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Abstract—Wireless sensor network (WSN) programming is
still largely performed by experts in a node-centric way using
low-level languages such as C. Although numerous higher-level
abstractions exist, each simplifying a specific aspect of distributed
programming, real applications often require to combine multiple
abstractions into a single program. Using current programming
frameworks, this represents a difficult task. In previous work,
we therefore defined a conceptual framework that facilitates
abstraction composition by defining sound compositional rules
among few fundamental abstraction categories. The framework
is extensible: programmers can add new abstractions within the
boundaries determined by the compositional rules.

In this paper we describe the design of a language—called
MPL—that instantiates this conceptual framework. To support
the extensible nature of the framework, the language is object-
oriented, which allows programmers to add new abstractions
by inheriting from existing classes that implement predefined
interfaces. We modeled the syntax after Java, to make it more
palatable to inexperienced embedded programmers. Compared
to Java, we modified the language to enable efficient execution
on WSN devices. We designed and implemented a compiler
that translates MPL language into executable C code, which
spares the overhead of a virtual machine. By comparing MPL
implementations against functionally-equivalent Contiki/C imple-
mentations of several benchmark applications, we determined
that the performance overhead of MPL is limited, and yet the
programming task is simplified.

Index Terms—Compilers, Java, object-oriented languages,
wireless sensor networks.

I. INTRODUCTION

During the last years, the use of wireless sensor networks
(WSNs) significantly increased [14] while WSNs also started
to make their way into commercial and industrial real-world
applications. Nevertheless, a more widespread WSN adoption
is still hampered by the unavailability of easy-to-use devel-
opment tools. As of today, most WSN applications are still
implemented in low-level C code and their design requires
in-depth knowledge of the specifics of embedded systems
and low-power wireless communication. Consequently, WSN
programming is usually carried out by WSN experts. To

gain more widespread use, WSN development needs to be
more accessible to domain experts and programmers without
a strong WSN background.

This requires a move from the still prevalent node-centric
programming model towards a more holistic view of the net-
work that hides low-level details. To this end, a growing num-
ber of macroprogramming abstractions have been designed
that simplify programming of a specific distributed computing
aspect (such as assigning roles to nodes [7] or defining a
subset of nodes to communicate with [11]) by offering a
domain-specific language. However, integrating multiple of
these abstractions into a single program is still difficult. There
also exist a number of macroprogramming languages that
include a fixed set of abstractions, but new abstractions cannot
be added easily.

In the makeSense [3] project we have therefore analyzed
existing WSN abstractions, classified them based on few fun-
damental dimensions, and developed a conceptual framework
that allows the composition of arbitrary abstractions according
to predefined sound rules. The framework is also extensible
in that abstractions that were not known by the time the
framework was designed can be added later.

In this paper, we describe how this conceptual framework
can be instantiated by means of a concrete language and we
also describe a compiler to translate that language into efficient
executable code. To sustain the extensibility of the conceptual
framework, the language is object oriented and inspired by
Java and thereby easy to use for programmers familiar with
Java or C++. The language differs from Java to support
efficient compilation to resource-constrained WSN devices and
to support the extensibility of the above conceptual framework.
The compiler offers a plug-in interface to support addition
of new abstractions and automatically distributes application
functionality among the gateway and the sensor nodes.

The increased abstraction level and the use of powerful
programming abstractions enables a reduction of user-written
code by more then 50% in comparison to an implementation



in low-level code for a set of typical applications.
The remainder of the paper is organized as follows. Sec-

tion II briefly reviews the current state of the art. Sec-
tion III summarizes the makeSense abstraction framework.
In Section IV we derive a set of requirements for a lan-
guage implementing this framework. Section V introduces
design decisions and implementation details that enable us
to implement a language that is capable of meeting these
requirements. Section VI introduces the architecture of the
underlying compiler framework and provides a closer look
to the plug-in interfaces that enable the required extensibility.
Finally, the performance and overhead of the approach for
a typical set of applications is evaluated and discussed in
comparison with more conservative C-based implementations
in Section VII.

