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Abstract. Mobile code systems typically rely on the Java language,
since it provides many of the necessary building blocks.
Nevertheless, Microsoft recently released the .net platform, which in-
cludes at its core a virtual machine supporting multi-language program-
ming, and a new language called C#. The competition between .net and
Java is evident, and so are the analogies between these two technologies.
From the point of view of code mobility, a natural question to ask is then
whether .net supports mobile code, and how the mechanisms provided
compare with those available in Java. This paper aims at providing a
preliminary set of answers to this simple question.
The work we report about was not driven by the goal of providing a
thorough comparison. Instead, it was driven by the practical need to
port an existing toolkit for code mobility written in Java, µCode, to
the .net environment. This approach forced us to verify our mobile code
design on a concrete example, rather than just think about the problem
in abstract. The resulting software artifact constitutes, to the best of
our knowledge, the first implementation of a mobile code system written
for .net. In the paper, we provide an overview of the .net mechanisms
supporting mobile code, show how they are exploited in our port, and
discuss similarities and differences with the Java platform.

1 Introduction

Code mobility [2] is increasingly being considered as part of the mainstream
techniques for developing distributed systems. In some cases, code migration
takes place behind the scenes, e.g., in middleware like RMI and Jini [4], where
code mobility is exploited to increase the flexibility of service invocation. In other
cases, the ability to trigger code migration is directly under the control of the
programmer. This is the case of a number of systems supporting mobile code,
where code can be explicitly relocated from one host to another. In particular,
mobile code techniques and mechanisms are typically exploited by mobile agent
systems [9], which allow the migration of an entire execution unit (e.g., a thread
or a process) to a different host.

The popularity and pervasiveness of mobile code can be ascribed largely to
the success of the Java language. Modern technologies supporting code mobility



all rely on this language. Even without considering social factors, like marketing
and hype, there are a number of technical reasons that justify this phenomenon.
In Java, a number of fundamental building blocks for code mobility, like mul-
tithreading and communication primitives, are readily available either at the
language level or in the standard library. Furthermore, portability and the avail-
ability of a programmable class loader opened up unprecented levels of flexibility.

To counter the success of Java as a language for Internet programming, Mi-
crosoft has recently released the first version of its .net [7] platform, in an
evident effort to re-gain control of the distributed application market. The .net
environment includes as its core a virtual machine supporting multi-language
programming, and a new language called C#.

Natural questions to ask are then what features in .net can be exploited
to support mobile code, and how they compare to those available in Java. This
paper aims at providing a preliminary set of answers to this question. The work
we report about was not driven by the goal of providing an extensive comparison.
Instead, we followed a bottom up approach, driven by the need to port an existing
open source toolkit for code mobility written in Java, µCode [8, 6], to the .net
platform. This approach forced us to verify our mobile code design on a concrete
example, rather than just think about the problem in abstract. The resulting
software artifact constitutes, to our knowledge, the first implementation of a
mobile code system written for .net.

The paper is structured as follows. Section 2 provides the reader with a
concise overview of the .net platform, and of the features of C# that are relevant
to the content of this paper. Section 3 analyzes more specifically those features
of .net that facilitate and support the development of systems involving code
mobility. Section 4 provides a minimal description of µCode, the mobile code
toolkit whose port under .net is described in Section 5. Section 6 elaborates on
the findings of our porting experience, and provides some preliminary comparison
between Java and .net as platform supporting mobile code. Finally, Section 7
ends the paper by describing opportunities for future work and by providing
some concluding remarks.

2 .NET

.net is a software platform that aims at providing a complete solution for the
development of distributed applications.

The core of .net is represented by the .net Framework1, that provides the
base infrastructure for the rest of the platform and unifies the corresponding
programming model across several languages.

At the heart of the .net Framework is the Common Language Runtime
(clr) [11], the virtual machine providing the core services of memory manage-
ment, thread management, compilation, and communication, and handling code
1 Usually, when people refer to “.net” they mean the “.net Framework” rather than

the whole platform. Hereafter, we adopt the same convention, since the rest of the
paper is concerned only with the .net Framework.



management and execution in a secure way. The clr provides language interop-
erability by defining an intermediate language (called msil, Microsoft Interme-
diate Language) and a single format (called pe, Portable Executable format) for
executable code. Compilers generate msil code from the specific source language
(e.g., Visual Basic or C) and output it into a pe file that contains, besides the
msil code, metadata that instructs the clr about how to allocate memory to
objects, enforce security, locate referenced modules, and so on. Since pe files are
language-independent, code generated from different languages can interoperate
easily. The msil is similar in concept to Java bytecode, and is a stack-based
language with a rich instruction set. While in principle the msil could be inter-
preted, the clr translates msil to native code using a just-in-time compiler. In
addition, the clr also manages the interoperability of managed (msil) code and
unmanaged (native) code. Unmanaged code is code that does not comply with
.net, and hence does not provide the same guarantees in terms of execution and
security. The need for such interoperability typically arises with reuse of legacy
code, like native DLL libraries or COM components.

