
LASSO: A Device-to-Device
Group Monitoring Service for Smart Cities

Matteo Saloni
University of Trento, Italy

matteo.saloni@studenti.unitn.it

Christine Julien
The University of Texas, USA

c.julien@utexas.edu

Amy L. Murphy
Bruno Kessler Foundation, Italy

murphy@fbk.eu

Gian Pietro Picco
University of Trento, Italy
gianpietro.picco@unitn.it

Abstract—Many smart city applications involve groups of
individuals that wish to remain together as they move throughout
the city. For example, a group of tourists may be monitored by
a tour operator to keep the group together and on schedule.
Alternatively, a group of elementary school children in transit
to school should be closely supervised by an adult to ensure the
children stay safe. This paper presents LASSO, a smartphone-
based service that exploits wireless devices carried by each group
member to provide infrastructure-free group formation and
monitoring. We show how smartphones equipped with Bluetooth
Low Energy (BLE) can be used as personal beacons in a device-
to-device group monitoring protocol to allow each user to join a
group and see a distributed view of group membership in real
time. While LASSO is general purpose in nature, we demonstrate
it and evaluate its performance through a prototype application
used by a tourist guide to monitor tour participants.

Index Terms—IoT, WSN, neighbor discovery

I. INTRODUCTION

Applications in which cohesive groups of individuals move
about abound in smart cities. In some cases a leader carefully
monitors those present, while in other cases the groups operate
with a kind of group responsibility, without a leader, but still
in a cohesive manner.

To exemplify the generic needs of groups in smart cities,
this paper focuses on city tours in which a group of tourists is
often coherent as it moves from site to site. In this case, a tour
guide desires to ensure no one wanders away from the group.
Alternatively, the large group can disperse throughout the city,
with smaller groups moving together without a specifically
designated leader, but with the objective to stay together.

Similar scenarios arise in many other domains, including
groups of children in transit to or from school or under a
teacher’s supervision on a field trip. Other groups may include
maintenance or construction workers or groups of friends on a
social outing. Here we focus on the tour group as the dynamics
of the scenario are sufficiently diverse to capture many cases,
including the optional presence of a designated leader.

Our objective is to support group monitoring through a
smartphone service that leverages device-to-device interactions
among individuals’ devices. Developers can then directly
incorporate this service into application implementations. We

This work has been partially supported by the CLIMB project of the FBK
Smart Community Lab and the National Science Foundation, CNS-1239498.
Matteo Saloni was the recipient of a student grant by the IEEE Smart Cities
initiative in Trento.

assume that each group member carries a wireless-capable
device, but we build our solution using only local, device-to-
device interactions. In other words, we do not use any cellular
or WiFi infrastructure for group monitoring. In the end, our
service, LASSO, presents each group member with a real-time
representation of the current group membership. To the best of
our knowledge, LASSO is the only group membership solution
that operates in an entirely distributed manner and supports the
discovery and maintenance of groups in which devices may
be connected only across multiple network hops.

Under the hood we use a group membership algorithm [1]
that relies on local, one-hop messages exchanged between
neighboring nodes. These messages facilitate device discovery
and information exchange among pairs of nodes to allow
the distributed discovery of a group whose connectivity may
span multiple network hops. LASSO instantiates this algorithm
using Bluetooth Low Energy (BLE); we provide applications
access to the group membership capabilities through an An-
droid service that continuously reports to applications changes
in group membership (e.g., an individual joining or leaving).

II. BUILDING BLOCKS

We introduce the two key building blocks of our service:
(1) the use of BLE advertisements to support one-hop neighbor
discovery and (2) the CLOCKS group monitoring protocol.

A. Neighbor Discovery with BLE Advertisements

While many approaches provide neighbor discovery using
infrastructure assistance, we focus on an entirely infrastruc-
tureless solution in which each device plays both sides of the
discovery role: periodically announcing its presence to other
devices and scanning on some schedule to detect the presence
of nearby devices. Many general neighbor discovery schemes
exist [2]; here we briefly describe a simple scheme and how
we adapt it to function on Bluetooth Low Energy (BLE), a
technology that is readily available on many smartphones.

