
TinyL IME: Bridging Mobile and Sensor Networks through Middleware

Carlo Curino, Matteo Giani, Marco Giorgetta, Alessandro Giusti
Dip. di Elettronica e Informazione

Politecnico di Milano, Italy

Amy L. Murphy
Dept. of Informatics

University of Lugano, Switzerland
amy.murphy@unisi.ch

Gian Pietro Picco
Dip. di Elettronica e Informazione

Politecnico di Milano, Italy
picco@elet.polimi.it

Abstract

In the rapidly developing field of sensor networks, bridg-
ing the gap between the applications and the hardware
presents a major challenge. Although middleware is one so-
lution, it must be specialized to the qualities of sensor net-
works, especially energy consumption. The work presented
here provides two contributions: a new operational setting
for sensor networks and a middleware for easing software
development in this setting. The operational setting we tar-
get removes the usual assumption of a central collection
point for sensor data. Instead the sensors are sparsely dis-
tributed in an environment, not necessarily able to commu-
nicate among themselves, and a set of clients move through
space accessing the data of sensors nearby, yielding a sys-
tem which naturally provides context relevant information
to client applications. We further assume the clients are
wirelessly networked and share locally accessed data. This
scenario is relevant, for example, when relief workers ac-
cess the information in their zone and share this informa-
tion with other workers. Our second contribution, the mid-
dleware itself, is an extension ofL IME, our earlier work on
middleware for mobile ad hoc networks. The model makes
sensor data available through a tuple space interface, pro-
viding the illusion of shared memory between applications
and sensors. This paper presents both the model and the
implementation of our middleware incorporated with the
Crossbow Mote sensor platform.

1. Introduction

Wireless sensor networks have emerged as a novel and
rapidly evolving field, with staggering enhancements in per-
formance, miniaturization, and capabilities. However, we
observe that the features provided by the computing and

communication hardware still await to be matched by an
appropriate software layer enabling programmers to easily
and efficiently seize the new opportunities.

At the same time, we observe that much of the work in
the area assumes statically deployed sensors organized in a
network from which data is collected and analyzed at a cen-
tral location. For many applications, e.g., habitat monitor-
ing [16], this is a natural setting. However, in many others
this seems to be overly constraining. First of all, it may be
impractical or even impossible to choose where to place the
collection point, for example in disaster recovery or military
settings. Moreover, in the centralized scenario sensors con-
tribute to the computation independently of their location.
In other words, there is no notion ofproximity supporting,
say, reading only the average temperature sensed around a
technician while he walks through a plant. Finally, the tra-
ditional centralized scenario poses technical challenges re-
lated to the problem of routing the sensed information from
sensors at the fringe of the system back to the collector host,
by mediating the conflicting issues of multi-hop routing and
power saving.

In this paper, we provide a contribution to both issues, by
proposing a new operational setting for sensor network ap-
plications, as well as a middleware supporting their devel-
opment. Our reference operational setting replaces central-
ized data collection with a set of mobile monitors intercon-
nected through ad hoc, wireless links, and able to receive
sensed data only from the sensors they are directly con-
nected to. This way, sensors effectively provide each mo-
bile monitor withcontext-sensitivedata.

To support this novel operational setting, we extend and
adapt a model and middleware called LIME [13, 15], orig-
inally designed for mobile ad hoc networks (MANETs).
Changes to the model are required to match the operational
setting described so far. Extension of the middleware is
needed to cope with the requirements related with power



consumption and with the sheer need of installing the mid-
dleware components on devices with very limited computa-
tional resources. The result of this effort, called TinyLIME,
has been implemented entirely of top of the original LIME

and deployed using Crossbow motes [2] as the target plat-
form.

The paper is organized as follows. Section 2 contains
background information about LIME and the mote sensors.
Section 3 illustrates the operational setting we propose and
target. Section 4 presents the TinyLIME model, while Sec-
tion 5 describes the architecture of the corresponding mid-
dleware developed for motes. Additional implementation
details and evaluation are provided in Section 6. Section 7
places our work in the context of related efforts. Finally,
Section 8 ends the paper with brief concluding remarks.

2. Background

In this section we provide the reader with the necessary
background about LIME, which TinyLIME builds upon, and
on the Crossbow Mote sensor platform, which serves as the
target deployment technology for our implementation.

2.1. L IME

TinyL IME is a data-sharing middleware based on LIME,
which in turn adapts and extends towards mobility the tuple
space model made popular by Linda.