The other fundamental component of the .net Framework is the Base Class
Library, a comprehensive set of classes that provide the API towards the services
offered by the clr, together with a lot of other features like graphics, interop-
eration with DBMSes, collections, I/O, and XML support, to name a few.

The current version of the .net Software Development Kit includes compilers
that produce msil from Visual Basic, C++ and C#. The last one is a new
language, that constitutes one of the novelty of .net. C# [10] is an object-
oriented language and can be regarded as a high-level version of the msil, in
that all the features of C# are natively supported by the clr. On the surface,
C# is quite similar to Java. However, it provides some distinctive features2, of
which the most prominent and more relevant to the content of this paper are the
notion of delegate, the support for application events as a first-class language
construct, and the notion of attribute.

Delegates are similar to interfaces in the sense that they specify a contract
between a caller and a specific method. Unlike interfaces, however, delegates are
defined at runtime, to create a sort of “instance of a method”. Hence, delegates
are often used for the same purpose as function pointers in C, e.g., to implement
callbacks. For example, in the code below the method ProcessString takes as
parameter a delegate, whose interface is defined by StringProcessor, that is
supposed to perform some computation on the string passed as a parameter. In
Main, the actual method ComputeLength is passed as a delegate:

public class Example {

public delegate int StringProcessor(string x);

public int ComputeLength(string x) { return x.Length; }

public void ProcessString(StringProcessor x, string y) { x(y); }

public static void Main() {

Example e = new Example();

2 More details can be found in the .net documentation, or in one of the many books
on the topic, e.g., [1].



e.ProcessString(new StringProcessor(e.ComputeLength), "abc");

}

}

Delegates are often used in conjunction with events, to specify the handler
associated to the occurrence of an event. In C#, the interface of a class can
specify which events it can raise, like in the following code fragment:

public delegate TempExceededEventHandler(object source, EventArgs e);

public class Sensor {

public event TempExceededEventHandler TempExceeded;

...

}

Events can be generated easily, as in TempExceeded(aSensor,e); while the
delegates describing the behavior of event handlers can be associated to events
with statements like

TempExceeded += new TempExceededEventHandler(aSensor);

It is interesting to note how delegates and events are first-class elements not only
in C# but also in the clr, and hence potentially available to other languages.

Finally, attributes are auxiliary, declarative information that can be associ-
ated to given elements of the language, and that get stored in the metadata
associated to the compiled code. This information can be later retrieved using
reflection, and can be used at runtime. For instance, a [Serializable] attribute
is used to tag a class field as serializable. A number of predefined attributes are
provided, together with mechanisms to create new ones.

3 .NET Features Supporting Mobile Code

The success of Java as a language for mobile code relies on some of its fea-
tures, which provide the fundamental building blocks for these kind of systems.
Roughly, these features can be grouped together as support for concurrency,
object serialization, code loading, and reflection.

In this section, we illustrate how .net supports similar features, highlighting
significant departures from Java whenever appropriate. Our description is based
on C#, since this is the language we used to develop our port, but most of our
considerations should hold also for the other languages supported by .net.

The content of this section should not be regarded by any means as complete.
The API of the .net Framework provides a huge array of functionality, whose
complexity can only be scratched in a short paper like this. Our intent here is to
give a concise overview of the fundamental features found in .net that can be
exploited to support the development of mobile code systems and applications.
For more technical detail, we redirect the interested reader to the documentation
that accompanies the .net Framework.



3.1 Concurrency

The ability to handle multiple, concurrent activities is fundamental for mobile
code systems and especially for those supporting mobile agents. Java-based mo-
bile code systems typically pick threads as their unit of concurrency: for instance,
a mobile agent is usually implemented by a thread. A thread is represented in
Java as an object of class Thread, and executes within the (operating system)
process containing the JVM. Java threads are granted shared access to objects
residing in the process containing them, while sharing of objects contained in
different processes must be handled through interprocess facilities.