Generically, an infrastructureless neighbor discovery service
delivers to the application a list of the identifiers of discovered
neighboring devices. As the neighbors change due to device
mobility, the service must regularly update the application.
Many variations of such continuous neighbor discovery pro-
tocols exist, employing differing strategies for scheduling the
beaconing and scanning schedules, both based on fixed-length
slots [3]–[7] and without such slots [8], [9]. In this paper, we

978-1-5386-2524-8/17/$31.00 © 2017 IEEE

use a simple, slotless scheme that alternates between scanning
and beaconing based on a fixed schedule. In the future, we
intend to connect our group discovery service with our own
slotless neighbor discovery protocol for BLE, BLEnd [8]. In
the remainder of this section, we highlight some idiosyncrasies
of BLE that must be handled in order to use it as the
foundation of a neighbor discovery service.

BLE is a wireless communication technology that empha-
sizes low-power and short-range operation. BLE operates in
the same spectrum as classic Bluetooth (2.4GHz band) but
uses a different set of channels, three of which are dedicated
to device discovery; the standard natively supports neighbor
discovery, as it is fundamental to most BLE use cases. BLE
uses a message-based neighbor discovery procedure that relies
on the periodic broadcast of undirected beacons over dedicated
advertising channels. In most BLE use cases, a device takes on
one of two roles: the advertising device, which is discoverable,
or the scanning device, which discovers other devices. To
support group discovery, however, every device must be both
discoverable and able to discover other devices. Therefore we
create a BLE profile in which a device periodically switches
between the advertising and scanning behaviors, and we em-
ploy randomization to prevent long-term synchronization of
peers’ advertising and scanning schedules.

Continuously broadcasting a device’s BLE address can
be considered a privacy concern, since it enables tracking
of the person associated with the device. For this reason,
BLE uses short-lived, fictional addresses to limit exposure.
As we must uniquely identify the devices for the lifetime
of the group management service, we cannot exploit these
changing identifiers and therefore assign each device a fixed
(application-specific) identifier. The details of how to handle
this for each application are outside the scope of this paper.

Finally, BLE beacons are significantly limited in size.
Nevertheless, after the application-defined ID is included, a
small amount of payload remains available for customization
by higher layers. The next section outlines the data our group
monitoring service needs to transmit inside the beacons, while
Section III-B provides implementation details about how this
data is carried by BLE advertisements. We do not consider
privacy, but note that the payload including the identifier can
be encrypted by a key shared with group members.

B. Group Monitoring with CLOCKS

For our purposes, a group is defined as a set of devices that
are transitively connected to one another via network com-
munication. The primary requirement of a group monitoring
service is to enable every member device to know, at any given
time, the identity of the other devices in the connected group.
We note that this definition is agnostic of whether the group
has a designated leader responsible for group cohesion.

Because we use transitive network connectivity as a proxy
for group connectivity, a group monitoring protocol can be
directly supported by the ability of individual devices to detect
the presence of other members in the reachable area. There-
fore, we assume that every device participates in a low-level

device discovery protocol as described previously, over which
the device shares its view of the group status, thereby enabling
distributed discovery of the entire group over multiple network
hops. Simply discovering neighboring devices and sharing
this information with other connected devices is however
not sufficient; changes in group membership caused by the
departure of devices must also be detected and disseminated
to properly ensure a consistent view.

In summary, a group monitoring service satisfying our
requirements should, for every device in the network:
R1) detect nearby devices directly reachable (i.e., within one

network hop);
R2) detect nearby devices reachable over multiple hops;
R3) detect changes in group composition over time; and
R4) deliver a complete and (eventually) consistent group

view to each group member.
To achieve these goals, we rely on the CLOCKS group mon-

itoring protocol [1], which was designed to provide a run-time
view of the group membership of a set of potentially mobile
wireless sensor nodes, in contrast to pre-existing approaches
that focused on a-posteriori log and trace analyses.

