not waste resources generating additional traffic
when not needed.

This behavior is also confirmed in Figure 6 in which we plot the
distribution of the number of hops needed to reach a subscriber,
when no TTL is used. As expected, in SocialCast the vast majority
of messages are delivered to subscribers after few hops and,
notably, none required more than 31 hops. Conversely, when no
prediction is used, the number of hops increases significantly (up
to 93 hops).

3) Buffer Size: Beside network traffic, another key factor to
observe is represented by memory consumption. Since SocialCast
is meant to run on handheld devices, optimising memory is a
mandatory task. To investigate this aspect, in Figure 7 we plot a

 0

 10

 20

 30

 40

 50

 60

 70

 80

0-5
6-10

11-15
16-20

21-25
26-30

31-35

N
od

es
 (

%
)

buffer size

SocialCast
No Prediction

Fig. 7. Buffer size distribution.

snapshot of the distribution of buffer sizes after3 10, 000s. Results
confirm our expectations: since SocialCast is able to identify the
best carriers for each message, messages will be stored only on a
small subset of nodes, thus enabling an efficient usage of memory
resources. Indeed, almost half nodes store less than 5 message
in their buffer while only the 2% of nodes hold more than 30
messages. This shows that our protocol is able to select the best
carriers and to limit message buffering only on few specific nodes.
Instead, as far as the random protocol is concerned, as expected,
the large majority of the hosts has a buffer occupation under 10.
This means that there are no particular hosts that are selected for
their characteristics as good carriers.

4) Host Speed: We also evaluated our approach with respect
to the speed of nodes. Fast carriers are preferable over slow ones
because they can significantly increase message dissemination.
Rather than the node degree, it is the number of encountered
nodes per unit of time which makes the difference, this is taken
into account by the change degree of connectivity, shown in
Figure 8(c). In any case, faster nodes ensure better performance
in terms of delivery latency. In particular, the two weights wcdc
and wcol play a major role in this respect because the former
accounts for node mobility (change degree of connectivity) while
the latter focuses on node co-location. To assess their impact, we
performed a number of experiments with various combinations of
weights, using different speeds. We can appreciate the impact of
the choice of the values of the weights only with respect to speed
variations. To recreate the heterogeneity typical of real scenarios,
we set nodes’ speed in a range between 1m/s and an upper bound
S which we varied from 1 to 20m/s. Results are provided in
Figure 8. Not surprisingly, co-location is essential to ensure proper
delivery. Indeed, given the social network underneath, if a node
has been co-located with another node with a given interest, it is
highly likely that it will be co-located again in a near future with
another node sharing the same interest. This statement is fully
support by Figure 8(a): when co-location is not taken into account
(i.e., wcol < 0.5) delivery drops4. On the other hand, network
traffic is not significantly impacted by weights because it mostly
depends on the value of γ and TTL (see Figure 8(b)). This yields
that, while not significantly impacting on the traffic, co-location
is of paramount importance to correctly steer messages towards
subscribers.

3We took snapshots also at other instants and we observed similar distri-
butions.

4Note that wcol = x means wcdc = 1− x since we considered only two
weights normalized in order to have a sum of weights equal to 1.

8

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20

D
el

iv
er

y

Speed Upper Bound S

(a) Delivery

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 2 4 6 8 10 12 14 16 18 20

N
et

w
or

k
T

ra
ffi

c

Speed Upper Bound S

(b) Overhead

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 2 4 6 8 10 12 14 16 18 20

La
te

nc
y

Speed Upper Bound S

SocialCast (wcol = 0, wcdc = 1)
SocialCast (wcol = 0.25, wcdc = 0.75)

SocialCast (wcol = 0.5, wcdc = 0.5)
SocialCast (wcol = 0.75, wcdc = 0.25)

SocialCast (wcol = 1, wcdc = 0)

(c) Latency

Fig. 8. Delivery and overhead against the lower bound of the speed (lower
is always 1).