At their core, the features provided by .net to deal with threads are very
similar to those found in Java. Threads are represented by objects of class
System.Threading.Thread, and methods to start, suspend, resume, interrupt,
join, abort a thread and get a reference to the current thread are provided, sim-
ilarly to Java. Interestingly, the thread’s code is not bound to reside in a run()
method, like in Java. Instead, applications can specify at thread creation time
which is the method containing the thread behavior by passing a delegate.

The constructs provided for controlling concurrency are instead a little dif-
ferent. The core functionality is provided by the class Monitor, that provides
features similar to those found in Java’s Object. The Enter, TryEnter, and
Exit methods allow a thread to acquire or release a lock on the Monitor ob-
ject, and thus define a critical region. Moreover, the methods Wait, Pulse, and
PulseAll allow a thread to explicitly synchronize with other threads. The lock
statement provides a syntactic shortcut to define a critical section of code that
can be executed only after a lock on an object has been acquired. Hence, lock is
equivalent to a synchronized block in Java. Synchronized methods are instead
declared by attaching a [Synchronized] attribute to methods.

Several additional utility features are provided, like a ThreadPool class for
managing collections of threads, a Timer class, and several classes (e.g., Mutex,
ReaderWriterLock, and so on) supporting low-level synchronization of concur-
rent activities.

Nevertheless, the concurrency model put forth by .net is richer than the
Java one since, in addition to processes and threads, it provides the notion
of application domain, which is a sort of hybrid between the other two. Like
threads, application domains are lightweight processes that run in a process.
However, unlike threads and similar to processes, application domains cannot
directly share code or objects. In essence, application domains are a way to
provide isolation between separate applications without incurring the overhead
of handling them through multiple processes, hence enhancing performance and
scalability. According to the .net documentation,

Application domains form an isolation, unloading, and security boundary for
managed code.

Hence, not only performance is improved, but the management of application
is more flexible, since an application running in an application domain can be
stopped and its code unloaded from the system, without having to stop the



process containing it. Similarly, different policies for different applications can
coexist in the same process. Application domains can be thought of providing a
notion of “logical process” inside a “physical” operating system process.

Threads can still be exploited within and across application domains. Never-
theless, since memory cannot be shared across application domains, the program-
mer is forced to resort to mechanisms similar to interprocess communication. In
.net, these mechanisms are provided by the Remoting facility, which provides a
form of remote method invocation that can be used not only locally, to cross the
application domain boundary, but also to enable communication between appli-
cations on remote hosts. Hence, there is a tradeoff between the benefits brought
by application domains and the performance overhead and increased complexity
when accessing shared resources.

Application domains are available to programmers as AppDomain objects.
Methods are available to create a new application domain, load code into it,
unload an application domain and its code. Moreover, the interface of AppDomain
also exports two events, TypeResolve and AssemblyResolve, that can be used
to implement code loading schemes, as we describe in Section 5.

3.2 Object Serialization

Serialization is clearly a fundamental building block of mobile code systems
based on an object-oriented programming language. It allows to transform a
structured object variable into a flat data structure, typically a stream of byte
or characters, for subsequent use with an I/O channel, e.g., a socket.

Serializable classes are tagged as such by using the [Serializable] at-
tribute, like in:

[Serializable] public class Person {

public String name = "John";

public String surname = "Doe";

public int age = 20;

}

Notably, this attribute is not inherited. For instance, if a subclass of Person
is meant to be serializable, the [Serializable] attribute must be explicitly at-
tached to it. This is a significant departure from Java, where the a serializable ob-
ject is declared by implementing the tagging interface java.io.Serializable,
and hence serializability is automatically inherited by subclasses. Class fields
that are not meant to be serialized can be tagged with the [NonSerialized]
attribute, analogous to Java’s transient fields. .net provides a ISerializable
interface as well, but with a different meaning from its Java counterpart. In
fact, this interface is provided to allow an object to govern its own serialization
and deserialization, which is achieved in Java by defining the writeObject and
readObject methods of a class implementing Serializable. As in Java, the
object code is not stored with the object state. Instead, information about the
type of the object is stored with the serialized data, so that the correct type can
be retrieved upon deserialization.