II. RELATED WORK

A multitude of different systems aims to raise the ab-
straction level of WSN programming by providing high-level
macroprogramming frameworks. These systems either repre-
sent the WSN as a distributed database [10], or provide more
sophisticated frameworks on-top of C [9] or with custom high-
level languages [4], [13]. Database-like interfaces are usually
limited to data collection applications, while more complex
frameworks usually require the use of an unfamiliar language.
Systems of both categories are usually monolithic and do
not provide a well-defined interface to integrate application-
specific abstractions. In this regard, MPL extends the state
of the art by providing an extensible macroprogramming
framework that supports in-network control logic and is based
on Java, a widespread programming language.

Nevertheless, our macroprogramming language also differs
from the standard Java ME [15] framework by targeting
even more resource constrained devices. In addition, Java ME
does not provide WSN-specific extension points to integrate
existing concepts that abstract from typical WSN challenges
such as communication and distributed data processing. In
comparison to standard Java, WSN-specific extensions signifi-
cantly increase the utility of our macroprogramming language.
Some low-resource Java virtual machines also exist that are
targeted at low-power embedded and networked systems [1],
[2], [17], but they still require a comparatively significant
amount of resources. For example, the Squawk virtual machine
uses 80 kB of program memory and consequently targets more
powerful ARM-based embedded platforms [18]. Our approach
differs in that it generates customized C code which is in turn
compiled into optimized machine code for the intended target
platform hence reducing the introduced overhead.

III. THE MAKESense FRAMEWORK

This section describes the conceptual WSN abstraction
framework developed in the makeSense project [3]. Pre-
vious research has demonstrated that a large number of
WSN programming abstractions exist that solve common
challenges of WSN programming [12]. WSN programming
abstractions tackle issues such as node addressing, definition
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Fig. 1. The makeSense meta model for programming abstractions [3].

of communication patterns, and distributed data processing. A
typical example of such programming abstractions is Logical
Neighborhoods [11], a system that allows to define groups of
nodes based on their state and to communicate with them in a
way similar to sending broadcast messages to physical neigh-
bors. Programming abstractions, like Logical Neighborhoods,
already simplified WSN programming, but they were difficult
to combine with other abstractions in a single program.

The makeSense project improved this situation by provid-
ing a unifying framework in which existing and future WSN
programming abstractions can be easily integrated. To allow
such extensibility, the makeSense framework employs the
concept of meta-abstractions. WSN programming abstractions
can be grouped into classes that aim to solve similar issues
and that usually expose very similar interfaces. We call such
a group of similar abstractions a “meta-abstraction”, i.e., an
abstraction of abstractions. Based on this insight, a hierarchy
of typical WSN programming abstractions was developed in
the makeSense project [3]. This hierarchy forms the basis of
the makeSense framework as displayed in Fig. 1.

Two major types of Meta-Abstraction can be distinguished.
Actions represent anything a node or a set of nodes can
execute. This can be simple commands, like reading a sensor
value, or more complex operations such as requesting aggre-
gated values from a group of nodes. Modifiers allow a more
precise specification of the behavior of Actions. For example,
a Modifier could be used to specify which nodes should be
part of the group that provides the aggregated value.

The Action class is further divided into two subclasses
of actions. Local Actions are executed locally on a single
node to implement basic operations, e.g., reading a sensor.
In the makeSense framework, Local Actions also define the
interface to the node hardware. Hardware operations, like
reading sensor values or storing data on flash, are exposed
to the user as Local Actions. In addition to predefined Local
Actions, the user may also define custom Local Actions within
the framework.

Distributed Actions can be used to request some action
from multiple remote nodes. Distributed Actions typically
define some form of communication between the nodes. The
makeSense meta-abstraction hierarchy distinguishes between
three basic communication patterns. The Tell abstraction is
used for one-to-many communication. It allows to execute



other Actions on a set of remote nodes. Dually, the Report
abstraction is used for many-to-one communication, e.g., to
request sensor values from a set of nodes. On the remote
node, the requested data is extracted by employing a Local
Action that has been associated with the Report. Finally,
Collective Actions provide a default interface for abstractions
that implement peer-to-peer coordination patterns, such as
global assertions [5] or role assignment [7].

