
TeenyLIME: Transiently Shared Tuple Space
Middleware for Wireless Sensor Networks

Paolo Costa
Politecnico di Milano

Italy

costa@elet.polimi.it

Luca Mottola
Politecnico di Milano

Italy

mottola@elet.polimi.it

Amy L. Murphy
University of Lugano

Switzerland

amy.murphy@unisi.ch

Gian Pietro Picco
Politecnico di Milano

Italy

picco@elet.polimi.it

ABSTRACT
Recent developments in wireless sensor networks (WSNs) are push-
ing scenarios where application intelligence is no longer relegated
to the fringes of the system (i.e., on a data sink running on a pow-
erful node) rather it is distributed within the WSN itself.

To support this scenario, we propose TeenyLIME, a tuple space
model and middleware supporting applications where sensing and
acting devices themselves drive the network behavior. In other
words, the application core is not confined to the powerful sinks,
rather it is deployed on the devices embedded within the physi-
cal world. Tuple space operations are used both for data collec-
tion as well as to effect coordination among sensing and acting
devices. This paper describes the TeenyLIME model and corre-
sponding middleware implementation.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]; D.2.11 [Software Architectures]

General Terms
Design

Keywords
Wireless Sensor Networks, Tuple Spaces, Middleware

1. INTRODUCTION
Wireless sensor networks (WSNs) are evolving from mainstream

architectures characterized by a single sink gathering data and ex-
ecuting the application tasks, to more decentralized architectures
where the application intelligence is distributed among the devices.
A prominent example of these decentralized architectures is con-
stituted by networks composed of sensors and actuators [2], where
the latter base their actions on the data gathered by the former.

Clearly, such a decentralized architecture requires coordination
among application components running on different devices. Un-
fortunately, the programming support available to application de-
velopers is often very low-level, and forces them to focus on im-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MidSens’06, November 27-December 1, 2006 Melbourne, Australia
Copyright 2006 ACM 1-59593-424-3/06/11 ...$5.00.

plementation details rather than on the high-level interactions. Ap-
propriate programming abstractions are necessary to deal with the
complexity of managing coordination in these dynamic and decen-
tralized WSN environments.

In this paper, we propose TeenyLIME, a new middleware for
sensor networks based on the tuple space model made popular by
Linda [6]. TeenyLIME leverages off our experience in coordina-
tion technology, as it is based on the LIME [12] middleware we
developed for mobile ad hoc networks (MANETs), briefly outlined
in Section 2. Like LIME, TeenyLIME operates by distributing the
tuple space among the devices, transiently sharing the tuple spaces
contents as connectivity allows, and introducing reactive operations
that fire when data matching a template appears in the tuple space.
TeenyLIME is part of a broader vision concerning the application
of tuple spaces to mobile and wireless sensor networks [11].

Section 3 discusses the peculiarities of the TeenyLIME model.
One significant design decision in TeenyLIME is to restrict tran-
sient sharing only to the tuple spaces of one-hop neighbors. This
choice is not only energy-conscious, but is also in line with similar
research efforts in the field (most notably the Hood system [15]), as
we discuss when examining related work in Section 7. Indeed, con-
trol of the one-hop neighborhood around a device, augmented with
the powerful and expressive primitives provided by TeenyLIME, is
versatile enough to enable a number of application-level uses, as
we illustrate in Section 6.

A model becomes truly useful to developers only when incar-
nated in a real programming platform. For this reason, we designed
and implemented a version of TeenyLIME for TinyOS [7]. The ap-
plication programming interface (API), designed for the nesC [4]
language, is illustrated in Section 4. In addition to providing the
usual Linda primitives and those added by LIME, our API provides
features introduced explicitly to address the specific requirements
of WSNs. The internal architecture of our middleware implemen-
tation is discussed in Section 5.

2. BACKGROUND: LINDA AND LIME
In this section we provide a concise introduction to the notion

of tuple space made popular by Linda, and to its adaptation to the
mobile environment put forth by LIME.