In Java, (de)serialization is achieved by using a specific I/O stream class, like
java.io.ObjectInputStream. Instead, (de)serialization in .net is delegated to
a formatter object, that must implement the interface IFormatter. For instance,
the following snippet serializes an object of type Person and writes it in a file:

IFormatter f = new BinaryFormatter();

Stream fs = new FileStream("person.dat", FileMode.Open,

FileAccess.Read, FileShare.Read);

Person obj = new Person("John", "Doe", 20);

f.Serialize(fs, obj);

s.Close();

Two formatter implementations are provided by .net, providing binary seri-
alization and XML serialization. The latter allows to serialize an object’s public
properties and fields into an XML file, and is meant to be used for generating
human readable descriptions of an object, and for interacting with Web services
based on SOAP. Instead, binary serialization is closer to Java serialization, in
that it preserves the type of the object, and is typically exploited within the
Remoting API for passing parameters in a remote method invocation, similarly
to Java RMI. Interestingly, serialization is even more important in .net, due
to the aforementioned impossibility of sharing object directly across application
domains. While serialization is exploited in Java only across processes, typically
residing across different hosts, in .net it becomes relevant even in the scope of
a single process, to implement object sharing.

3.3 Code Loading

The fundamental mechanism enabling code mobility is the ability to load code
dynamically, either into a running application or in a newly spawned concurrent
executing unit.

In Java, the unit of code loading is an object type. The bytecode correspond-
ing to a class or interface can be loaded dynamically by the runtime, and more
specifically by the class loader, typically when the name of a class that has not
yet been loaded is encountered during the execution of an application.

In .net the unit of code loading is more coarse grained than a single type,
and is constituted by an assembly. According to the .net documentation,

“[Assemblies] form the fundamental unit of deployment, version control, reuse,
activation scoping, and security permissions. An assembly is a collection of
types and resources that are built to work together and form a logical unit of
functionality. [...] To the runtime, a type does not exist outside the context of
an assembly.”

At first sight, an assembly vaguely resembles a Java JAR file. For instance,
each assembly contains a manifest, containing the assembly metadata. Neverthe-
less, while JAR files are only relevant for deployment, to package together code
and resources, assemblies are first class entities in .net. Assemblies are made
accessible to the programmer through the class Assembly that, among other



things, enables introspection as we discuss later. More importantly, assemblies
play a fundamental role in code loading, since they provide the context for the
code representing a type.

Assembly loading can be triggered when the runtime attempts to resolve a
reference to another assembly. References can be defined statically or dynami-
cally. Static references are typically generated by the compiler and stored in the
assembly manifest. A typical example is a method call on an object whose class
belongs to another assembly. Dynamic references are instead generated when a
program requests the clr to load an assembly that was not referenced statically,
or to create and load an assembly from a byte array containing its code. This
latter feature is fundamental for implementing mobile code, and can be achieved
by invoking either the Assembly.Load or the AppDomain.Load method. The ef-
fect is similar to the ClassLoader.defineClass found in Java, where the byte
array is reified into a class object.

The sequence of steps performed during assembly resolution is the following:

1. Determine the assembly version required. This is performed by consulting a
number of system- and application-defined configuration files. Notably, ver-
sioning is built in the unit of code loading. This is a significant improvement
over Java, where class versioning is still largely an open issue.

2. Check whether the assembly has been bound before within the runtime. If yes,
the previously loaded assembly is used.

3. If the assembly is strong-named, check the global assembly cache. Strong-
named assemblies are assemblies that have been signed with a key at cre-
ation time. They are meant to be shared among several applications on one
machine, and are stored in a machine-wide cache.

4. Probe for the assembly. Probing is a process that attempts to determine
potential locations for the assembly, by looking at a number of configuration
files and applying heuristics.

These sequence of steps cannot be changed directly by the programmer, who
can intervene only by manipulating configuration information. In other words,
in .net there is no direct equivalent of the Java programmable class loader.
Nevertheless, as we discuss in Section 5, programmable code loading can be
provided by a combination of the loading facility provided by the Assembly
class, the protected name space provided by AppDomain, and the reactive features
provided by events and delegates.

3.4 Reflection

Reflection, i.e., the ability to obtain type information about an object, is not
necessarily exploited within the runtime of a mobile code system, but it is often a
fundamental asset for applications that exploit mobile code. Through reflection,
an application can instantiate an object using a class that becomes available
only dynamically. More importantly, reflection can be used to determine what
portion of the class closure must be transferred during code migration.
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Fig. 1. The architecture of mainstream mobile agent systems (left) and µCode (right).