Looking at these results, one might argue that the utility related
to the change degree of connectivity (Ucdc) is of no use, because
in terms of delivery and network traffic there is no appreciable
difference between wcdc = 0.5 (corresponding to wcol = 0.5)
and wcdc = 0 (corresponding to wcol = 1). Nevertheless, taking
into account also node mobility is beneficial in terms of latency.
Indeed, as charted in Figure 8(c), the ability to identify faster
carriers enables achieving a faster delivery. For instance, when the
maximum speed is 6m/s, using wcdc = 0.5 instead of wcdc = 0

provides a reduction of the average delivery latency from 4000s to
less than 3000s. Clearly, when the average speeds become higher
(i.e., when S increases), the role of Ucdc becomes less evident
because all nodes move reasonably fast.

 0

 0.2

 0.4

 0.6

 0.8

 1

 8 10 12 14 16 18 20

D
el

iv
er

y

Interests

No Prediction
No Prediction (γ=10)

SocialCast
SocialCast (γ=10)

(a) Delivery

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 8 10 12 14 16 18 20

N
et

w
or

k
T

ra
ffi

c
Interests

No Prediction
No Prediction (γ=10)

SocialCast
SocialCast (γ=10)

(b) Overhead

Fig. 9. Delivery and overhead against the number of interests.

5) Interests: An important feature of our approach is the
ability to adapt to network conditions and to avoid generating
traffic when not needed. We already shown in Figure 5(b) that
SocialCast does not forward additional messages unless required.
To further demonstrate this, we run a set of experiments with dif-
ferent numbers of interests. Since in our simulations we assumed
at most one interest per node, increasing the number of interests
yields a lower number of recipients per message. The aim is to
show that our protocol is able to autonomously tune the traffic
generated according to the popularity of the interest, which, of
course, is unknown to the publisher.

Charts in Figure 9 support this claim. While delivery is always
well above 80%, SocialCast, in the default configuration (γ =

3), has considerably smaller overhead, 11, 000 instead of 15, 000,
when the number of interests increases from 7 to 20. Note that this
difference is not due to the smaller number of messages forwarded
to subscribers but, instead, it is a consequence of the fact that the
fewer the subscribers are the fewer nodes have been co-located
with them and, hence, the fewer good carriers will be around. This
can be proved by looking at the performance when no prediction
is used: the generated traffic remains constant because, without
prediction, the protocol has no indications about when a forward
is needed.

Looking at the chart in Figure 9(a), one might wonder why
delivery increases with the number of interests. The reason lies
in the number of interested nodes per message: the fewer interests
there are, the more nodes must receive the message. Hence,
γ = 3 is not sufficient to contact all the interested nodes. Indeed,

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 1500 2000 2500 3000 3500 4000

D
el

iv
er

y

Area Side

No Prediction SocialCast

(a) Delivery

 28000

 30000

 32000

 34000

 36000

 38000

 40000

 42000

 44000

 46000

 1000 1500 2000 2500 3000 3500 4000

N
et

w
or

k
T

ra
ffi

c

Area Side

No Prediction SocialCast

(b) Overhead

Fig. 10. Delivery and overhead against side length.

increasing γ to 10 enable contacting all the interested nodes5.
Conversely, when the number of interest increases (i.e., when the
number of recipients per message decreases), γ = 3 is enough to
achieve full delivery. It is interesting to note, however, that even
with γ = 10, we have the same decreasing trend in the network
traffic, confirming what we argued above.

6) Density: Finally, the last parameter we investigated is the
area density. Clearly, in a dense area the number of forwarded
messages will be higher than in a sparse one because multiple
routes will be available. Hence, to enable a fair comparison among
the different scenarios, we run our experiments without imposing
any TTL to remove any bias. Interestingly, since messages can
propagate for ever, both protocols, with and without prediction,
achieve full delivery (as shown in Figure 10). Nevertheless,
SocialCast outperforms the variant with no prediction because,
although the forwarded messages are not limited, it is able to
decrease the network traffic when not needed, i.e., when the
network becomes sparse and it is crucial to identify the good
carriers.