Programmers can customize an action’s behavior by using
Modifiers, e.g., to select the set of nodes that participate in
a Report. This separation of concerns enables a more flexible
interaction among abstractions. The makeSense framework
provides two subtypes of modifiers. Target modifiers are
used to implement the aforementioned selection of nodes, to
limit the scope of operation of any Distributed Action. Data
Operators can be used with Report actions to define additional
data processing to be applied to the collected data, such as
aggregation.

The different meta-abstractions define extension points that
can be instantiated by concrete implementations of these
abstraction types. For example, the Target meta-abstraction
could be instantiated by Logical Neighborhoods or another
group-defining programming abstraction. Several instances of
the same abstraction may exist at a time and an application
may employ different abstractions instantiating the same meta-
abstraction concurrently.

IV. LANGUAGE REQUIREMENTS

To implement actual applications, several abstractions need
to be combined and augmented with application-specific func-
tionality. This requires a programming language that allows
to define the interaction between individual programming
abstractions and to implement algorithms for custom data
processing. A number of fundamental requirements for such
a language can be defined:

(I) The language needs to be suitable to reflect the pre-
viously described meta-abstraction hierarchy supporting
also later addition of instances of the abstraction classes.

(II) As some programming abstractions employ sophisti-
cated custom languages for their configuration, the
language requires a convenient mechanism to integrate
such domain-specific languages.

(III) Individual nodes may need to handle several remote
actions at once. Consequently, the language needs to
support concurrent execution of tasks.

(IV) The language needs to be expressive enough to imple-
ment moderately complex algorithms, it needs to sup-
port at least basic mathematical and logical operators,
conditionals, and basic looping constructs.

(V) The programming language should be familiar and easy
to use for a large number of programmers. It should be
especially appealing for typical domain experts.

(VI) Last but not least, the language needs to be adequate
to generate efficient code suitable for considerably
resource-constrained devices, such as wireless sensor
nodes.

V. DETAILED LANGUAGE DESIGN

Based on these requirements and the makeSense frame-
work, we designed MPL, a high-level macroprogramming
language for WSNs. As determined by Requirements IV and
V, a goal for this programming language is to provide an
expressive programming environment that is familiar to a large
set of programmers. This made Java [8] a natural choice as
basis for the design of MPL as it is well-established and
widely used language with appropriate features. Building upon
Java’s object-oriented model also provides a stepping stone
to implement the makeSense meta-abstraction hierarchy in
accordance with Requirement I. Each meta-abstraction maps
to an interface and abstractions can be added by implementing
a meta-abstraction interface. The language is purely object-
oriented with the exception of a limited set of primitive data
types, including integers, chars, and Booleans.

To make the language suitable for resource-constrained
devices as demanded by Requirement VI, some limitations
compared to standard Java were necessary. The most signifi-
cant difference is the absence of a virtual machine. Programs
are instead translated into C code targeted at the Contiki
platform that can be further processed by the established tool
chain to generate deployable binary images.

Support for object-orientation in MPL had to be imple-
mented in C in a standard-compliant way relying on structures
and function pointers. The approach taken is conceptually
similar to the approach taken by C++ [19]. Most notably,
dynamic dispatch is implemented with the help of virtual
method tables instead of relying on the more flexible but also
more memory-demanding hash-table-based approach typically
found in Java implementations.

In the following, we highlight other important design deci-
sions that enabled us to meet the aforementioned requirements
in an efficient manner.

A. Memory Model

Most object-oriented languages primarily employ dynamic
memory allocation for objects and even though it is conve-
nient for the programmer—especially if supported by garbage
collection—it is ill suited for memory-constrained devices and
reduces the efficiency of the program.

Therefore, to meet Requirement VI, MPL encourages the
use of static memory allocation. In contrast to Java, it is
not only possible to allocate new objects on the heap, but
instead the language also provides additional operations to
support different allocation schemes. Like in Java and in
contrast to C++, objects are always accessed via references.
To support alternative allocation strategies, we introduce two
new allocation operators: static and auto, which return a
reference to a static global object or an object allocated on the
stack.

An object created with static is available for the com-
plete run-time of the application. For example, the allocation
of the rectangle rec_global in Listing 1 employs this
feature. Static objects are represented by global variables in



class Rectangle {
Point topLeft = auto Point();
Point bottomRight = auto Point();

}

...