2.1 Linda and Tuple Spaces
Linda [6] is a shared memory model where the data is repre-

sented as elementary data structures called tuples and the memory
is a multiset of tuples called a tuple space. Each tuple is a se-
quence of typed fields, such as 〈“foo”, 9, 27.5〉 and coordination
among processes occurs through the writing and reading of tuples.
Conceptually all processes have a handle to the tuple space and can
add tuples by performing an out(t) operation and read and remove

tuples using rd(p) and in(p) which specify a pattern, p, for the de-
sired data. The pattern is a tuple whose fields contain either actuals
or formals. Actuals are values; the fields of the previous tuple are
all actuals, while the last two fields of 〈“foo”, ?integer, ?float〉 are
formals. Formals act like “wild cards”, and are matched against
actuals when selecting a tuple from the tuple space. For instance,
the pattern above matches the tuple defined earlier. If multiple tu-
ples match a pattern, the one returned by in or rd is selected non-
deterministically. One typical extension is a pair of primitives, ing
and rdg, used to retrieve all matching tuples.

2.2 LIME: Linda in a Mobile Environment
To support mobility, the LIME [12] model breaks up the Linda

tuple space into multiple tuple spaces each permanently attached
to a mobile component, and defines rules for the sharing of their
contents when components are able to communicate. The union
of all the tuple spaces, based on connectivity, yields a dynamically
changing federated tuple space. Access to the federated tuple space
remains very similar to Linda, with each application component
issuing Linda operations on its own tuple space. The semantics of
the operations, however, is as if they were executed over a single
tuple space containing the tuples of all connected components.

Besides transient sharing, LIME adds two new notions to Linda:
tuple locations and reactions. Although tuples are accessible to all
connected hosts, each exists only at a single point in the system,
with one of the mobile components. When a tuple is inserted, it re-
mains in the tuple space of the outputting application component.
LIME also allows tuples to be shipped to another host by extend-
ing the out operation to include a destination. Reactions allow an
application to register a code fragment (a listener) to be executed
asynchronously whenever a tuple matching a particular pattern is
found anywhere in the federated tuple space. This feature is very
useful in the highly dynamic mobile environment, as it frees the
programmer from the burden of explicitly monitoring the system.

3. THE TEENYLIME MODEL
As previously stated, TeenyLIME targets a scenario in which all

WSN components participate in the computation without relying
on an external base station. Applications exhibiting such behavior
include those where actuators collect information from neighboring
sensors and perform some action based on the value returned [2].

This need for coordination among peer devices mimics the co-
ordination supported by LIME, thus it is natural to adopt the tran-
siently shared tuple space as the core abstraction of TeenyLIME.
The coordination operations in TeenyLIME are essentially those of
LIME, including operations to insert, read, remove, and react-to
tuples. TeenyLIME tuple spaces are physically located on the de-
vices themselves but unlike LIME they are shared only with one-
hop neighbors. Because each device has a different set of one-hop
neighbors, the shared tuple space view is different for each device.
This is fundamentally in contrast to LIME in which the view of the
transiently shared tuple space is composed of the tuple spaces of
all connected hosts, and connectivity is assumed transitive.

In general, limiting the scope of operations to one hop is natural
for many WSN applications that need access to nearby informa-
tion. For example, a fire extinguisher can make a local decision to
activate based only on readings from several sensors in its vicinity,
and inform other nearby extinguishers after it activates. Activation
can be effected by installing a reaction on neighboring sensors for
temperature readings. When sufficiently many high readings are
received, the extinguisher should be activated. Notification to the
other extinguishers in the area can be handled by outputting a “no-
tification” tuple to their tuple space.

The information about which devices are currently directly reach-
able is stored in a special tuple space called TeenyLIME system,
providing a single unified abstraction for representing both the ap-
plication and system context. This is similar to the LimeSystem
tuple space of LIME that reports which hosts are currently shar-
ing tuple spaces, although the TeenyLIME system supports weaker
semantics, as explained in the next section.

4. THE TEENYLIME API
TeenyLIME is implemented on top of TinyOS [7]. Figure 1

shows the nesC interface the application uses (in the TinyOS sense)
to access the transiently shared tuple space composed of the local
tuple space and that of the one-hop neighbors. The first param-
eter of each nesC command requires a target, a specification of
the tuple space repositories in the federation over which the opera-
tion should execute. Possible values restrict the scope of the opera-
tion to the local tuple space (indicated with TL LOCAL), the tuple
space hosted by a specific one-hop neighbor (indicated with the ad-
dress of the device), the union of all tuple spaces hosted by one-hop
neighbors (TL NEIGHBORHOOD), or the latter plus the local tuple
space (TL ANY).