All the aforementioned results confirm the suitability of Social-
Cast for our scenarios and demonstrate the improvements intro-
duced by our prediction mechanisms. Indeed, thanks to prediction,
SocialCast performs more accurate selection and provides a more
efficient usage of resources, both in terms of network traffic and
memory. In addition, the ability to predict over the co-location
and the node mobility allows for maintaining a very high and
steady event delivery with a reasonably low traffic and latency.

5As shown in Figure 5(a), increasing TTL instead of γ would have
achieved the same result.

VI. RELATED WORK

To our knowledge, there is very little work addressing the
use of publish-subscribe paradigms for delay-tolerant networking.
Most research projects about routing in Delay Tolerant Networks
(DTN) [12] have focused on unicast [17], [24] and on opportunis-
tic infrastructure-less dissemination [6], [30]. In [21], Lindgren
et al. propose a probabilistic routing approach to enable asyn-
chronous communication among intermittently connected groups
of hosts. The calculation of the delivery probabilities is based,
somewhat simplistically, on the period of time of colocation of
two hosts and not on a forecasted colocation probability. Zhao et
al. in [37] discuss the so-called Message Ferrying approach for
message delivery in mobile ad hoc networks. The authors propose
a proactive solution based on the exploitation of highly mobile
nodes called ferries. These nodes move according to pre-defined
routes, carrying messages between disconnected portions of the
network. Our approach does not assume the a priori knowledge
of the movement of the potential carriers, but it is able to infer
it by evaluating the history of colocation with the other hosts.
The Context-aware Adaptive Routing (CAR) protocol is presented
in [24]. The approach has quite a refined model of prediction over
time series which has inspired the forecasting-based techniques
adopted in this work. However, CAR deals exclusively with
unicasting and its forwarding model is based on addresses and not
on interests. Recently, the key issue of the selection of message
carriers has been addressed in [1] by formulating it as a resource
allocation problem.

Approaches based on the replication of messages on all hosts
have also been presented, such as epidemic-style techniques [32]
that exploit a virus-spreading metaphor to indicate the dissem-
ination of information to all. The problem of broadcasting in
delay tolerant networks has also been studied in [19], where an
analysis with different mobility models is presented. Solutions
which exploit more constrained number of message copies have
exploited erasure coding techniques [5] to improve performance
in terms of delivery ratio given a certain degree of redundancy in
the system [16], [34].

While broadcasting has attracted a lot of the researchers inter-
est, the work presented in [38] concentrates on DTN multicast
routing and temporal issues for delay tolerant networking, trying
to account for temporal group membership. More recently, Yoneki
et al. in [36] discuss the design of a publish-subscribe com-
munication overlay based on the distributed detection of social
groups by means of centrality meausures [15]. This system relies
on the detection of communities for event notification, whereas
our approach is based on contacts between pairs of hosts only. In
other words, it assumes a previous knowledge of all the social ties
between all the individuals carrying the devices and the emerging
community structures before starting the communication process.

In terms of opportunistic unicast networking in human net-
works, social ties have been exploited to support communica-
tion in Pocket-Switched Networks: for example, LABEL [14]
exploits clustering algorithms to group nodes in communities by
evaluating their colocation patterns. Messages sent to a certain
recipient are forwarded to hosts of the same community, since
these have a higher probability of getting in reach of the re-
cipient in the future. However, the model requires that every
node of the network is statically “tagged”, i.e., associated to
a certain community. Another example of unicast routing in
intermittently connected mobile ad hoc networks founded on

10

social network concepts is SOLAR [13] that exploits macro-
mobility patterns between groups of nodes that are detected using
machine learning techniques. More recently in [9] the authors
use social network analysis to extract communities ties among
the individuals carrying the devices. This a priori knowledge of
the structure of the underlying social network is then used as a
basis of the routing decisions. SocialCast instead implements a
one-to-many communication paradigm and is based on colocation
and movement patterns rather than on an explicit analysis of the
emergent clustering of hosts into communities.