Rectangle rec_local = auto Rectangle();
Rectangle rec_global = static Rectangle();

Listing 1. Exemplary use of the extended memory model of MPL.

the generated C code. Their memory is statically allocated as
part of the program image.

The operator auto allows to allocate objects on the stack.
These objects are automatically deleted if the current block
enclosed by { and } is left. If the newly allocated object has
only been assigned to variables that are declared in the same
block, then it behaves essentially like an automatic variable of
a primitive type. Automatic objects are represented by local
variables in the generated C code. The compiler also takes care
of inserting appropriate statements in the C code to finalize
objects before they are deleted.

The operator auto can also be used in a second role
within the initializer expression of member variables. If used
in an initializer, auto ties the lifetime of the newly created
object to that of the host object. The class Rectangle in
Listing 1 demonstrates this use of the auto operator. The
memory required for the two Point instances is automatically
allocated if a new instance of the Rectangle class is created.
This type of automatic allocation is implemented by directly
embedding the representation of the dependent object in the C
representation of the host object. Consequently, the required
storage space becomes part of the memory demand of the host.

To provide programmers with additional flexibility and to
allow the creation of dynamic data structures, MPL also
supports dynamic memory allocation and the standard new
operator. Nevertheless, garbage collection is not supported, as
this would add a significant run-time overhead. Dynamically
allocated objects need to be destroyed explicitly by using a
newly introduced delete operator. Dynamic memory alloca-
tion currently relies solely on the malloc implementation of
the underlying target platform without additional optimization.

B. Multithreading

For the intended usage scenarios of MPL it is often nec-
essary to execute several tasks in parallel. To support this
in a user-friendly way, multithreading functionality is needed
for the language as also indicated by Requirement III. The
multithreading capabilities of MPL can be accessed via an
interface that is closely modeled after the Java thread interface.

The current implementation is based on the Contiki multi-
threading library that provides a platform independent inter-
face to switch the current stack. This interface is implemented
for all major hardware platforms supported by Contiki. Based
on this library, we implemented a custom thread scheduler run-
ning as a concurrent Contiki process that schedules runnable
threads in a round robin fashion.

code neighborhoodDef = {:
neighborhood HighTemperature() {
System.getRole() == "sensor"

and System.getType() == "temperature"
5 and System.getTemperature() > x

}
:};

Target highTemperature = auto LN(neighborhoodDef);
10 highTemperature.bindFloat("x", 30.0);

Report temperatureStream = auto Stream();
temperatureStream.setTarget(highTemperature);
temperatureStream.setAction(auto ReadTemperature());

15 temperatureStream.setDataOperator(auto MedianOperator());

temperatureStream.execute();
temperatureStream.waitResult();
Object result = temperatureStream.getResult();

Listing 2. Use of embedded code in MPL.

A major drawback of full-blown multithreading is the com-
paratively high memory overhead as each thread has its own
stack that needs to be constantly kept in memory. To restrict
the memory demand, the maximal number of concurrent
threads is limited. If the maximum is reached, attempts to
create further threads fail and an error is signaled to the
user program. In the extreme case of an application that does
not itself require multithreading, the whole application can
be executed in a single thread. A separate thread running in
parallel to the operating system is still required to support
blocking operations without interfering with the operating
system functions.

C. Embedding of Meta-abstractions

The core goal of the language design was the provision
of an implementation of the makeSense framework. As a
consequence and in line with Requirements I and II, the
language needs to be able to cleanly expose the abstraction-
based extensibility features of the makeSense framework.

To this end, the implementation of a programming abstrac-
tion within the language consists conceptually of three distinct
components: (1) an MPL class, (2) a run-time module, and
(3) (optionally) an MPL compiler plug-in. The MPL class
serves as a means for MPL code to interface with the ab-
straction. Abstraction classes slightly differ from regular MPL
classes in that their methods are typically not implemented by
MPL code. Instead, each abstraction provides an additional
run-time module that implements the required functionality in
low-level C code. This increases efficiency and allows one to
reuse existing implementations. In addition, the implementa-
tion of programming abstractions will typically be conducted
by WSN experts that are already familiar with C programming
on embedded devices. Finally, as indicated by Requirement
II, programming abstractions may employ their own domain-
specific language. To support a domain-specific language,
the abstraction also needs to provide a compiler plug-in to
translate the domain-specific code into code executable on the
target platform. These plug-ins employ a compiler interface
that is described in more detail in Section VI-B.