4.1 Concurrency
In TeenyLIME, all read/write operations are asynchronous, al-

lowing the application to continue while the middleware completes
a tuple space operation. This approach blends well with the nesC
event-driven concurrency model. Therefore, all read operations are
split-phase [4]: first the operation is issued, then the tupleReady
event is signaled when the operation completes. The return pa-
rameter for each operation is an identifier, or a special constant
(TL OP FAIL) in case of error. The identifier and the data tuple(s)
form the contents of the tupleReady event, allowing the applica-
tion to associate the data with its earlier request. If multiple tuples
are returned, the number parameter indicates how many.

Analogously, two asynchronous commands are offered to in-
stall or remove reactions, taking a pattern as the parameter. When
matching data is present, the tupleReady event is signaled, re-
turning the tuple that triggered the reaction along with the corre-
sponding operation identifier.

4.2 Reliable Read/Write Operations
Typical WSN applications that focus on collecting sensor data

are inherently state-less, as the core task is that of communicating
sensor readings to a given collection point. Conversely, applica-
tions composed of tasks that affect the environment often require
stateful coordination mechanisms, e.g., using current conditions
(state) to act collaboratively. This poses more stringent require-
ments on the consistency of state, and consequently on the relia-
bility of operations on the tuple space. To address both scenarios,
the commands to perform read or write operations can be issued
as either unreliable or reliable, using a flag. The former opera-
tions do not provide any guarantee on their successful completion,
thus yielding a lightweight form of communication that is suited for
state-less applications. Instead, reliable operations offer stronger
guarantees at the price of higher resource consumption, allowing
them to be used for coordination purposes, e.g., to implement con-
trol loops based on the representation of the current state of the
environment.

4.3 Freshness
Sensor data is inherently time sensitive, a dimension that is even

more important when actions must be taken based on the values
themselves. For instance, a temperature reading might require dif-

interface TupleSpace {
// Standard operations
command TLOpId_t out(bool reliable, TLTarget_t target, tuple *tuple);
command TLOpId_t rd(bool reliable, TLTarget_t target, tuple *pattern);
command TLOpId_t in(bool reliable, TLTarget_t target, tuple *pattern);
// Group operations
command TLOpId_t rdg(bool reliable, TLTarget_t target, tuple *pattern);
command TLOpId_t ing(bool reliable, TLTarget_t target, tuple *pattern);
// Managing reactions
command TLOpId_t addReaction(TLTarget_t target, tuple *pattern);
command TLOpId_t removeReaction(TLTarget_t target, TLOpId_t operationID);
// Request to reify a capability tuple
event result_t reifyCapabilityTuple(tuple* capabilityTuple);
// Request to provide a NeighborTuple for the local device
event result_t reifyDeviceInfo();
// Returning tuples
event result_t tupleReady(TLOpId_t operationId, tuple *tuples, uint8_t number); }

Figure 1: TeenyLIME API.

tuple t; TLOpId_t reactionId;
void addTemperatureReaction() {
t = newTuple(2, // The fields of this pattern

actualField_uint8_t(TEMPERATURE),
greaterField(TYPE_UINT16_T, 30);

reactionId = call TupleSpace.addReaction(
FALSE, TL_NEIGHBORHOOD, &t);

if (reactionId == TL_OP_FAIL)
dbg(DBG_ERR, "addReaction operation failed");

else
pendingReact[pendingReactLength++] = reactionId; }

Figure 2: Reacting to temperature values above 30 degrees in
the one-hop neighborhood. Here, TEMPERATURE is a constant,
and pendingReact is an application-defined data structure
for tracking installed reactions.

ferent responses depending on how long ago it was gathered. To
address time in general, TeenyLIME divides time into epochs of
constant length, and timestamps every outputted tuple with the cur-
rent epoch value. Two helper functions are offered to the applica-
tion developers: etFreshness(pattern,freshness) and
getFreshness(tuple). The first customizes a pattern to im-
pose the additional constraint to match tuples no more than fresh-
ness epochs old1. Conversely, getFreshness(tuple) re-
turns the number of epochs that elapsed since the tuple was created.