Solutions to support communication by means of a pub-
lish/subscribe paradigm have been proposed for large-scale wired
networks. Most of these approaches target fixed networks of
brokers, with some notable exceptions (e.g., [4]) supporting also
client mobility. These solutions, however, are clearly not suitable
to our scenario, in which no fixed infrastructure can be assumed.
In the close area of MANETs, there has been a consistent body
of work concerning multicast communication. However, results
are not directly reusable given the peculiarity posed by content-
based routing, which instead has been addressed by very few
works in literature. Content Based Multicast (CBM) [39] and
STEAM [23] provide a notion of spatial scope which defines the
area messages are propagated within. In particular, CBM allows
publishers to specify the direction and the distance an message
is spread. Similarly, STEAM limits the message propagation to a
proximity area, inside which messages are broadcast and locally
matched against subscriptions. With respect to these approaches,
our protocol enjoys wider applicability, as messages are delivered
throughout the network, based on node interests, regardless their
locations. Autonomous Gossip [10] shares an idea similar to ours,
by pushing message towards potential receivers in a content-based
fashion, according to node “similarities”. However, the authors
neither give details on how this notion of similarity is actually
computed and disseminated, nor provide quantitative analysis
on the performance of their protocol. Another closely related
approach is discussed in [2], where nodes keep track of the last
time they have been in range of others with the same interests.
This information is used to select the best forwarders to deliver
a message. This prediction mechanism is more primitive and
coarse-grained than ours, therefore implying more inaccurate mes-
sage forwarding. Moreover, the approach assumes a very simple
mobility model and offers no support for disconnected operation.
In [8], an approach to publish-subscribe for MANETs based
on a combination of probabilistic and deterministic information
dissemination techniques is presented: SocialCast instead uses a
prediction based mechanism to drive the spreading, combined
with store-and-forward to cope with intermittently connected
networks.

Finally, we believe that SocialCast can be an example of
protocol supporting new abstractions for modern communication
systems inspired by the publish/subscribe paradigm like those
proposed in [11].

VII. CONCLUSIONS AND FUTURE WORK

This paper presented SocialCast, a interest-based routing proto-
col to support delay tolerant communication in human networks.
The approach assumes that socially bound hosts are likely to
be co-located regularly: these colocation patterns are then used
to efficiently route the messages from publishers to interested
subscribers. The social ties selection is made by taking into

account predictions about contextual parameters (e.g., colocation
and mobility patterns), based on previous observations. We have
evaluated our approach in realistic scenarios with disconnections
to demonstrate the advantages of the prediction and store and for-
ward strategies in terms of message delivery, delay and overhead.
We would like to be able to test the performance of SocialCast
with a higher number of interests: this implies the re-engineering
of the mobility framework of our simulator. We also plan to
perform an analytical evaluation of the protocol. The key issue
is to characterise network connectivity given the fact that the
underlying connectivity graph is time-variant dependent on the
mobility model.

We plan to implement SocialCast on the Haggle platform [31]
as a Forwarding Algorithm. Up to our knowledge this will be the
first available protocol to support one-to-many communication for
this framework. We also plan to refine the subscription model,
allowing for more refined content representation, and to design
filtering mechanisms based on it. The integration of temporal
validity constraints in the subscription semantics is among our
current research directions. However, we observe that these as-
pects are orthogonal to the forwarding mechanisms presented in
this article. Future work will also address the dynamic adaptation
of the number of replicas to network conditions, as well as the
inclusion of additional contextual information in our predictions
as encompassed by the general framework we described in
Section IV. This will enable further improvements, as well as
the deployment of our technique to related fields, e.g., wireless
sensor networks.