To support the use of domain-specific languages in a con-
sistent way, MPL provides a dedicated syntax for embedded
code. The mechanism for embedding code shares some simi-
larities with prepared statements for embedding SQL code in
programming languages. In contrast to prepared statements,
embedded code fragments are not represented by strings, but
by the special data type code to facilitate type checking and
special handling by the compiler. Variables of this type can be
instantiated only by a constant expression, consisting of a code
fragment in an abstraction-specific language that is enclosed
by the delimiters {: and :}. Also, unlike prepared statements,
embedded code is not interpreted at run-time but compiled
by abstraction-specific compiler plug-ins. As the embedded
code is handled by plug-ins, it does not necessarily need to
follow the syntax and semantics of MPL. To enable passing
of values between embedded code and the MPL program,
a binding mechanism is provided. Calls to a bind method
of the affected abstraction allow one to bind variables in the
embedded code to MPL variables.

To illustrate these aspects we employ Logical Neighbor-
hoods [11] and a Stream abstraction as an example. A wrapper
has been implemented in the makeSense project, that inte-
grates an existing implementation of Logical Neighborhoods
in the makeSense framework [3] by instantiating the Target
meta-abstraction. Here, Logical Neighborhoods is used in
combination with the Stream abstraction that implements the
Report meta-abstraction. The Stream abstraction has been
created from scratch within the makeSense project [3].

The Logical Neighborhoods abstraction employs a cus-
tom declarative language to define membership of nodes in
a specific neighborhood, used as domain-specific language
within MPL. This use of the functionality can be seen in
lines 1–7 of Listing 2. In this example, a logical neighbor-
hood highTemperature is defined that contains all nodes
equipped with a temperature sensor and that read a high
temperature value. The threshold value x is left as a parameter
in the embedded code, and is later bound to the actual value
in the main MPL program by means of an appropriate bind
call in line 10.

The definition of the logical neighborhood relies on a set of
node attributes (“role”, “type”, and “temperature”) provided by
the run-time environment. To allow simple access to such node
attributes and operations in embedded code, these are exposed
as static methods of a predefined System class. In this exam-
ple, the System methods getType and getTemperature
are used in the embedded code to determine the value of the
corresponding attributes associated to the target node (i.e.,
the type of attached sensor and the sensor value). In line
9 of the example, a new instance of Logical Neighborhood
is created, which is configured by the embedded code. This
Logical Neighborhood instance is associated to a new Stream
instance in line 11 to define the set of nodes from which the
data should be streamed towards the sink. After also specifying
a Local Action to read a sensor value and a Data Operator
to aggregate the individual readings, the stream is started in
line 17. Finally, the program waits for a result and stores the
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returned result in the result variable, as soon as available.

D. Interface to the Underlying Platform

MPL programs typically need to access functions of the
underling hardware and software platforms. In MPL, such
platform functions are also exposed through the previously
introduced abstraction interface.

All communication-related tasks are handled by distributed
actions. Direct access to functions to manually send or receive
individual messages is intentionally not provided by the default
implementation of MPL to shield the programmer from low-
level details of communication. Nevertheless, such facilities
could be provided by dedicated abstractions, if needed.

Node-local functions are exposed as Local Actions. This
typically includes tasks like reading of sensor values and
control of actuators, but the same facility could be also used
to implement local data storage or data processing algorithms.
We expect such platform-related functions to be implemented
by WSN experts using C code with direct access to the
underlying operating system. To support such an approach,
methods in MPL can be declared as native, in which case
the actual implementation of the method is provided by an
external C implementation. Access to MPL language features
is possible via a predefined C interface. Amongst other things,
this interface provides the means to access, manipulate, and
create MPL-defined objects within user-provided C code.

A number of Local Actions for commonly used functions
are predefined by the language. As seen before, a subset
of these functions is also available as static methods of an
automatically generated System class to enable access from
embedded code.