At the core of .net reflection is the System.Type class, that provides func-
tionality similar to Java java.lang.Class. Thus, for instance, GetType(String)
returns the Type with the given name, similarly to the Class.forName(String)
found in Java. Once the type is obtained, a new instance of the type can be
obtained by retrieving the appropriate constructor (through GetConstructors)
and by invoking it (through InvokeMember). Besides constructors, InvokeMember
can be used also to invoke methods or get access to members. Through the Type
class, information can be gathered about the members of a type, its ancestors,
the interfaces implemented, and so on. Differently from Class, however, Type is
used not only for classes and interfaces, but also for scalar types, arrays, pointers,
and enumerations, since the type system of the clr is unified.

Nevertheless, as we mentioned before, types are always contained in assem-
blies. Hence, it is no surprise to find reflective features in the Assembly class as
well. For instance, Assembly.CreateInstance(String) allows to create a new
instance of a the named type by invoking the default constructor, after the latter
is retrieved from the assembly. Methods that allow to query an assembly for all
the Types and resources contained in it are also provided.

In general, the reflection features provided by .net are more sophisticated
(and complex) than the Java counterpart. Part of the motivation lies in the
fact that .net addresses a multilanguage platform, and aims at retaining com-
patibility with unmanaged code belonging to legacy applications, e.g., COM
components. Thus, for instance, a number of methods are also provided that
allow to access the internal representation of a type, and a lot of flexibility is
provided in defining the rules by which a given member is queried and retrieved.

4 µCode

µCode [8] is a lightweight and flexible toolkit for code mobility that, in contrast
with most of analogous platforms, strives for minimality and places a lot of



emphasis on modularity. While mainstream mobile agent systems tend to provide
a rich set of features but with a monolithic design, µCode decouples the core
mechanisms supporting code mobility from the other features (see Figure 1). This
design achieves modularity, thus improving the understanding and management
of the system, and optimizing its deployment.

µCode revolves around three fundamental concepts: groups, group handlers,
and class spaces. Groups are the unit of mobility, and provide a container that
can be filled with arbitrary classes and objects (including Thread objects) and
shipped to a destination. Classes and objects need not belong to the same thread.
Moreover, the programmer may choose to insert in the group only some of the
classes needed at the destination, and let the system downloading and link the
missing classes from a remote target specified at group creation time.

The destination of a group is a µServer, an abstraction of the run-time sup-
port. In the destination µServer, the mix of classes and objects must be extracted
from the group and used in some coherent way, possibly to generate new threads.
This is the task of the group handler, an object that is instantiated and accessed
in the destination µServer, and whose class is specified by the programmer at
group creation time. Any object can be a group handler. Programmers can de-
fine their own specialized group handlers and, in doing so, effectively define their
own mobility primitives.

During group reconstruction, the system needs to locate classes and make
them available to the group handler. The classes extracted from the group must
be placed into a separate name space, to avoid name clashes with classes re-
constructed from other groups. This capability is provided by the class space.
Classes shipped in the same group are placed together in a private class space,
associated with that group. However, if and when needed, these classes can later
be “published” in a shared class space associated to a µServer, where they be-
come available to all the threads executing in it, as well as to remote ones.

Class spaces play also a role in the resolution of class names. When a class
name C needs to be resolved during the execution of a class originally retrieved
from a group g managed by a µServer S, the redefined class loader of µCode is
invoked to search for C’s bytecode by performing the following steps: i) check
whether C is a ubiquitous class, i.e. a class available on every µServer (e.g.,
system classes); ii) search for C in the private class space associated with g in
S; iii) search for C in the shared class space associated with S; iv) if t is allowed
to perform dynamic download, retrieve C from the remote µServer specified
by the user at migration time, and load C; v) if C cannot be found, throw a
ClassNotFoundException.

Moreover, µCode provides higher-level abstractions built on the core con-
cepts defined thus far. These abstractions include primitives to remotely clone
and spawn threads, ship and fetch classes to and from a remote µServer, and a
full-fledged implementation of the mobile agent concept.

µCode is available as open source under the Library GNU Public License
(LGPL). Binaries, source, documentation, and examples are available at mucode.
sourceforge.net.



5 µCode from Java to C#

In this section, we describe the most relevant issues we faced when porting
µCode from the Java platform to .net. Although the port was developed in
C#, most if not all of the content of this section should hold for the other
languages supported by .net.