ACKNOWLEDGMENTS

The work is partially supported by projects EPSRC CREAM and
ESF MINEMA. Mirco Musolesi is supported from a research
program in the Institute for Security Technology Studies at
Dartmouth College, under award 60NANB6D6130 from the U.S.
Department of Commerce. The statements, findings, conclusions,
and recommendations are those of the authors and do not neces-
sarily reflect the views of the National Institute of Standards and
Technology (NIST) or the U.S. Department of Commerce.

REFERENCES

[1] A. Balasubramanian, B. N. Levine, and A. Venkataramani. DTN Routing
as a Resource Allocation Problem. In Proceedings of SIGCOMM’07,
August 2007.

[2] R. Baldoni, R. Beraldi, G. Cugola, M. Migliavacca, and L. Querzoni.
Content-based routing in highly dynamic mobile ad hoc networks.
Journal of Pervasive Computing and Communication, 1(4), 2005.

[3] P. J. Brockwell and R. A. Davis. Introduction to Time Series and
Forecasting. Springer, 1996.

[4] I. Burcea, H.-A. Jacobsen, E. de Lara, V. Muthusamy, and M. Petro-
vic. Disconnected Operation in Publish/Subscribe Middleware. In
Proceedings of the 5th IEEE International Conference on Mobile Data
Management (MDM’04), Los Alamitos, CA, USA, 2004.

[5] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital
fountain approach to reliable distribution of bulk data. In Proceedings
of SIGCOMM’98, pages 56–67, 1998.

[6] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott.
Impact of Human Mobility on the Design of Opportunistic Forwarding
Algorithms. In Proceedings of INFOCOM’06, April 2006.

[7] C. Chatfield. The Analysis of Time Series An Introduction. Chapman
and Hall, 2004.

[8] P. Costa and G. P. Picco. Semi-probabilistic Content-Based Publish-
Subscribe. In Proceedings of the 25th IEEE International Conference
on Distributed Computing Systems (ICDCS’05), Columbus (Ohio, USA),
June 2005.

11

[9] E. M. Daly and M. Haahr. Social network analysis for routing in
disconnected delay-tolerant MANETs. In Proceedings of the 8th ACM
International Symposium on Mobile ad hoc networking and computing
(MobiHoc’07), pages 32–40, New York, NY, USA, 2007. ACM Press.

[10] A. Datta, S. Quarteroni, and K. Aberer. Autonomous Gossiping: A self-
organizing epidemic algorithm for selective information dissemination
in mobile ad-hoc networks. In Proceedings of International Conference
on Semantics of a Networked World, June 2004.

[11] M. Demmer, K. Fall, T. Koponen, and S. Shenker. Towards a Modern
Communications API. In Proceedings of the 6th Workshop on Hot
Topics in Networks (HotNets-VI), Atlanta, GA, November 2007.

[12] K. Fall. A delay-tolerant network architecture for challenged internets.
In Proceedings of SIGCOMM’03, August 2003.

[13] J. Ghosh, S. J. Philip, and C. Qiao. Sociological Orbit aware Location
Approximation and Routing (SOLAR) in MANET. Elsevier Ad Hoc
Networks Journal, 5(2):189–209, March 2007.

[14] P. Hui and J. Crowcroft. How small lables create big improvements. In
Proceeding of IEEE ICMAN’07, March 2007.

[15] P. Hui, E. Yoneki, S.-Y. Chan, and J. Crowcroft. Distributed community
detection in delay tolerant networks. In Proceedings of ACM SIGCOMM
MobiArch’07, August 2007.

[16] S. Jain, M. Demmer, R. Patra, and K. Fall. Using redundancy to
cope with failures in a delay tolerant network. In Proceedings of
SIGCOMM’05, pages 109–120, New York, NY, USA, 2005. ACM Press.