VI. MPL COMPILER

Fig. 2 gives a high-level overview of the MPL compiler
architecture1. Primary input to the MPL compiler is a macro-

1The compiler and supplementary software are available as part
of the makeSense tutorial at http://project-makesense.eu/tutorial/
makeSense-tutorial.zip



program written in MPL, possibly consisting of several source
files. The macroprogram is supplemented by information about
the system’s capabilities, such as the hardware features and
on-board sensors of deployed nodes. This information is used
by the MPL compiler to aid optimization and the allocation of
functionality to the different nodes. In addition to these inputs,
the MPL compiler has access to a repository of components
implementing the macroprogramming abstractions and run-
time functionality. As output, the MPL compiler generates
platform-specific source code for each node type of the target
WSN, e. g., gateway and regular nodes, which is translated
into a deployable binary image by the regular platform tool-
chain. Our current prototype generates C-code for the Contiki
operating system [6]. It is intended that later versions of the
compiler will be extended with further code generators for
different platforms.

A. Code Generation and Allocation

The compiler is implemented as a multi-pass compiler
in Java. The compilation process consists of four distinct
phases: parsing, type checking, code generation, and code
allocation. All phases access the abstract syntax tree (AST)
of the program and a shared symbol table. The implementa-
tions of parsing and type checking largely follow established
approaches for compiler design. The code generation phase
only differs from typical compilers in that it does not directly
generate machine code. In the final code allocation phase,
the compiler maps the compiled classes and interfaces to the
available node types. A WSN may contain nodes with different
capabilities that serve different purposes in the network. Not
all of these nodes require the full functionality of the MPL
program and part of the program is only ever executed on
the nodes of a specific type. The code allocation phase allows
one to remove unnecessary classes from the final code images
and thus to reduce memory demands. In contrast to possible
local code optimizations by the downstream C compiler, the
allocation algorithm of the MPL compiler can take the entire
control- and data-flow of the complete application, including
remote invocations of abstractions, into account.

The current compiler prototype only distinguishes between a
more powerful gateway node and the regular sensor nodes, but
more complex allocation schemes are conceivable. The alloca-
tion procedure is based on the dependency graph generated by
the type checker. For the gateway, the allocation process starts
at the main method. This method is the central entry point
of the MPL program and is always executed on the gateway
machine. Starting from the main method, all classes used by
this method are recursively collected. Only the compiled code
of these classes is deployed on the gateway. For the nodes,
the process starts at the set of actions that are defined in the
MPL program. The compiler determines for each Action, if it
is used by a Remote Action (e. g., Tell or Report). Only those
Actions can be executed on a remote device and thus on one of
the nodes in the WSN. For each of those Actions, all required
classes are recursively collected. With the current prototype,
this set of classes is deployed on all nodes. In the future, we
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Fig. 3. Interaction of the MPL compiler and the compiler plug-ins. Contin-
uous arrows represent data flow. Dashed arrows represent communication.

will also take the capabilities of the nodes into account and
build independent sets for each node type. In a second step, all
Actions requiring capabilities that are unavailable at a specific
node type are removed from the respective set.

B. Plug-in Interfaces

Some programming abstractions employ embedded code to
enable extensive configuration, as described in Section V-C.
The abstraction-specific code cannot be handled by the MPL
compiler itself, instead these abstractions need to provide
compiler plug-ins to analyze and translate the abstraction-
specific code. The MPL compiler plug-in interface allows
these plug-ins to communicate with the MPL compiler at
compile-time. Each compiler plug-in is essentially an indepen-
dent little compiler with its own parser and code generator.
Due to the fundamentally different nature of the object-
oriented MPL code and the typically declarative embedded
code, plug-ins cannot reuse the parsing and code generation
functionality of the MPL compiler. Fig. 3 gives an overview
of the interaction between the MPL compiler and the compiler
plug-ins. Embedded code fragments are extracted by the MPL
compiler and passed to the compiler plug-in provided by the
abstraction that uses the code fragment. The compiler plug-in
translates the domain-specific code into C code. The resulting
C code is compiled with the native tool-chain and linked
with the compiled binary image of the MPL program. The
generated code can communicate with the abstraction-specific
run-time component.