CLOCKS relies on vector clocks [10]. Each device maintains
a local logical clock, i.e., a counter that represents “ticks”,
and an array containing the logical clocks of all the nodes
in of the group—the vector clock. Each node periodically
broadcasts its vector clock, asynchronously with respect to
other nodes; in our case, we insert the node identifier and the
vector clock directly in the neighbor discovery advertisement.
Upon receiving a vector clock, each node merges it with its
local one by preserving, for each element, only the larger
value, as the latter represents the most up-to-date timestamp
associated with a node. Further, the node’s local clock is set
to the maximum clock value found in the vector clock, to
re-establish a common time reference of sorts.

As an example, consider a small network composed of four
nodes arranged in a line A-B-C-D, and assume that the vector
clock is 〈5, 3, 2, 1〉 at A and 〈3, 4, 3, 4〉 at B. The ith element
is the clock of the ith node. When A receives the vector clock
broadcast by B, it learns about the most recent clocks at the
other nodes; this knowledge is reflected by updating A’s vector
clock to 〈5, 4, 3, 4〉. On the other hand, when A broadcasts its
own vector clock, B learns about A’s new local clock; as this
is also higher than B’s own local clock, the latter is updated
accordingly, yielding a new vector clock 〈5, 5, 3, 4〉 at B.

This process is performed continuously at all nodes, updat-
ing each node’s local view. Notably, this happens irrespective
of changes in the network topology, as long as the network
remains connected. For instance, D could move to the head
of the line yielding a topology D-A-B-C, yet the periodic
dissemination and merging of vector clocks ensures that the
correct view is eventually re-established.

Further, by analyzing the received vector clocks for dif-
ferences between logical clocks, each node can detect the
disconnection of others. For instance, assume that A receives
consecutive vector clocks in which the timestamp associated
with D is always 4, while everyone else’s clocks are increased.

This means that no node in the network has disseminated a
new value of D, and therefore D is no longer connected to
the others. In our group monitoring service, the disconnection
of a node is signaled at another when the difference between
their clocks is above a configurable threshold.

The frequency of neighbor discovery advertisements im-
pacts the convergence time of the group monitoring service;
the longer the interval between periodic beacons, the longer
it takes the group to notice the departure of one or more of
its members. In its original formulation, the CLOCKS protocol
assumes that every device “ticks” its local logical clock at
a fixed rate relative to a real-time clock on the device [1].
However, the clock also ticks when an advertisement is
received in which one of the elements in the vector clock
has a value higher than the the local logical clock. From a
practical perspective, clocks are represented by an integer with
a fixed maximum value that depends on the number of bits
allocated to store and communicate the value. If the clock
ticks more frequently than necessary, the value will reach the
maximum and the clock will rollover back to zero. If the clock
rolls over too frequently, it can be difficult to set a reasonable
threshold value. To reduce the frequency of clock ticks, we
make a simple modification to the original CLOCKS, namely
we reset the timer associated to the periodic tick each time we
update the local clock as a result of a received vector clock.

We note that one benefit of this approach is that it does not
require symmetric discovery. That is, it is not necessary for
pairs of devices to discover each other for them to agree on
a view of the group membership. Instead, CLOCKS inherently
enables transitive discovery through its shared vector clocks.

Revisiting the requirements, our solution supports R1 by de-
tecting one-hop neighbors directly via advertisement reception
and R2 by identifying nearby devices multiple hops away via
the dissemination of vector clocks of transitively connected
devices. Changes in group composition over time, R3, are
detected by monitoring the contents of the received vector
clocks and detecting neighbors with stale clock values. Finally,
R4 is ensured by the combination of the first three and the fact
that every device behaves the same with no designated leader.

III. LASSO: GROUP MONITORING SERVICE

Given the building blocks of the previous section, we now
describe our complete group monitoring service for Android,
LASSO, which realizes the CLOCKS protocol, addressing the
added constraints of using BLE as the underlying technol-
ogy for neighbor discovery. By leveraging common, personal
devices, our service has a lower adoption barrier than one
running on embedded or custom devices.

This section starts with an overview of the architecture
then provide the details of the BLE beacons that provide
the communication substrate and finishes with the application
programming interface (API) of the group monitoring service
and a sample application that uses it.