4.4 Range Matching
While the standard matching semantics of LIME discussed in

Section 2 suffice for basic coordination, some WSN applications re-
quire additional expressive power. For example, a fire extinguisher
application only needs to obtain temperature readings above a safety
threshold. However, using the standard matching semantics based
on exact values, we must issue a reaction over the neighborhood
with a pattern matching any temperature reading and filter the re-
sults when they arrive. This causes unnecessary communication
when data is discarded upon arrival, therefore TeenyLIME extends
patterns to support range matching. For example, the reaction can
be issued stating that the field representing the temperature value
must be greater than a given value.

Figure 2 illustrates how this is achieved with TeenyLIME. In
addition to the usual formal and actual tuple fields, patterns can
also contain customized fields whose matching semantics account
for (bounded or unbounded) intervals. Figure 2 specifies that a
tuple matches the pattern when the first field is equal to the constant

1If a pattern does not specify freshness, it matches any tuple re-
gardless of its timestamp.

tuple t; TLOpId_t outOpId;
void outputCapabilityTemp() {
t = newCapabilityTuple(2, // The fields of this tuple

actualField_uint8_t(TEMPERATURE),
formalField(TYPE_UINT16_T);

outOpId = call TupleSpace.out(FALSE, TL_LOCAL, &t);
if (outOpId == OP_FAIL)
dbg(DBG_ERR, "out operation failed"); }

Figure 3: Outputting a capability tuple for temperature read-
ings.

TEMPERATURE, and the second field is an integer value above 30.
This mechanism is easily extensible because the matching se-

mantics is decoupled w.r.t. distribution mechanisms. A developer
needing alternate matching semantics must only define two func-
tions: one creating a customized field for patterns, and one defining
the conditions for an actual value to match the customized field.

4.5 Capability Tuples
Consider a small modification of the aforementioned scenario,

namely a device needing to read a single temperature value from
a nearby device. For the pattern to find a match, at least one tuple
must be present in the tuple space of the neighboring nodes at the
time the rd(p) operation is issued. Therefore, because a device
cannot predict when a rd operation will be issued, any sensor that
can produce a temperature reading is forced to periodically take
fresh readings, and proactively output the values in the local tuple
space even if no device is currently interested in them. This clearly
constitutes a waste of resources.

To manage this problem, TeenyLIME developers are given the
ability to output capability tuples, as illustrated in Figure 3, indi-
cating that a device has the capability to produce data of a given
pattern. From the point of the view of the application performing
a query (e.g., for 〈TEMPERATURE, ?integer〉) nothing changes: a
matching tuple containing a temperature value is returned by rais-
ing a tupleReady event. Behind the scenes, however, the pro-
cessing occurring at the device hosting the capability tuple is differ-
ent from the normal one. A capability tuple enjoys the same match-
ing semantics as a normal tuple, but is not returned directly as a re-
sult. Instead, it essentially works as a placeholder for the real data.
A positive match triggers the event reifyCapabilityTuple,
which reports the matched capability tuple to the application run-
ning on the device hosting it. The application can then perform the
operation associated with it (e.g., reading the current temperature),
build a tuple on the fly, and output it to the tuple space. TeenyLIME
takes care of returning the tuple to the querying node as the result

GenericComm

Application

TupleSpaceM
TupleSpace

LocalTeenyLIME DistributedTeenyLIME
TupleSpaceLocalTupleSpace

SendMsg ReceiveMsg

TeenyLIME

LocalTupleSpace

Figure 4: TeenyLIME architecture. (Timer components omit-
ted).

of the read operation.
Our original concept for capability tuples was to act as place-

holders for real data, providing a mechanism to reduce the num-
ber of sensor readings to those strictly needed to answer queries.
However, the concept naturally generalizes yielding a powerful ab-
straction. Consider that with a capability tuple a device triggers the
execution of a set of operations on a neighboring device merely by
issuing a query matching the pattern of the capability tuple. This
set of operations can be more general than simply taking a sensor
reading. For example, a programmer could define a capability tu-
ple representing its ability to average some sensor readings taken
over a given time period. When a rd(p) operation is issued with
a pattern matching this average capability tuple, the corresponding
function is triggered and the result returned. Additionally, actual
values in the pattern can be used as parameters, further customizing
execution, e.g., to specify the desired time period in this example.

To exploit this general capability function feature, the developer
simply defines a suitable capability tuple and the function to be
called when the corresponding reifyCapabilityTuple event
is raised. The result of the function is placed in a tuple, stored in
the tuple space, and returned to the calling device.