Clearly, there are different strategies that can be exploited when porting an
application to a different platform. In particular, a tradeoff stems from the desire
to keep the port as close as possible to the original, and at the same time to use
effectively the features of the target environment.

In the work we report here, we strived to implement our port (that we will
call henceforth µCode.net to distinguish it from the original) so that its API
and runtime functionality are as close as possible to µCode. Nevertheless, we
also tried to reach this goal by using the features provided by .net in the most
natural way. This first experience already allowed us to draw some relevant
considerations about .net for mobile code, as discussed in Section 6, and provides
the basis for ongoing work in improving our prototype.

As in the original µCode, the Group class allows one to pack objects and code
together, and relocate them to a remote µServer. The main difference with the
original µCode, however, is that classes are not shipped individually but as part
of an assembly. This is clearly a consequence of the fact that .net forces types to
be always contained in an assembly, and does not provide mechanisms to load the
former without the latter. Hence, adding a class to a group automatically triggers
also the insertion of the corresponding assembly. A method AddAssembly, for
explicitly inserting an assembly into a group, is also provided in µCode.net.

At the destination µServer, the assemblies in the group are unpacked and
made available to the group handler through the private class space. In µCode,
the private class space is realized by associating a customized class loader to the
group. The semantics of Java class loading effectively yields separation of name
spaces, and hence avoids class name conflicts. In .net, such isolation is provided
by the notion of application domain. For this reason, we decided to perform the
unpacking of a group into a newly created application domain. Since applications
domains behave like logical processes, the code belonging to different groups is
kept isolated.

The new application domain is created by using the methods in the AppDomain
class. Then, an object is created in this new application domain that is respon-
sible to obtain the group from the µServer, unpack it, register some delegates
(as mentioned later), instantiate the group handler, and deliver the group to
it. Since application domains enforce code isolation, the instantiation and the
access to this “bootstrap” object in the new application domain require the use
of the Remoting API.

The disadvantage of this solution is the increased complexity of access to
shared resources. Threads created in an application domain associated to a re-
ceived group can share an object with a thread in another application domain
only by using some form of interprocess communication. As a special case, this
holds also for access to the public, shared class space associated to the µServer,



where code (assemblies) are stored and made available to local and remote nodes.
In fact, the µServer runs itself in a separate application domain. In our current
implementation, we exploited TCP sockets as a form of interprocess communi-
cation. We are currently reworking it to exploit the Remoting API, and simplify
object sharing.

Once the application domain is created, assemblies are explicitly loaded from
the group into the application domain using AppDomain.Load. This method
may accept an assembly as a parameter, or even a byte array, from which an
assembly is automatically reconstructed. As we already mentioned, this latter
feature is similar to the ClassLoader.defineClass found in Java. In the Java
implementation of µCode, all the class bytecode coming from other µServers
is kept in a hashtable, so that it can be retrieved when the class needs to be
transferred again. In fact, a byte array is easily obtained from the file containing
the class, but once the bytecode has been reified into a class object there are no
means to transform it back in a byte array. For similar reasons, in µCode.net
we first store the byte array in a hashtable upon arrival, and then load it in the
application domain.

The code running in the application domain associated with a group is not
necessarily self-contained. Most likely, mobile code is exploited further to enable
additional code to be downloaded on demand whenever necessary. In order to
load the code associated with the group, the default code loading strategy needs
to be redefined. Again, in µCode this is obtained by redefining the class loader,
while in µCode.net this ability is provided through application domains. The
AppDomain class defines two public events that allow the programmer to deal with
code loading into the application domain. TypeResolve is fired whenever the clr
cannot find the assembly containing the requested type, while AssemblyResolve
is fired whenever the resolution of an assembly, carried out as discussed in Sec-
tion 3.3, fails. AppDomain defines also the delegate ResolveEventHandler, re-
sponsible for handling these events. By handling these two events, it is possible
to obtain the equivalent of the Java class loader. The following is a snippet of
the actual code of µCode.net, registering the event handlers:

curApp.TypeResolve += new ResolveEventHandler(this.TryToLoadType);

curApp.AssemblyResolve += new ResolveEventHandler(this.TryToLoadAssembly);

The methods TryToLoadType and TryToLoadAssembly are responsible for
finding and retrieving the code, and hence for reproducing the original µCode
strategy for class resolution. Below is shown the correspondence between the orig-
inal strategy used by µCode and the one implemented by µCode.net through
the aforementioned delegates:

1. µCode checks whether the class to be resolved is ubiquitous.
In µCode.net, default ubiquitous assemblies are those of the core .net
runtime, and those containing µCode.net itself; other assemblies can be
defined as ubiquitous by the programmer. Nevertheless, because of their
nature they are assumed to be present in well-known places in the file system.
Hence, the delegates need not worry about them, in that these assemblies are



either found in the file system (and hence the aforementioned events would
not fire) or, if these assemblies are not, they are not meant to be replaced
with foreign code.