[17] S. Jain, K. Fall, and R. Patra. Routing in a Delay Tolerant Network. In
Proceedings of SIGCOMM’04, pages 145–158. ACM Press, 2004.

[18] R. E. Kalman. A new approach to linear filtering and prediction
problems. Transactions of the ASME Journal of Basic Engineering,
March 1960.

[19] G. Karlsson, V. Lenders, and M. May. Delay-tolerant broadcasting. In
Proceedings of the 2006 SIGCOMM workshop on Challenged networks
(CHANTS’06), pages 197–204, New York, NY, USA, 2006. ACM Press.

[20] R. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preference
and Value Tradeoffs. Wiley, 1976.

[21] A. Lindgren, A. Doria, and O. Schelen. Probabilistic Routing in Inter-
mittently Connected Networks. Mobile Computing and Communications
Review, 7(3), July 03.

[22] M. Mcpherson. Birds of a feather: Homophily in social networks. Annual
Review of Sociology, 27(1):415–444, 2001.

[23] R. Meier and V. Cahill. STEAM: Event-Based Middleware for Wireless
Ad Hoc Networks. In Proc. of the 1st International Workshop on
Distributed Event-Based Systems, July 2002.

[24] M. Musolesi, S. Hailes, and C. Mascolo. Adaptive Routing for
Intermittently Connected Mobile Ad Hoc Networks. In Proceedings
of the 6th International Symposium on a World of Wireless, Mobile, and
Multimedia Networks (WoWMoM’05). Taormina, Italy. IEEE press, June
2005.

[25] M. Musolesi and C. Mascolo. Evaluating context information pre-
dictability for autonomic communication. In Proceedings of 2nd IEEE
Workshop on Autonomic Communications and Computing (ACC’06).
Co-located with 7th IEEE Int. Symp. WoWMoM’06, Niagara Falls, NY,
June 2006. IEEE Computer Society Press.

[26] M. Musolesi and C. Mascolo. Designing mobility models based on
social network theory. ACM SIGMOBILE Mobile Computing and
Communication Review, 11(3), July 2007.

[27] M. E. J. Newman and M. Girvan. Finding and evaluating community
structure in networks. Physical Review E, 69, February 2004.

[28] B. Pasztor, M. Musolesi, and C. Mascolo. Opportunistic Mobile Sensor
Data Collection with SCAR. In Proceedings of the 4th IEEE Interna-
tional Conference on Mobile Ad-hoc and Sensor Systems (MASS’07),
Pisa, Italy, October 2007. IEEE Press.

[29] T. Spyropoulos, K. Psounis, and C. S. Raghavendra. Spray and wait: an
efficient routing scheme for intermittently connected mobile networks.
In Proceeding of WDTN’05, pages 252–259, New York, NY, USA, 2005.
ACM Press.

[30] J. Su, A. Goel, and E. de Lara. An Empirical Evaluation of the Student-
Net Delay Tolerant Network. In Proceedings of MOBIQUITOUS’06,
San Jose, California, July 2006.

[31] J. Su, J. Scott, P. Hui, E. Upton, M. H. Lim, C. Diot, J. Crowcroft,
A. Goel, and E. de Lara. Haggle: Clean-Slate Networking for Mobile
Devices. Technical Report UCAM-CL-TR-680, January 2007.

[32] A. Vahdat and D. Becker. Epidemic routing for Partially Connected Ad
Hoc Networks. Technical Report CS-2000-06, Department of Computer
Science, Duke University, 2000.

[33] A. Varga. The OMNeT++ discrete event simulation system. In
Proceedings of ESM’2001, Prague, 2001.

[34] Y. Wang, S. Jain, M. Martonosi, and K. Fall. Erasure-coding based
routing for opportunistic networks. In Proceedings of the 2005 ACM
SIGCOMM Workshop on Delay Tolerant Networking (WDTN’05), pages
229–236, New York, NY, USA, 2005. ACM Press.