4.6 TeenyLIME System
As previously mentioned, the system context is represented and

accessible in TeenyLIME in the same way as application data, i.e.,
as tuples. In particular, TeenyLIME automatically provides ac-
cess to the current neighbor set by storing a NeighborTuple
for each device in range. The content of this tuple is defined by the
application developer, allowing customization to include informa-
tion such as the current location and/or the remaining energy. To
keep the information up to date, the system periodically signals a
reifyDeviceInfo event, which the application should handle
by locally outputting a new version of its NeighborTuple. If
the event is ignored, TeenyLIME keeps the previous tuple2.

The mechanisms for populating the TeenyLIME System are de-
scribed next, along with the design underlying the rest of the API.

5. THE TEENYLIME ARCHITECTURE
The overall architecture of TeenyLIME is depicted in Figure 4. It

consists of three TinyOS components wired together in the Teeny-
LIME configuration. This is the only nesC component the ap-
plication must include to access the TeenyLIME system through
the aforementioned TupleSpace interface. In this configuration,
the TupleSpaceM component takes care of delegating the actual
operation to either the LocalTeenyLIME or the Distribu-
tedTeenyLIME component, depending on the scope of the re-
2The programmer is required at system start-up to provide a tuple
identifying the local device, thus if the reifyDeviceInfo event
is always ignored, the device will still have a NeighborTuple.

quested operation. This supports a separation of concerns allowing
independent customization of the two orthogonal aspects of Teeny-
LIME: local storage and distributed processing.

The LocalTeenyLIME component stores the tuples output to
the local tuple space, and performs the actual matching process for
query operations. This component is connected to the rest of Teeny-
LIME through the LocalTupleSpace interface, which mirrors
the TupleSpace interface without specifying an explicit target
for the operation. In addition, LocalTeenyLIME takes care of
storing reactions installed on the local tuple space, matching reac-
tions against newly arrived tuples, and handling capability tuples.
The latter are stored within the LocalTeenyLIME component as
any other tuple. However, when a request matching such a tuple ar-
rives and the application outputs the real tuple, the capability tuple
is not removed from the local tuple space. When further requests ar-
rive for the same capability tuple, the LocalTeenyLIME returns
the real tuple if it meets the freshness requirement in the pattern.
Otherwise, it asks the application again for a real tuple.

The DistributedTeenyLIME component is in charge of im-
plementing the operations whose scope is different from the local
device. To this end, we define a suitable encoding of operations
and parameters into standard TinyOS messages. For unreliable op-
erations, no additional network-level mechanism is required above
the basic functionality provided by the TinyOS GenericComm
module. To implement the out(t) operation, the tuple is packed
in a message and sent to a specific target. Instead, the rd(p) and
in(p) operations are realized by sending a message containing the
pattern. In this case, the DistributedTeenyLIME component
on the receiving side delegates the matching process to Local-
TeenyLIME. This returns any matching tuple to Distributed-
TeenyLIME by signalling a tupleReady event through the Lo-
calTupleSpace interface connecting the two.

To implement reliable operations we are exploring what mech-
anisms can be borrowed from existing WSN proposals for reliable
transport (e.g., [13]). In doing so, we are not limiting ourselves to
simply reusing established solutions. The application scenarios we
target—composed of localized, distributed interactions—and the
specific patterns of query-reply operations of the tuple space ab-
straction are likely to require specific adaptations and extensions to
be used effectively. An extensive study of these mechanisms and
possible extensions is currently under way.

Reactions on remote devices are realized within the Distri-
butedTeenyLIME component using a soft-state approach, i.e.,
they are periodically refreshed. This mechanism has been used ex-
tensively in WSN (e.g., in [8]) and naturally accounts for devices
dynamically joining or leaving. Indeed, if some device joins the
neighborhood after the addReaction command has been issued,
it is likely to receive the reaction in a later refresh message. Con-
versely, if some node leaves, the reactions expire after a timeout.

Finally, the management of the TeenyLIME system, composed of
tuples representing the devices in range, is carried out by passively
listening for messages from neighboring devices. A message al-
ways contains the NeighborTuple of the sending device, which
is used to populate the TeenyLIME system of the devices overhear-
ing it. At start-up, a device wishing to advertise its presence and
also gather information on its neighbors can simply issue a rdg op-
eration for tuples of type NeighborTuple. This avoids periodic
broadcasting of identification information, a waste of resources for
devices not actively involved in any processing.