Linda and Tuple Spaces.Linda [6] is a shared memory
model where the data is represented by elementary data
structures calledtuplesand the memory is a multiset of tu-
ples called atuple space. Each tuple is a sequence of typed
fields, such as〈“foo”, 9, 27.5〉 and coordination among pro-
cesses occurs through the writing and reading of tuples.
Conceptually all processes have a handle to the tuple space
and can add tuples by performing anout(t) operation and
remove tuples by executingin(p) which specifies a pattern,
p for the desired data. The pattern itself is a tuple whose
fields contain eitheractualsor formals. Actuals are values;
the fields of the previous tuple are all actuals, while the last
two fields of 〈“foo”, ?integer, ?float〉 are formals. Formals
act like “wild cards”, and are matched against actuals when
selecting a tuple from the tuple space. For instance, the tem-
plate above matches the tuple defined earlier. If multiple tu-
ples match a template, the one returned byin is selected
non-deterministically. Tuples can also be read from the tu-
ple space using the non-destructiverd(p) operation.

Both in andrd are blocking, i.e., if no matching tuple is
available in the tuple space the process performing the op-
eration is suspended until a matching tuple appears. A typi-
cal extension to this synchronous model is the provision of a
pair of asynchronous primitivesinp andrdp, which return
null if no matching tuple exists in the tuple space. Some

variants of Linda (e.g., [17]) also provide thebulk opera-
tionsing andrdg, which can be used to retrieve all match-
ing tuples at once.

Processes interact by inserting tuples into the tuple space
with theout operation and issuingrd andin operations to
read and remove data from the space. A typical example
is a producer/consumer, where the produceroutstuples de-
scribing jobs, and the consumerins job tuples based on pat-
terns related to their capabilities. If needed, the results of
the job execution can beouttedby the consumers and col-
lected by any process with thein operation.

L IME: Linda in a Mobile Environment.Communication in
Linda is decoupled intime andspace, i.e., senders and re-
ceivers do not need to be available at the same time, and
mutual knowledge of their identity or location is not neces-
sary for data exchange. This decoupling makes the model
ideal for the mobile ad hoc environment where the parties
involved in communication change dynamically due to their
movement through space. At the same time, however, the
global nature of the tuple space cannot be maintained in
such an environment, i.e., there is no single location to place
the tuple space so that all mobile components can access it
at all times.

To support mobility, the LIME [13, 15] model breaks up
the Linda tuple space into multiple tuple spaces each per-
manently attached to a mobile component, and defines rules
for the sharing of their content when components are able
to communicate. In a sense, the static global tuple space
of Linda is reshaped by LIME into one that is dynamically
changing according to connectivity. For example, consider
a group of professors carrying PDAs, and imagine each of
them inserting a business card tuple into their local tuple
space, referred to in LIME as theInterface Tuple Space
(ITS). When all professors are in the same room (or, ac-
cording to LIME rules, within transitive communication),
L IME ’s transient sharing of tuple spaces provides a view
where it is as if all business card tuples were in the same tu-
ple space, and accessible to all professors. However, when
one professor leaves the room her business card is no longer
accessible to the others, but it remains accessible to her.
As shown in Figure 1, the LIME model encompasses mo-
bile software agents and physical mobile hosts. Agents are
permanently assigned an ITS, which is brought along dur-
ing migration, and reside on the mobile hosts. Co-located
agents are considered connected. The union of all the tuple
spaces, based on connectivity, yields a dynamically chang-
ing federated tuple space. Hereafter, for the purpose of this
work we always consider the agents as stationary.

Access to the federated tuple space remains very simi-
lar to Linda, with each agent issuing Linda operations on
its own ITS. The semantics of the operations, however, is as
if they were executed over a single tuple space containing
the tuples of all connected components. In the previous ex-



Interface Tuple SpaceHost-Level Tuple Space

Federated Tuple Space

migrate

Mobile Agents
Mobile Host

Figure 1. In L IME connected mobile hosts tran-
siently share the tuple spaces of the agents exe-
cuting on them.

ample, a professor could issue ard operation and retrieve,
non-deterministically, the business card of one of the pro-
fessors in the room.

Besides transient sharing, LIME adds two new notions
to Linda: tuple locations and reactions. Although tuples are
accessible to all connected agents, they only exist at a sin-
gle point in the system, i.e., with one of the agents. When
a tuple is output by an agent it remains in the correspond-
ing ITS, and the tuple location reflects this. LIME also al-
lows for tuples to be shipped to another agent by extending
theout operation to include a destination. The notion of lo-
cation is also used to restrict the scope of therd andin op-
erations, effectively issuing the operation only over the por-
tion of the federated tuple space owned by a given agent or
residing on a given host. For example, a professor can read
the business card of another by specifying the host identi-
fier of her colleague as part of therd query.