[35] D. J. Watts. Small Worlds The Dynamics of Networks between Order
and Randomness. Princeton Studies on Complexity. Princeton University
Press, 1999.

[36] E. Yoneki, P. Hui, S. Chan, and J. Crowcroft. A socio-aware overlay
for publish/subscribe communication in delay tolerant networks. In
Proceedings of the 10th ACM Symposium on Modeling, analysis, and
simulation of wireless and mobile systems (MSWiM ’07), pages 225–234,
New York, NY, USA, 2007. ACM.

[37] W. Zhao, M. Ammar, and E. Zegura. A Message Ferrying Approach
for Data Delivery in Sparse Mobile Ad Hoc Networks. In Proceedings
of MobiHoc’04, May 2004.

[38] W. Zhao, M. Ammar, and E. Zegura. Multicasting in delay tolerant
networks: semantic models and routing algorithms. In Proceedings
of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking
(WDTN’05), pages 268–275, New York, NY, USA, 2005. ACM Press.

[39] H. Zhou and S. Singh. Content based multicast (CBM) in ad hoc
networks. In Proceedings of MobiHoc’00, August 2000.

APPENDIX

In this appendix we present the forecasting model used for the
prediction of context information in our protocol.

A state space model for a time series Yt consists of two
equations. The first one called the observation equation is the
following

Yt = GtXt + Wt t = 1, 2, ...

with Wt defined as6

Wt = WN(0, Rt)

This equation defines the w-dimensional observation {Yt} as a
linear function of a v-dimensional state variables {Xt} and a noise
term. The second one is the state equation defined as follows

Xt+1 = FtXt + Vt t = 1, 2, ...

with Vt defined as

Vt = WN(0, Qt)

This equation determines the state Xt+1 at time t+ 1 in terms of
the previous state Xt and a noise term. Let w as the dimension
of Yt and v as the dimension of Xt, {Gt} is a sequence of w×v
matrices and {Ft} is a sequence of v × v matrices. We assume
that {Vt} is uncorrelated with {Wt}, even if a more general form
of the state space model allows for correlation between these two
variables. Analytically, we can rewrite this condition as follows

E(WsVTt) = 0 ∀ s, t

We also assume that the initial state X1 is uncorrelated with all
of the noise terms {Vt} and {Wt}.

With the notation of Pt(X) we refer to the best linear predictor
(in the sense of minimum mean-square error) of X in terms of Y
at the time t. Pt(X) is defined as follows

Pt(X) ≡
ˆ
Pt(X1) ... Pt(Xv)

˜T
where

Pt(Xi) ≡ P (Xi|Y0,Y1, ...,Yt)

6WN stands for White Noise, which is a sequence of uncorrelated random
variables Xt, each with the same mean and variance σ2. Therefore, it is
also an example of stationary time series. More specifically, the notation
WN(0, {Rt}) indicates white noise with zero mean and variance Rt.

12

P (Xi|Y0,Y1, ...,Yt) indicates the best predictor of Xi given
Y0, ...,Yt. We can also observe that Pt(X) has the following form

Pt(X) = A0Y0 + ...+AtYt

since it is a linear function of Y0, ...,Yt. It is possible to prove [3]
for the state space model discussed in the previous section that
the one-step predictor bXt ≡ Pt−1(Xt)

and their error covariance matrices

Ωt = E[(Xt − bXt)(Xt − bXt)T]

are determined by these initial conditionsbX1 = P (X1|Y0)

Ω1 = E[(X1 − bX1)(X1 − bX1)T]

and these recursive equationsbXt+1 = FtbXt + Θt∆
−1
t (Yt −GtbXt)

Ωt+1 = FtΩtF
T
t +Qt −Θt∆

−1
t ΘTt

where
∆t = GtΩtG

T
t +Rt

Θt = FtΩtG
T
t

As estimation model, we use a basic state space model composed
of the following two scalar equations