6. APPLYING TEENYLIME
Most existing middleware for WSNs target specific use cases,

limiting their re-usability. As one of the primary motivations for

middleware development is the reliability that comes from reuse,
this is a major limitation. TeenyLIME, instead, enjoys wide appli-
cability because the tuple space paradigm, enhanced with reactions,
supports a wide range of possible applications. To support this
claim, this section outlines several ways of applying TeenyLIME,
along with motivating application scenarios.

6.1 Reading Sensor Data
TeenyLIME can be naturally used as a high-level interface to

gather sensor readings. The expressiveness given by range match-
ing, together with the energy-aware mechanism of capability tu-
ples, enables flexible, efficient data logging using TeenyLIME.

Sensed data can be locally stored as tuples, and made available
for time-aware queries from neighboring devices, using the fresh-
ness mechanism. Alternately, sensor readings can be used for lo-
calized, collaborative tasks such as in sensing/acting applications.

6.2 Multi-hop Communication
Although TeenyLIME enables direct interactions only among neigh-

boring devices, its model and implementation allows the imple-
mentation of multi-hop communication in terms of single-hop op-
erations and reactions.

As a reference example, consider a simplified location-based
routing protocol that routes to a given physical location. Thanks to
the flexible TeenyLIME system design, each node can include its lo-
cation inside its NeighborTuple. Sending a packet is as simple
as wrapping the data and the destination location in a tuple and in-
serting it into the local tuple space. This triggers a locally-installed
reaction to remove the tuple, consult the embedded destination lo-
cation, and query the TeenyLIME system for the neighbor closest
to the destination. Such a query can be done using a rd operation
with a pattern matching tuples of type NeighborTuple. Once
the closest neighbor to the destination is determined, the data tuple
is written, using out, with the target set to that neighbor. Assum-
ing each device installs an analogous local reaction, the data tuple
will propagate towards the destination3. The latter is recognized by
simply checking that no neighbor closer to the destination exists.

6.3 Remote Function Invocation
The capability tuples of TeenyLIME provide a way to implement

rich interaction patterns beyond the simple sense-and-send func-
tionality of traditional WSN applications. Capability tuples can be
used to request some processing on a set of tuples and have a single
value returned, as shown by the average function in Section 4.
Alternately, capability tuples also offer a means to request a node
to perform some actions.

In a sensing/acting application, commanding actuator nodes re-
motely requires the application developer to implement explicitly
the (distributed) processing needed to encode in messages the re-
quired operation and its parameters, and parse these messages on
the receiver side to perform the corresponding operation. Teeny-
LIME enables the same behavior with a higher level of abstrac-
tion. Simply, an actuator node locally outputs a capability tuple
for each actuator it is connected to. When this capability tuple is
matched by a remote query, the application is notified through the
reifyCapabilityTuple event, which is interpreted as a re-
quest to operate the actuator with the parameters contained in the
query pattern. This way, the programmer abstracts away the distri-
bution aspects, and concentrates on the operations.

6.4 Coordination
3We do not solve here the local minima problem of position-based
routing. Nonetheless, such mechanisms can be added easily.

In general, coordination implies a separation of concerns be-
tween application functionality and communication constructs. Teeny-
LIME easily supports localized coordination through the data shar-
ing abstraction and the ability to install reactions on neighboring
hosts. This can be useful to implement collaborative tasks and de-
centralized algorithms. For instance, in object tracking applica-
tions the nodes currently sensing a moving object must coordinate
to elect a leader, that triangulates the position of the tracked en-
tity [1]. This is achieved easily in TeenyLIME: each device regis-
ters a reaction on its neighbors for tuples representing a moving ob-
ject. Whenever a device recognize the presence of such an object, it
outputs the corresponding information in its local tuple space. This
triggers the aforementioned reaction, notifying the neighbors about
the detected object. Under common assumptions for object track-
ing applications4 and within an application-defined timeout, the set
of devices sensing the target constitutes a clique. Electing a leader
from this set is trivial, e.g., selecting the device with the most recent
measurement, according to the freshness field of the tuple.