A. Architecture
Fig. 1 shows the overall architecture of the system with the

bottom layers reifying the building blocks described in the

previous section. Our solution relies on every participating
device having BLE to send and scan for beacons; this use
of BLE is incorporated into a neighbor discovery abstraction,
wherein we define the contents of a beacon including our
service-defined unique device IDs and a payload that carries
information specific to the group monitoring service. The
group monitoring service implements the CLOCKS protocol.
Finally, LASSO offers an application programming interface
(API) so that applications can incorporate group monitoring
behavior, ultimately supporting user interaction, visualizations,
notifications, or any other use of group information.

B. Implementation Details

The key abstraction in CLOCKS is the vector clock that is
shared and received by each group member. In this section, we
walk through the creation, update, dissemination, reception,
and use of vector clocks, including their interplay with the
BLE beacon technology used as a foundation.

At the core of the neighbor discovery layer, our system
relies on device-to-device communication to detect neighbors
and to distribute vector clocks. In the development of LASSO,
we explored the use of both BLE [11] and Wi-Fi Direct [12].
To select the appropriate technology, we considered the re-
quirements of the group monitoring service. The selected
technology should provide a periodic beacon that can carry the
CLOCKS vector clocks. It should also be widely available and
usable on commodity mobile devices. BLE is widely available,
but largely due to the low-energy nature of the protocol, the
beacons in BLE are very small. They can accommodate our
vector clocks, but only for groups of a limited size. On the
other hand, Wi-Fi Direct’s beacons are variable in length and
can therefore accommodate vector clocks of any size. Wi-Fi
Direct is also available on most commodity devices, but the
protocol stack for employing it is unwieldy due to human-
in-the-loop authentication requirements, and its behavior on
commodity devices is still unstable.

Based on these considerations, our initial implementation of
the neighbor discovery layer from Fig. 1 relies on BLE and
uses a single BLE beacon to disseminate the vector clock.

A BLE beacon is a 47-byte packet, of which 8B are
reserved by header and CRC. Android reserves 8B for its

Fig. 1. High-level group monitoring service architecture.

own header and sending device’s address, leaving only 31B
to the application. Further, Android offers two constrained
ways to write the payload of a BLE beacon: using service
data or manufacturer data. Using service data, each payload
must carry a 128-bit UUID, used to streamline beacon filtering
associated with a given service. This, however, leaves only 15B
available to the application. Using manufacturer data, on the
other hand, Android reserves 10B to identify the manufacturer,
leaving the remaining 21B application-writeable.

To implement CLOCKS using these 21B, each beacon con-
tains the following:

• a custom identifier for our group monitoring service (2B)
• the group membership protocol’s application identifier for

the sender device (1B)
• the vector clock (up to 18 entries, each 1B)
The service identifier allows us to easily determine beacons

that belong to our group monitoring service. The application-
level device identifier addresses one of the Bluetooth limita-
tions described in Section II: for privacy reasons, the device
addresses in Android BLE change continuously. Using one
byte means that we can address up to 255 different devices
(i.e., potential group members). However, the 18B reserved for
the vector clock limits us to 18 group members. The vector
clock is then an ordered list of each of the 18 devices’ known
clock values. Because each clock is 1 byte, the clocks can tick
255 times before they “roll over” to 0. For a group of size 18,
this granularity is more than sufficient to avoid confusion.

The limitations above are induced primarily by the Android
BLE implementation. Other implementations of the neighbor
discovery service could fragment larger vector clocks across
multiple successive beacons or simply utilize alternate beacon
technologies. On the other hand, such implementations come
with the need to mitigate delays in the propagation of vector
clock information in the case of fragmented vector clocks
or increased energy usage in the case of larger beacons.
With the emergence of Bluetooth 5, it is possible to consider
spreading the beacon contents across multiple beacons or using
variably sized beacons. However, as Bluetooth 5 is still largely
unavailable, we consider only Bluetooth 4.

Starting with Android 5, the operating system supports
devices operating in peripheral mode, the mode necessary
to allow the device to send beacons. Our implementation
of the CLOCKS protocol, is therefore compatible with any
device running Android 5 or later. However, support for
peripheral mode goes beyond just the operating system support
and requires hardware support as well. Therefore, our group
monitoring service will only function completely on devices
that physically support peripheral mode1.