Reactions allow an agent to register a code fragment—
a listener—to be executed whenever a tuple matching a
particular pattern is found anywhere in the federated tuple
space. This is particularly useful in the highly dynamic mo-
bile environment where the set of connected components
changes frequently. Continuing the example above, now a
professor (say, Dr. Doe) registers a reaction for business
card tuples and associates a listener for displaying the card
contents. When the reaction is registered, it fires immedi-
ately for each professor, since the business cards are already
in the tuple space, and trigger the display of each card con-
tent on Dr. Doe’s screen. Similarly, if a new professor walks
in the room with a card in her tuple space, the reaction
would immediately cause its display on Dr. Doe’s screen.
Like queries, reactions can also be restricted in scope to a
particular host or agent. Nevertheless, the ability to moni-
tor changes across the whole system by installing reactions
on the federated tuple space has been shown to be one of
the most useful features of LIME.

Additional information, including API documentation
and source code, is available at [1].

2.2. Crossbow Mote Sensor Platform

From this point forward our discussion focuses on the
Crossbow Mote sensor platform [2], which we chose as the
implementation target. It is worth noting, however, that the
TinyL IME model is equally applicable to any platform. In
the Crossbow platform, a sensor board can be plugged onto
each mote to support several environment readings includ-
ing light, acceleration, humidity, magnetic field, sound, etc.
The MICA2 motes in our testbed run on two AA batteries,
whose lifetime is dependent on the use of the communica-
tion and computation resources. The communication range
varies greatly based on the environmental conditions, with
an average indoor range observed during our experiments
of 6-7 m. The motes run an open source operating system
called TinyOS [7] and have 5Mbit of flash memory, with
1Mbit reserved for program memory and 4Mbit available
for user data. A laptop is converted to a base station able to
communicate with the motes by connecting a special base
station circuit board to the serial port of the laptop.

3. Operational Setting

Most middleware designed specifically for sensor net-
works operate in a setting where the sensors are fixed in the
environment and report their values to a centralized point.
As we discuss in Section 7, much work has gone into mak-
ing these operations power efficient. However, this central-
ized model may not be the ideal model for all applications.
Consider an application that requires information from sen-
sors in close proximity to the user. In this case, both the lo-
cation of the user and the location of the sensors must be
known, the data must be requested by the sensors deter-
mined as proximate, then the data must be shipped to the
central collection point. This has a number of drawbacks.
First, it may not be reasonable to expect to know the lo-
cation of all sensors. Second, the collection of information
puts a communication burden on the sensors between the
proximate sensors and the collection point to forward the
data. Third, it requires that all sensors be transitively con-
nected to the base station—something that may not be feasi-
ble in all environments due to physical barriers or economic
restrictions limiting the number of sensors in a given area.

Considering these issues, we propose an alterna-
tive, novel operational scenario; one that naturally provides
contextual information, does not require multi-hop com-
munication among sensors, and places reasonable com-
putation and communication demands on the motes. The
scenario, depicted in Figure 2, assumes that motes are dis-
tributed sparsely throughout a region, and need not be able
to communicate with one another. The monitoring applica-
tion is deployed on a set of mobile hosts, interconnected
through ad hoc wireless links—e.g., 802.11 in our ex-



Figure 2. Operational scenario showing one hop
communication between base stations (laptops)
and motes and multi-hop communication among
base stations and clients (PDAs). Client agents
can also be co-located with the base stations (e.g.,
running on the laptops).

periments. Some hosts are only clients, without direct
access to sensors, such as the PDA in the figure. The oth-
ers are equipped with a sensor base station, which however
enables access only to sensors within one hop, there-
fore naturally providing a contextual view of the sensor
sub-system.

This scenario is not just an academic exercise, rather it is
relevant in several real-world situations. Imagine, for exam-
ple, a disaster recovery scenario with mobile managers and
workers, where sensors have been deployed randomly (e.g.,
thrown from the air). The computer of each worker is also
a base station that enables them to perform their tasks by
accessing the proximate sensor information. Instead, man-
agers are connected only as clients, and gather global- or
worker-specific data to direct the recovery operations, with-
out the need either to have a single data collection point
or to know exactly where sensors are placed. In a sense,
the scenario we propose merges the flexibility of MANETs
with the new capabilities of sensor networks, by keeping
the complexity of routing and disseminating the sensed in-
formation on the former, and exploiting the latter as much
as possible only for sensing environmental properties.