In some cases, it is necessary that the plug-ins generate
different code for devices with different roles in the network.
For example, the plug-in might differentiate between regular
nodes and the network gateway. The gateway code might, for
example, need to perform additional bookkeeping that is not
required on the regular nodes. To support this, the plug-in may
generate different C files for each of the available node types.
The code is only linked with the correct binary image, in this
case. Like the MPL compiler itself, plug-ins are implemented
in Java.
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VII. EVALUATION

To evaluate the performance of MPL we selected a small
set of WSN applications and implemented each of them
as a macroprogram and as functionally-equivalent Contiki/C
programs. We then compared the performance of both im-
plementations based on a set of typical software performance
metrics for WSNs.

A. Settings and Metrics

We selected the following application scenarios for the
evaluation:

1) Blink to Radio. This application scenario represents one-
to-many communication. Such communication patterns
are often used to distribute commands or configuration
settings to a number of nodes. During run-time, the
gateway process regularly sends a command to all sensor
nodes requesting them to toggle their LED.

2) Collect. This application scenario consists of a simple
data collection application. Data collection is a typical
task for WSNs and as such is an important component
of many real world applications. In the evaluated ap-
plication, temperature and light sensor readings of all
nodes are periodically sent to the gateway. At the gateway,
the readings of all nodes are averaged and the result is
reported to the user as a command line output.

3) HVAC application. The last application, originally devel-
oped in the makeSense project, implements a simple
ventilation control system that regulates ventilation based
on CO2 readings. This scenario represents a simple real-
world WSN application. Our setup consists of sensor
and actuator nodes deployed in two rooms. The control
process for each room is offloaded to one of the nodes
located in the respective room.

All applications were implemented by an average program-
mer without a strong background in WSN programming.
Before implementing the applications, he was provided with
an introductory tutorial for the respective technology. During
the experiments, the MPL and the Contiki/C programs was
executed in identical simulated environments with five to six
nodes and a gateway2. The WSN was simulated in real-time

2Please note, that even though the simulated scenarios employed only a
small number of nodes, this does not invalidate the obtained results. The
values for most of the employed metrics are not affected by the number of
nodes.

 0

 50

 100

 150

 200

 250

Blink Collect HVAC

M
a
x
. 

n
u

m
b

e
r 

o
f 

C
P
U

 c
y
cl

e
s 

(1
0

6
) Contiki

MPL

Fig. 5. Maximal number of CPU cycles spent on the nodes.

with Cooja, while the gateway code was executed in parallel in
a 64-Bit Linux environment. The latter communicated with the
simulated network via a serial socket and a simulated interface
node 3. Each application was executed until a scenario-specific
termination condition was met. The same termination condi-
tion was used for the MPL and the Contiki/C implementation.

For each of the programs we investigated the following
metrics:

1) The number of source lines of code is employed as
an approximation of the programming effort for each
application. We are aware that source lines of code are a
very imprecise metric, especially if comparing different
languages. Nevertheless, it can provide an initial idea of
the relative complexities of the evaluated applications if
consistent code formatting is used.

2) Code size is an important metric for WSN applications,
as sensor nodes typically only possess limited program
memory.

3) Memory consumption also needs to be kept low as random
access memory is also a severely limited resource on
sensor nodes. We need to distinguish the space required
by statically allocated objects and the amount of heap
space employed by dynamic memory allocation. Espe-
cially the use of dynamically allocated memory should be
reduced, as dynamic memory allocation requires signifi-
cant over-provisioning of memory resources. We measure
heap allocation by linking the applications to a modified
malloc implementation that tracks heap usage. Effects
like fragmentation are not taken into account.

4) To compare the computational overhead, we count the
CPU clock cycles spent on a typical execution of an
application in a controlled environment.

5) The communication overhead is assessed by recording
the number and size of radio messages sent during
application execution. Ins WSN, energy consumption is
often dominated by wireless communication, so that this
metric also provides some insight on energy consumption.

B. Results

Fig. 4 demonstrates that the plain Contiki/C applications
require the user to write more than twice as much code to ac-

3The node programs were compiled for the Contiki Tmote Sky target with
an MSP-enabled version of the GNU C compiler (version 4.7.0 20120322,
mspgcc patch set 20120911). The gateway code was compiled with the GNU
C compiler (version 4.6.3).
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Fig. 6. Code size of the compiled gateway programs.
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Fig. 7. Code size of the compiled node programs.

complish the same task. In addition, further low-level technical
details are exposed in the Contiki/C program. This indicates
that the use of a high-level macroprogramming language like
MPL can reduce the effort needed for the implementation of
typical WSN applications. The programmer needs to write less
code to achieve the same result.