As not all Android devices support this version of the
BLE stack, we are also developing a proxy interface that
allows us to extend a standard Android smartphone with a TI
SensorTag2, where we have full control over the BLE protocol.

1https://altbeacon.github.io/android-beacon-library/
beacon-transmitter-devices.html

2http://www.ti.com/ww/en/wireless connectivity/sensortag/

TABLE I
LASSO: GROUP MEMBERSHIP SERVICE API

Functions
function nameID()

allows application to assign a (local) intuitive name to a specific ID
function setClockResolution(int milliseconds)

set the frequency of the logical clock tick (default = 30 seconds)
function setTimeout(int ticks)

set number of missed ticks that indicate a member left (default = 2)
function getGroup()

return the list of IDs of current group members
Events

event newMember(ID)
raised when a new member becomes part of the group

event departedMember(ID)
raised when a member departs the group

In this case, the neighbor discovery layer in Fig. 1 is replaced
by a proxy implementation that connects the group monitoring
service running on the Android device to a neighbor discovery
service running on the SensorTag. The connection from the
Android device to the SensorTag uses BLE’s connected mode,
and this connection carries information transferred across the
interface between group monitoring and neighbor discovery in
both directions. This simple mechanism allows us to test our
system with a wider range of smart phones, albeit adding the
requirement to pair with an external SensorTag.

The details hitherto discussed concern the neighbor discov-
ery layer in Fig. 1. This layer exposes an interface to the
CLOCKS implementation in the group monitoring service that
allows the latter to set the beacon contents (via a function
setBeaconContents that accepts the byte representation
of the vector clock as a parameter) and a single event callback
that delivers any received vector clock back to the group
monitoring service. With respect to the Android ecosystem,
we implemented CLOCKS as described in Section II-B as a
user-level application. It receives vector clocks from received
beacons, maintains a local view of the global group state, and
generates new beacon contents whenever the local vector clock
representation changes, either because the local clock “ticked”
or as a result of received vector clocks.

C. API and Sample Application

Table I shows the API that the LASSO group membership
service offers, showing a set of functions applications can
use primarily to setup the group membership service. The
application can also use the getGroup function to retrieve a
list of the IDs of current group members. Finally, the API also
offers events that the group membership service raises and can
trigger callbacks within the application, allowing the latter to
be notified of changes in group membership.

Fig. 2 shows two views of the tour guide application. The
first view, Fig. 2a, shows a wireframe depicting the user-facing
view of the application. From the user’s perspective, connected
group members are shown with a green checkmark; discon-
nected members are grayed out and shown with a red cross.
Fig. 2b shows a debugging version of the application, which
relies on debug-level events to provide visibility into the

logical clock information stored in the group membership
service. In this view, one can see the device ID (A) of the
display device (in this case, device 2, which corresponds to
the group member named Camden) and the logical clock value
of the local device (B). The STOP button (C) allows the user
to stop and start the group membership service, for debugging
purposes. The most interesting part of the debugging view
is the list of group member nodes (D). Here we can see a
logical name of each device, the assigned ID for the group
membership service (in this case a number from 1 to 6), and
the device hardware ID (which may change over time due to
the BLE implementation-level details discussed previously).
The third column for each node entry shows the most recent
known logical clock value for that device. Devices with the
same clock value as the local clock (7) appear in green. Those
within one clock tick are in yellow and are considered part of
the group. Those with clock tick values more than two ticks
in the past are highlighted in red or gray (depending on their
age); these devices are considered disconnected, as indicated
for the associated entries in the user view.

IV. EVALUATION

To evaluate our group monitoring service, we performed mi-
crobenchmarks to measure reliability at the group monitoring
level, performance at the neighbor detection level, and power
consumption at the system level.

A. Setup

As previously mentioned, LASSO requires smartphones that
support the peripheral role, which is not available, even in
devices that support Bluetooth 4.1. As such, we limit our
testing to a pair of Motorola Moto E 2nd generation devices.

In our tests, we statically placed the battery powered smart-
phones 2m apart in direct communication range. No other

(a) (b)

Fig. 2. (a) Wireframe of tour guide application. (b) Screenshot of debugging
version of the tour guide application.