4. The TinyL IME Model

TinyL IME was conceived to support the development of
applications in the operational setting just described. It ex-
tends LIME by providing features and middleware compo-
nents specialized for sensor networks. In this section we in-

troduce the underlying model, while in the next we describe
the middleware architecture.

As in LIME, the core abstraction of TinyLIME is that of
a transiently shared tuple space, which in our case stores tu-
ples containing the sensed data. However, TinyLIME also
introduces a new component in addition to agents and
hosts—the motes. In the physical world defined by our set-
ting, motes are scattered around. They communicate with
base stationsonly when the latter move within range. Deal-
ing with this scenario by considering a mote just like an-
other host would lead to a complicated model with an
inefficient implementation. Instead, in TinyLIME a sim-
pler abstraction is provided. A mote is not visible through
TinyL IME unless it is connected to some base station. When
this is the case, the mote is represented in the model much
like any otheragentresiding on the base station host (and
therefore “connected” to it), with its ITS containing the set
of data provided by its sensors. Looking at Figure 1, it is as
if on each host there were an additional agent for each mote
currently in range of that host. Clearly, things are quite dif-
ferent in practice: the mote is not physically on the base sta-
tion, and there is no ITS physically deployed on the mote.
As usual, it is the middleware that takes care of creating this
abstraction to simplify the programmer’s task. The support
for the abstraction is described in the next section.

Once this leap is made, the rest comes naturally. For in-
stance, operations on the federated space now span not only
connected hosts and agents, but also the motes within range
of some host—similarly for operations restricted to a given
host. Also, the mote identifier can be used much like an
agent identifier to restrict the scope of a query or reaction
to a specific mote. To make a concrete example, consider
the scenario of Figure 2. When an agent on the laptop base
station on the right issues ard for light data, restricted in
scope to its own host, a light reading from one of the two
connected motes will be returned. If, instead, an agent run-
ning on the PDA client issues the samerd query but with
unrestricted scope, a light reading from any of the five sen-
sors connected to the two base stations will be returned non-
deterministically. It should be noted, however, that although
TinyL IME agents use the basic LIME operations to access
sensor data, this data is read-only, i.e., only reactions,rd,
rdp, andrdg are available. Indeed, sensors measure and
report properties of the environment that cannot be changed
or removed by the clients, but only inspected.

Reactions work as in LIME, modulo the changes above,
and are extremely useful in this environment. Imagine a
situation where a single base station agent registers a re-
action to display temperature values. As the base station
moves across the region, the temperature from each mote
that comes into range will be displayed—with no extra ef-
fort for the programmer. TinyLIME reactions also provide
additional expressive power. First, it can be specified how



frequentlythe data received through a reaction should be
refreshed. The notion of data freshness is a property of a
sensor in the context of an application, and it reflects the
fact that sensors measure environmental properties, and ev-
ery reading has a time threshold beyond which it is con-
sidered no longer useful—orfresh. In our example, this is
very useful when the base station remains in a single loca-
tion for an extended period of time. Second, TinyLIME reac-
tions also accept acondition, e.g., to specify reaction only
to temperatures between 20 and 30 degrees. This is moti-
vated by the need to limit communication by the motes, en-
abling data sending only if it is useful for the application.
Both these features, together with details such as the for-
mat of sensor data tuples, are described in the next section.

5. The TinyL IME Middleware Architecture

As previously stated, the TinyLIME model has been de-
signed and implemented for the Crossbow Mote platform,
exploiting the functionalities of TinyOS. On standard hosts,
TinyL IME is implemented as a layer on top of LIME without
requiring any modification to it1, therefore reasserting the
versatility of the LIME model and middleware. In this sec-
tion we describe the architecture of TinyLIME, whose main
components are shown in Figure 3. Our discussion starts
from the perspective of the client, and moves progressively
towards the components deployed on the sensors.

5.1. Client Components

A client interacts with the sensors through the
MoteLimeTupleSpace class, which extends
LimeTupleSpace in the LIME API. However, as
mentioned in Section 4, only the read and reaction op-
erations are available: the others throw an exception.
Figure 4 shows the code of a TinyLIME client agent,
where the first line of therun method contains the cre-
ation of the MoteLimeTupleSpace , and the second
makes it shared, as per the LIME API.