2. µCode searches in the private class space.
The private class space of a group coincides with its application domain.
The assemblies in the private class space have already been loaded in the
application domain upon unpacking of the group, so the delegates should
never get a chance to get called. Nevertheless, we experienced that, for some
undocumented reason, the migrated assemblies unpacked from the group and
loaded in the application domain are not found when the application tries
to use them for the first time. Hence, when a class or assembly is missing
the delegates first search their own application domain in any case.

3. µCode searches in the shared class space.
µCode.net behaves in the same way, by contacting the µServer that created
the application domain and asking for the missing code.

4. µCode attempts a dynamic download from the address in the group.
Again, µCode.net behaves the same, by looking at the value of the dynamic
link source field of the group, and contacting the corresponding µServer.

5. µCode raises a ClassNotFoundException.
In this case, the delegates return a null value to the runtime, which in turn
raises the exception.

Clearly, frequent dynamic class loading may result in communication overhead,
or even in the impossibility to proceed with execution, if the code repository
is currently unavailable. This is a general issue with mobile code system, and
µCode is one of the very few system that tackle it. In µCode, the programmer
is provided with tools that extend Java reflection with the ability to compute
the full closure of a given type. The reflection API of Java allows to capture only
the type information associated with the type declaration, i.e., fields, methods,
parameters, exceptions, inner classes, superclasses and interfaces. Nevertheless,
this constitutes only a fraction of the information required to compute the type
closure: types that are used only within the body of a method but are not part
of the type declaration are not captured by the reflection primitives. The only
way to determine such information is through bytecode inspection, which is per-
formed in µCode by the ClassInspector utility class. This way, the program-
mer can determine the fraction of the (full) type closure that must be relocated
during a code migration, and hence reduce or eliminate the need for dynamic
class loading.

In .net, things are simplified by the role of assemblies as type containers. In
fact, by their very nature assemblies already provide a way to pre-package to-
gether types that are somehow related. Moreover, the manifest of a given assem-
bly contains information about the other assemblies it depends on, and this infor-
mation can be easily obtained through reflection from the Assembly class, using
GetReferencedAssemblies. Nevertheless, although information about these de-
pendencies among assemblies gets inserted by the compiler, it must be explicitly
supplied by the programmer at compilation or linking time.



6 Discussion

Our presentation thus far has evidenced how .net provides a number of features
that can be exploited for supporting code mobility. At the same time, however,
it is also evident how .net is the result of design criteria that are rather different
from those who guided the development of Java.

A significant difference between the two platforms is in the unit of mobil-
ity. .net assemblies define a rather coarse-grained unit, if compared with Java
classes. While it is possible to define assemblies containing only one type, it would
be cumbersome to do so, since it is the programmer’s responsibility to keep track
of relationships among assemblies. Moreover, it would be a stretch of the assem-
bly abstraction. Assemblies are really designed to be the unit of application
deployment: migrating an assembly is just one of the mechanisms for deploying
it. Instead, the ability to relocate a single Java class supports a more flexible
(and radical) vision where applications are built out of fine-grained components
that can reside in any place of the network, and hence are really distributed. This
feature is exploited also in Java-based middleware, like RMI or Jini, to enhance
the flexibility of remote method invocation, and allows to pass as parameters
objects whose classes are not necessarily pre-deployed at destination. On the
other hand, assemblies provide richer metadata information, e.g., including ver-
sion information, dependencies, and security information, while class versioning
is still an largely an open problem in Java.

Code loading, another cornerstone of mobile code systems, is also designed
according to significantly different principles in Java and .net. Java is more lib-
eral about the (re)definition of how code loading is performed. The programmer
is free to change the entire class loading behavior, and a class can be loaded
by a redefined class loader even when it is accessible from the standard one.
Instead, in .net the programmer has a chance to modify the loading behavior
only when the predefined one fails. In other words, while Java supports proactive
code loading, .net supports only reactive code loading, and in a fashion that
always privileges the default loading strategy.