Bluetooth devices were present in the area, WiFi was turned
on, but there was no 3G/4G connectivity. Each test ran for
7260s (254 clock ticks, approximately 2 hours). The real
time clocks of the two smartphones were synchronized with
NTP (Network Time Protocol) to ensure that log entries are
comparable. The BLE advertisement is scheduled to alternate
5s of sending one advertisement per second, followed by 5s
without transmitting. This sequence is repeated indefinitely.
Scanning, instead, is repeatedly turned on for 29s, then off
for 1s. When an advertisement occurs while the device is
scanning, the radio briefly changes mode to transmit the
advertisement. Finally, the logical clock advances at most
every 30s, following the CLOCKS scheme.

B. LASSO Reliability

Our first goal was to verify that clock values were properly
exchanged between peers. For this, we require that each
new clock value be received by the peer. We evaluate five
executions, for a total of 1270 clock ticks. In all runs, all
clock values were received, confirming the reliability of the
group monitoring service, at least in this small scale test.

Interestingly, this does not mean that no advertisement
packets were lost; this reliability was achieved thanks to the
redundancy of the advertisements that, by design, send the
same packet multiple times with the same vector clock.

C. BLE-Level Message Performance

Our next objective was to evaluate performance at the BLE
level, both in terms of message redundancy and timing.

For the former, we count the number of packets sent and
received, identifying the number of missed packets and the
number of duplicates. As seen in Table II, for each of the
5 executions analyzed, we see just over 1000 messages sent.
This is as expected, as each update to the group membership,
whether locally initiated or due to an incoming message,
triggers the transmission of a new vector clock. In our test
setting with two nodes and 254 clock ticks, we expected, for
each clock tick, a local plus a remote-induced update for each
node. This leads us to expect around 1024 distinct clock values
during a single run. The logged data reports slightly fewer as
sometimes nodes increment their clocks due the arrival of an
advertisement immediately before the 30 s timer expires.

Given the high data loss of BLE (between 17%-25%), we
infer that the repetition of messages plays a fundamental role
in ensuring reception of each unique clock value.

To measure the delay to receive a new clock value, we
measure the wall-clock time between a send event with the
new value and the corresponding receive event. Table III shows
that messages were discovered with an average delay of 2s.
Since BLE advertising is performed at a rate of 1 msg/s, the
observed data falls within expectations.

D. Power Consumption

Modeling the power consumption of smartphone applica-
tions is a complex and challenging task [13]. While gather-
ing knowledge of battery discharge behavior and recording

TABLE II
NEIGHBOR DETECTION MESSAGES

run sent received missed duplicates

1 1011 761 250 3218
2 1013 761 252 3216
3 1009 766 243 3971
4 1007 829 178 3592
5 1012 768 244 3932

TABLE III
MESSAGE RECEPTION DELAY (S)

run max mean stddev

1 13 1.88 1.25
2 14 1.84 1.21
3 13 2.03 1.32
4 14 2.11 1.66
5 13 1.94 1.19

TABLE IV
POWER CONSUMPTION (MW)

device profiler baseline runtime ∆%

1 trepn 139.65 177.21 26,9%
1 powerTutor 218.11 262.34 20,3%
2 trepn 142.92 179.08 25%
2 powerTutor 221.36 270.82 22,3%

Fig. 3. Power measurements in a 5s window.

instantaneous measurements at different time intervals are
effective for estimating the power consumption of the whole
hw/sw platform, discriminating individual behaviors usually
involves extensive analysis of measured data and domain-
specific knowledge. Approaches based on external measure-
ment devices are inherently more accurate and precise, but
estimates based on power models and run-time phone measure-
ments are sufficient to understand the basic behavioral trends
and to evidence anomalies from the expected results [14].

Our power test represents a high-level overview of the
energy consumption of the group monitoring application.
With the help of third-party applications (Trepn Profiler3 and
PowerTutor4), we measure and log power consumption as
reported by the operating system via battery APIs.

Since the group monitoring service is designed as a back-
ground service, the only relevant power absorption is caused
by CPU usage and network communication as during tests
the device screens are left off. We used the available tools to
collect battery power levels, battery discharge over time, and
CPU load and states. To separate the application from other
system tasks, we also measure the baseline power absorption
of the phone, taken with no active applications.