6.5 Node and Service Discovery
The tuple space abstraction provided by TeenyLIME enables a

simple and yet effective solution for node and service discovery.
The set of nodes in range is automatically managed by the Teeny-
LIME system, and highly customizable using the appropriate
NeighborTuple. Similarly, the tuple abstraction provides a gen-
eral way to describe any service a device can offer, e.g., the list of
actuators and sensors on board, or the functions available for re-
mote invocation. Node (service) discovery is implemented by per-
forming a rdg operation, discovering the nodes (services) available
in the neighborhood. Alternately, the reaction mechanism can an-
nounce when a node (service) becomes available.

These mechanisms can be effectively employed to deal with the
addition of new nodes and the related problem of sensing cover-
age [10]. Consider a WSN composed of nodes with either seis-
mic or acoustic sensors. When new nodes are added to replace
failed ones, they must discover each other and adjust their sensing
ranges and periods to guarantee a minimal quality of service. For
instance, each point in space must be covered by at least one seis-
mic and one acoustic sensor at all times. An algorithm to perform
this distributed adaptation is easily encoded in TeenyLIME. Sim-
ply, each node augments its NeighborTuple with its position,
current schedule, and installed sensors. At start-up, a new node
performs a rdg for tuples of type NeighborTuple to discover
nodes and their services, i.e., installed sensors. In doing this, the
new device also makes explicit its presence, which is automatically
reflected in the TeenyLIME system of the existing devices. A pre-
viously installed reaction on the local tuple space of these devices
notifies the application of the appearance of a new neighbor. At this
point, each device has enough information to reschedule its sensing
period and/or adjust the sensing range.

7. RELATED WORK
The work most closely related to TeenyLIME is Hood [15]. In

this work, each node has access to a local data structure where
attributes of interest provided by neighboring nodes are cached.
Therefore, data flows proactively according to a many-to-one paradigm.
The current implementation considers one-hop neighbors and is
based on periodic broadcasting of all node attributes and filtering on
the receiver’s side. Conversely, TeenyLIME provides a more gen-

4Usually, one assumes to have the communication range at least
twice the sensing range [1].

eral programming model encompassing both proactive and reactive
operations. In addition, the ability to express different devices as
targets enables also the one-to-many and many-to-many communi-
cation paradigms. At the network layer, no periodic broadcasting is
built into TeenyLIME. Rather, the programmer is given the freedom
to explore the trade-offs between reliability and resource consump-
tion, according to the semantics of each operation.

Context Shadow [9] exploits multiple tuple spaces, each hosting
only locally sensed information. This way, the system is able to
provide contextual information, at the price of increased applica-
tion complexity. Indeed, the application is required to explicitly
connect with the tuple space of interest to retrieve the correspond-
ing information. Conversely, context in TeenyLIME can be man-
aged in a more natural way using the TeenyLIME system, according
to the application-defined information provided by each device.

Agilla [5] is a mobile agent platform that uses tuple spaces for
local coordination of co-located agents. Agents also interact with
remote tuple spaces, which are nonetheless distinct. Conversely,
TeenyLIME provides a higher level of abstraction, where data in
a neighborhood is transiently shared, and perceived as belonging
to a single memory space. Furthermore, capability tuples and the
TeenyLIME system give the programmer flexible mechanisms to
address specific aspects of WSNs, e.g., energy management.

Abstract Regions [14] proposes a model reminiscent of tuple
spaces to enable communication among the nodes in a region (i.e.,
a set of geographically related nodes). However, the model is fairly
limited, as only synchronous read/write operations on 〈key , value〉
pairs are allowed. Differently from TeenyLIME, the programmer
has no way to be notified when some particular data appears in the
system. From an implementation perspective, the nodes belong-
ing to a region can communicate despite being multiple hops away.
However, each particular region requires a dedicated implementa-
tion. Therefore, their applicability is rather limited.

Our prior research has explored tuple spaces in both MANET
and WSN. TeenyLIME itself is inspired by LIME [12], which in-
troduced federated tuple spaces in MANETs. Compared to LIME,
TeenyLIME introduces novel features specifically targeted to WSNs,
e.g., one hop operations, range matching, and capability tuples. In
addition, the system has been completely re-engineered to fit the
event-based programming model of TinyOS, in contrast to LIME’s
Java implementation. Our other tuple space middleware, TinyLIME [3]
targets sensor networks where mobile PDAs are the main consumers
of data from their immediate vicinity. Here, tuple spaces do not
span the sensor devices, which are instead relegated to the role of
data producers. Conversely, TeenyLIME applications are deployed
directly on the WSN devices, which play an active distributed co-
ordination role even with no base stations in the system.