Figs. 6 and 7 present the respective text size of the com-
piled MPL and Contiki/C implementations of the evaluated
applications. It can be seen in Fig. 7 that the program image
of the MPL programs is significantly larger for the evaluated
applications. A cause for the increase in program size is
the run-time environment required for some of the advanced
features of MPL, like the support for multithreading. It should
be noted that the overhead is largely constant (i.e., it does
not grow with program size) and the relative overhead should
be lower for larger, more complex applications. The program
memory demand of the applications is still well within the
limits of typical WSN platforms.

As presented in Figs. 8 and 9, the MPL-based code also
makes use of more statically allocated memory. The overhead
in static memory consumption is mainly caused by the addi-
tional data structures required for object-orientation support in
MPL. As the relative overhead decreases with application size,
we expect the relative overhead in the evaluated scenarios to
represent a worst case scenario. More complex applications
should exhibit a less significant relative overhead. Further
optimization of the object representations can likely also
significantly reduce the static memory demand of MPL-based
programs.

While the Contiki/C-based programs do not make use of
dynamic memory allocation, some features of the MPL pro-
gramming model rely on dynamically allocated memory, e.g.,
to handle concurrent execution of Actions. This introduces
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Fig. 8. Static memory allocation of the gateway programs.
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Fig. 9. Static memory allocation of the node programs.

a slight additional overhead, but the demand of dynamically
allocated memory is comparatively little. None of the appli-
cations allocated more than 420 bytes at a time on any node
in our test scenarios.

The computational overhead introduced by the use of MPL
turns out to be very low in the experimental scenarios, as
shown in Fig. 5. In the collect and the HVAC scenario,
the MPL-based code actually employs less CPU cycles on
the most active node of each network than the respective
Contiki/C-based code. This demonstrates that features like
virtual method dispatch do not introduce a significant overhead
in terms of execution speed and energy consumption in typical
applications.

As expected, the choice of a higher-level language does
not significantly affect the total number of transmitted radio
messages, as shown Fig. 10. Nevertheless, as shown in Fig. 11,
the total amount of transmitted data is significantly higher
for the MPL-based applications. This is mainly caused by
the fact that the MPL code transmits complete objects that
need to be serialized. An implementation providing a similar
level of flexibility and features as the MPL code would be
far more complex and consequently even more difficult to
implement and maintain. At the same time its resource con-
sumption would probably be much closer to the MPL-based
implementation. Consequently, we conclude that the overhead
for supporting a high-level macroprogramming language with
object orientation is still reasonable for resource-constrained
devices, like WSN nodes.

VIII. CONCLUSION

In this paper, we introduce the design and implementation of
a Java-like macroprogramming language for the makeSense
framework. A preliminary evaluation demonstrated that it is
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Fig. 10. Number of transmitted radio messages.
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Fig. 11. Total size of transmitted radio messages.

possible to implement a high-level object-oriented macropro-
gramming language with a reasonable overhead.

Despite the positive results of the evaluation, current limi-
tations open up an avenue for future work. The performance
of the system can be further improved to make it even more
suitable for the resource-constrained devices typically found
in WSNs. Especially, memory consumption of the generated
code still leaves significant room for improvements. Memory
consumption could be, for example, improved by a more
sophisticated strategy for code allocation. In the current im-
plementation, code allocation operates at class level. Instead
it would be possible to extend these decisions to individual
methods and attributes. In addition, it would be useful to make
the allocation algorithm work with a larger number of node
types and to take the actual program behavior into account.
To make the system more useful in practice, we also intend
to improve debugging support. Finally, compatibility and de-
pendencies among abstractions and between abstractions and
the underlying protocols are not satisfactorily handled by the
framework. The selection of suitable abstractions still requires
manual intervention and some degree of expertise. Ideally, this
selection would be largely automatic based on an abstract set
of user-defined requirements. We currently explore possible
solutions in the RELYonIT project [16].
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