Table IV reports the consumption values in mW for both
phones, baseline and active, along with the calculated incre-
ment in consumption. While measurements taken by the two
profilers differ, the two phones exhibit similar behavior.

We observe a remarkable increase in global power consump-
tion, mostly due to the Bluetooth radio during the broadcast
and scanning. As seen at the 100ms sample rate of Fig. 3,
the instantaneous consumption fluctuates substantially. This is
due to the internal scaling of the processor, which switches
states to perform the computation and then goes to sleep,
and due to the behavior of the advertising process, which
requires additional energy when active. We observe periodic
power spikes at the same rate as the 1 s advertising period:
our hypothesis is that BLE activity is the major contributor

3https://play.google.com/store/apps/details?id=com.quicinc.trepn
4https://play.google.com/store/apps/details?id=edu.umich.PowerTutor

for power consumption. We plan to significantly reduce this
by applying BLEnd [8], our continuous neighbor detection
protocol specifically designed for the BLE stack.

V. CONCLUSIONS

This paper presented LASSO, a service supporting the
monitoring of individuals moving as a group in a smart city.
LASSO is designed with commodity smartphones in mind,
therefore reducing the barrier to adoption. Its reliance on the
widespread BLE wireless technology and fully decentralized
device-to-device mode of operation enables its use in any
mobile scenario, without the need of a pre-existing supporting
infrastructure. The simple and versatile API of LASSO makes
it easy to use for applications. Our small-scale performance
evaluation shows that our approach is feasible. Ongoing work
is aimed at integrating our recently-developed efficient neigh-
bor discovery protocol [8] and at performing user studies
validating the feasibility of the approach at scale.

REFERENCES

[1] M. Cattani, Ş. Gună, and G. P. Picco, “Group monitoring in mobile
wireless sensor networks,” in Proc. of DCOSS, 2011.

[2] L. Chen, R. Fan, K. Bian, M. Gerla, T. Wang, and X. Li, “On
heterogeneous neighbor discovery in wireless sensor networks,” in Proc.
of INFOCOM, 2015.

[3] M. Bakht and R. Kravets, “SearchLight: Won’t you be my neighbor?”
in Proc. of Mobicom, 2012, pp. 185–196.

[4] P. Dutta and D. Culler, “Practical asynchronous neighbor discovery and
rendezvous for mobile sensing applications,” in Proc. of SenSys, 2008.

[5] A. Kandhalu, K. Lakshmanan, and R. Rajkumar, “U-Connect: A low-
latency energy-efficient asynchronous neighbor discovery protocol,” in
Proc. of IPSN, 2010.

[6] M. McGlynn and S. Borbash, “Birthday protocols for low energy de-
ployment and flexible neighbor discovery in ad hoc wireless networks,”
in Proc. of MobiHoc, 2001, pp. 137–145.

[7] K. Wang, X. Mao, and Y. Liu, “BlindDate: A neighbor discovery
protocol,” IEEE TPDS, vol. 26, no. 4, 2015.

[8] C. Julien, C. Liu, A. L. Murphy, and G. P. Picco, “BLEnd: Practical
continuous neighbor discovery for bluetooth low energy,” in Proc. of
IPSN, 2017.

[9] P. H. Kindt, D. Yunge, G. Reinerth, and S. Chakraborty, “Mutually
assisted slotless neighbor discovery protocols,” in Proc. of IPSN, 2017.

[10] F. Mattern, “Virtual time and global states of distributed systems,” in
Proc. of PDAA, 1989.

[11] Bluetooth SIG, “Bluetooth core specification v4.2, 2014.”
[12] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, “Device-to-device

communications with Wi-Fi direct: overview and experimentation,”
IEEE Wireless Communications, vol. 20, no. 3, pp. 96–104, 2013.

[13] M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, and S. Tarkoma,
“Modeling, profiling, and debugging the energy consumption of mobile
devices,” ACM Computing Surveys, vol. 48, no. 3, 2016.

[14] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in Proc. of
CODES, 2010.