Yt = Xt +Wt t = 1, 2, ...

with
Wt = WN(0, Qt)

and
Xt+1 = Xt + Vt t = 1, 2, ...

with
Vt = WN(0, Rt)

With respect to the Kalman filter prediction, we can consider a
mono-dimensional system with

Gt = [1]

Ft = [1]

Therefore, we can derive the recursive equations of the Kalman
filter for the prediction of the values of this series. Given the
previous observed value Yt and the predicted value at time t, bXt,
the recursive equation for the determination of the predicted value
at time t+ 1 is

bXt+1 = bXt +
Ωt

Ωt +Rt
(Yt − bXt)

with
Ωt+1 = Ωt +Qt −

Θ2
t

Ωt +Rt

Since in this case
Ωt = Θt

we can also write

Ωt+1 = Ωt +Qt −
Ω2
t

Ωt +Rt

Paolo Costa is currently a Postdoctoral Researcher
with the Department of Computer Science, Vrije
Universiteit, Amsterdam. He holds an MSc (2002)
and a Ph.D. (2006) degree in Computer Engineering
from the Politecnico di Milano, Italy. His research
interests include large scale distributed systems,
wireless sensor networks, vehicular information dis-
semination, and gossip-based protocols. Further de-
tails are available at http://www.cs.vu.nl/
˜costa.

Cecilia Mascolo is an EPSRC Advanced Research
Fellow and a University Lecturer in the Computer
Laboratory, University of Cambridge. Prior to this,
she was with the Department of Computer Sci-
ence, University College London. She holds an MSc
(1995) and a Ph.D. (2001) in Computer Science
from University of Bologna (Italy). She has been
a visiting fellow in Washington University in St.
Louis in 1998. She has published extensively in
the areas of opportunistic mobile network routing,
realistic mobility models exploiting social theory,

mobile sensor networks, middleware for pervasive and context- aware systems.
Dr. Mascolo is currently working on EPSRC, EU and industry funded projects
on opportunistic routing for mobile and sensor networks and embedded
systems middleware, with applications in wildlife monitoring, emergency
rescue operations and vehicular information dissemination. Dr. Mascolo has
served as a Technical Programme Committee member in many middleware,
software engineering, mobile system, delay tolerant network ACM and IEEE
conferences and workshops. More details of her profile are available at
http://www.cl.cam.ac.uk/˜cm542.

Mirco Musolesi is a Postdoctoral Research Fellow
at the Department of Computer Science, Dartmouth
College, NH, USA. He is a Fellow of the Institute
of Security Technology Studies at Dartmouth. Previ-
ously, he has been a Research Fellow at University
College London, University College London (2005-
2007). He also spent a research period at INRIA
Rocquencourt, France in 2003. He holds a PhD in
Computer Science from University College London,
United Kingdom (2007) and a MSc in Electronic
Engineering from the University of Bologna, Italy

(2002). His research interests include delay tolerant networking, mobile net-
working and systems, wireless sensor systems, mobility modeling and social
network based systems. More information about his profile and his research
work can be found at http://www.cs.dartmouth/˜musolesi.

Gian Pietro Picco is an Associate Professor
in the Dipartimento di Ingegneria e Scienza
dell’Informazione (DISI) at University of Trento,
Italy. Previously, he has been on the faculty of Wash-
ington University in St. Louis, MO, USA (1998-
1999) and Politecnico di Milano, Italy (1999-2006).
He holds a Ph.D. from Politecnico di Torino, Italy
(1998). The goal of his current research is to ease the
development of modern distributed systems through
the design and implementation of appropriate pro-
gramming abstractions and of communication proto-

cols efficiently supporting them. His work spans the research fields of software
engineering, middleware, and networking, and is oriented in particular towards
wireless sensor networks, mobile computing, and large-scale distributed
systems. More information at http://disi.unitn.it/˜picco.