In general, the code loading mechanisms provided by Java are characterized
by a lower level of abstraction, if compared to .net. This results in a high degree
of freedom and flexibility when dealing with mobile code, but also in increased
complexity: programming with class loaders is often difficult and error prone. In
particular, class loaders are only tied to classes, i.e., to the static elements of the
language. Instead, with mobile code and especially mobile agents, one would like
to associate a different class loading strategy to each executing unit (usually a
thread), that is, to the dynamic elements of the language. Nevertheless, achieving
this binding in Java is not a straightforward task.

Instead, .net leverages nicely of the separation among logical processes pro-
vided by application domains. Code can be loaded in an application domain,
where it becomes part of the code segment of the logical process, and hence
separated from the others. This provides a natural and intuitive abstraction for
managing mobile code, and is associated to a unit of execution. The disadvan-
tage of this solution is that the code and objects residing in different application



domains cannot be shared directly, and instead must be accessed through the
Remoting API. This is an issue particularly for mobile agent systems, where
agents often seek co-location for the sole purpose of sharing objects. Moreover,
the unit of execution chosen may be too coarse grained. Code loading is associ-
ated to an application domain, not to a single thread. In our prototype, we chose
the most natural solution of associating each group to a separate application do-
main. However, this may not be the right choice for an application that needs
to run in a single application domain and yet leverage of mobile code. Future
work will explore whether an alternative design where code loading is realized
on a per-thread basis is feasible.

Application domains provide also a nice solution to a key problem in support
to code mobility: code unloading. The ability to unload a class is of paramount
importance for mobile code, since the codebase evolves dynamically, and yet
has a finite size. Unloading becomes critical when the mobile agent paradigm
is exploited: the memory of a mobile code server may easily get saturated by
a flow of mobile agents, each carrying a different set of classes. Similarly, code
unloading is key in dealing with resource-limited devices, like PDAs or cellular
phones. In Java,

A class or interface may be unloaded if and only if its class loader is unreach-
able. The bootstrap class loader is always reachable; as a result, system classes
may never be unloaded. ([5], §2.17.8)

Again, unloading is tied to class loaders, which can be managed in arbitrary
ways by the programmer. Moreover, even when the programmer has dealt with
class loaders accurately, she cannot have the guarantee that a given class will be
effectively unloaded by the JVM. Instead, in .net unloading is associated to the
application domain. When an application domain is discarded, all the assemblies
that were loaded in it are unloaded as well. Hence, application domains provide
an effective and intuitive mechanism to define the scope of code loading and
unloading.

Mobile code systems can be distinguished according to whether they pro-
vide support for strong mobility. Strong mobility is defined [2] as the ability
of an executing unit to retain the execution state (e.g., the program counter)
across migration. Strong mobility is desirable especially for mobile agents, since
it makes migration completely transparent to the migrated agents. Nevertheless,
it complicates significantly the design of the run-time support, and for this rea-
son it is not supported by Java. Not surprisingly, a similar decision was made
also for .net, although the design of the clr, and in particularly the ability to
store richer metadata information in the bytecode, may be exploited to support
strong mobility. Our future activities will explore this line of research.

In any case, the design of the clr may already simplify the achievement
of a desirable feature of mobile code systems: support for multiple languages.
Traditionally, this is achieved through ad hoc design of the mobile code platform,
like in the case of D’Agents [3]. In .net, the chore is simplified by the fact that
the clr is designed specifically to accommodate multiple languages. Clearly, the
problem of interoperating between different runtimes remains unaltered.



Finally, in this paper we did not consider security issues at all. The .net
platform provides a sophisticated set of security features, that leverage off of
the concepts we introduced thus far, like application domains and assemblies.
Nevertheless, while we agree that security is a relevant feature in mobile code,
our work was driven by the desire to learn first what are the core mechanisms
supporting the migration of code, before delving into the details of how to deal
with such migration in a secure way.

7 Conclusions and Future Work

In this paper, we reported about an experience in porting an existing mobile
code toolkit, called µCode, from Sun’s Java to Microsoft’s .net. The port gave
us the opportunity of learning about the features of .net that can be exploited
to support mobile code, and of exploring architectural tradeoffs in implementing
mobile code mechanisms in this platform. The software artifact will soon be
released publicly, under an open source license.

Future work on the topic of this paper will include the exploration of alter-
native designs for mobile code, including different code loading schemes, and the
provision of strong mobility features in the clr.
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