8. CONCLUSIONS
In this paper we outlined TeenyLIME, a model and middleware

for WSNs. The abstraction available to the TeenyLIME program-
mer is that of a shared tuple space formed by the union of the
data of the local device and the one-hop neighbors. Our future
plans include refinement of the implementation to efficiently sup-
port reliable operations. Although our initial investigations clearly
demonstrate the versatility of TeenyLIME to support a wide range
of applications, we also plan to extensively evaluate both qualita-
tively and quantitatively the advantages brought by TeenyLIME to
the application developers, e.g., in terms of code complexity and
inter-component dependencies.

Acknowledgements. The authors wish to thank Fabrizio Bon-
fanti for his contribution to the first implementation of TeenyLIME.

The work described in this paper was partially supported by the Eu-
ropean Community under the IST-004536 RUNES project, by the
European Science Foundation (ESF) under the MINEMA project,
and by the National Competence Center in Research on Mobile In-
formation and Communication Systems (NCCR-MICS), a center
supported by the Swiss National Science Foundation under grant
number 5005-67322.

9. REFERENCES
[1] T. Abdelzaher et al. Envirotrack: Towards an environmental

computing paradigm for distributed sensor networks. In
Proc. of the 24th Int. Conf. on Distributed Computing
Systems, 2004.

[2] I. F. Akyildiz and I. H. Kasimoglu. Wireless sensor and actor
networks: Research challenges. Ad Hoc Networks Journal,
2(4):351–367, October 2004.

[3] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. L. Murphy,
and G. P. Picco. Mobile data collection in sensor networks:
The TINYLIME Middleware. Elsevier Pervasive and Mobile
Computing Journal, 4(1):446–469, Dec. 2005.

[4] D.Gay, P. Levis, and R. von Behren. The NesC language: A
holistic approach to networked embedded systems. In Proc.
of the ACM SIGPLAN 2003 Conf. on Programming
Language Design and Implementation, 2003.

[5] C.-L. Fok, G.-C. Roman, and C. Lu. Rapid development and
flexible deployment of adaptive wireless sensor network
applications. In Proc. of the 25th IEEE Int. Conf. on
Distributed Computing Systems (ICDCS), 2005.

[6] D. Gelernter. Generative communication in Linda. ACM
Computing Surveys, 7(1):80–112, January 1985.

[7] J. Hill et al. System architecture directions for network
sensors. In Proc. of the 9th Int. Conf. on Architectural
Support for Programming Languages and Operating
Systems, 2000.

[8] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
Diffusion: A scalable and robust communication paradigm
for sensor networks. In Proc. of the 6th Int. Conf. on Mobile
Computing and Networks (MobiCom), 2000.

[9] M. Jonsson. Supporting context awareness with the context
shadow infrastructure. In Wkshp. on Affordable Wireless
Services and Infrastructure, June 2003.

[10] S. Meguerduchian, F. Koushanfar, M. Potkonjak, and M. B.
Srivastava. Coverage problems in wireless ad-hoc sensor
networks. In Proc. of the 20th Int. Conf. on Computer
Communications (INFOCOM), 2001.

[11] A. L. Murphy and G. P. Picco. Transiently Shared Tuple
Spaces for Sensor Networks. In Proc. of the Euro-American
Workshop on Middleware for Sensor Networks, 2006.

[12] A. L. Murphy, G. P. Picco, and G.-C. Roman. LIME: A
Coordination Model and Middleware Supporting Mobility of
Hosts and Agents. ACM Transactions on Software
Engineering and Methodology, 2006.

[13] C. Y. Wan, A. T. Campbell, and L. Krishnamurthy. Reliable
transport for sensor networks: PSFQ—Pump slowly fetch
quickly paradigm. Wireless sensor networks, 2004.

[14] M. Welsh and G. Mainland. Programming sensor networks
using abstract regions. In Proc. of the 1st Symp. on
Networked Systems Design and Implementation, 2004.

[15] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: A
neighborhood abstraction for sensor networks. In Proc. of
2nd Int. Conf. on Mobile systems, applications, and services,
2004.