To query the motes, a client must know the format of
the tuples containing sensor data. In LIME, and in gen-
eral in tuple space models, this decision is normally left to
the application. However, in TinyLIME this format is prede-
fined to access the sensors available on the motes, although
it can be easily adapted to suit different sensor platforms.
A tuple (or template) containing a sensor reading con-
sists of four fields:〈SensorType, Integer, Integer, Date〉.
The first field indicates the type of sensor to be queried.
In our mote-specific implementation, valid values are
ACCELX, ACCELY, HUMIDITY, LIGHT, MAGNOMETER,

1 For full disclosure, only a few methods changed their access level from
private to protected.

MICROPHONE, RADIOSTRENGTH, TEMPERATURE,
and VOLTAGE. The second field contains the actual sen-
sor reading2. The third field is theepochnumber of the
mote that provided the reading, and indicates approxi-
mately how long that mote has been alive, as discussed
later in this section. The last field is a timestamp set when
the data is collected at the base station, thus allowing corre-
lation of values gathered at the same host without requiring
synchronized clocks on the motes.

Based on this format, a client can create a
MoteLimeTemplate for use in any of the allowed
operations. The available constructors optionally allow set-
ting a freshness value and an operation scope. The lat-
ter can span the federated tuple space, the agents or
motes on a host, a single agent, or a single mote. The
MoteLimeTemplate created in Figure 4 for a light read-
ing specifies neither. Therefore, therd using it will re-
turn as soon as a light reading with the default freshness
is found in the federated tuple space. Reactions are spec-
ified as in LIME, with a template and a listener. The
template, however, may contain an additional field re-
quiring a matching other than the typical value equality
provided by LIME and Linda-based models. In the cur-
rent implementation, inequality (e.g., voltage different
from 2.1V) and matching over a value range (e.g., tempera-
ture between 20 and 30 degrees) are available3.

MoteLimeTupleSpace also provides operations
dedicated to controlling sensors. For example, the PDA in
Figure 2 can invokesetBuzzer() to cause all motes
connected to the two base stations to buzz for a short pe-
riod of time. Also, setDutyCycle changes the awake
period of the motes,setRadioPower changes the sig-
nal strength, andsetSensingTimeout changes the
maximum time waited for a mote to answer before declar-
ing it unreachable. Like other operations, these methods
can also be restricted in scope.

5.2. Interaction Between Client and Base Station

MoteLimeTupleSpace , MoteLimeTuple , and
MoteLimeTemplate are the only classes needed by
a client application. Hereafter, we look at the inter-
nals of TinyLIME, describing how it uses LIME and inter-
faces with motes.

The first component we examine in detail is the
MoteLimeTupleSpace itself. Although it presents to
the client the illusion of a single tuple space containing sen-

2 In TinyOS all sensor readings are represented as integers. Conversion
functions exist to convert them to more meaningful measurements.

3 This is only a temporary solution to enable experimentation. A new
version of the tuple space engine underlying LIME [14] will provide
these features as part of the template specification, therefore allowing
for a more elegant and uniform solution.



ClientAgent

LimeTupleSpace
"motes"

MoteAgent

LimeTupleSpace
"config"

mote 
request and

config

Limified
mote data

current data

historical data

Lime <--> mote
translation

guarantees
tuple

freshness

remove
old tuples

Configuring

MoteLimeTemplate

MoteLimeTupleSpace

LimeTupleSpace
"motes"

LimeTupleSpace
"config"

TOSMote
Access

asynchronous
request/response

Lime
TupleSpace 

Sharing

MoteLimeTuple

Client Host

Base Station Host

Reachable Motes

Figure 3. Main architectural components on the base station and client hosts. Although shown separate here,
the two can be co-located.

public class SimpleClientAgent extends StationaryAgent {
public void run() {

LimeTupleSpace lts = new MotesLimeTupleSpace();
lts.setShared(true);
ITuple tup = new Tuple()

.addActual(new SensorType(SensorType.LIGHT))

.addFormal(Integer.class)

.addFormal(Integer.class)

.addFormal(Date.class);
MoteLimeTemplate tmpl = new MoteLimeTemplate(tup);
MoteLimeTuple t = (MoteLimeTuple)lts.rd(tmpl);
System.out.println("Tuple returned: " + t.toString());

}
}

Figure 4. A sample Tiny L IME client that reads a light sensor value and prints it to the screen. This is the real
code: only exception blocks are not shown for readability.



sor data, internally it exploits two LIME tuple spaces,
one holding data from the sensors and one for commu-
nicating requests from the client. By using two names,
respectivelymotesand config, the content of the two tu-
ple spaces is shared separately by LIME. These same two
tuple spaces are also instantiated at all base stations, there-
fore sharing occurs across all clients and base stations,
based on connectivity.

The motestuple space provides access to sensor data.
One would expect that, if the mote is connected, its sen-
sor data should be in the tuple space. Instead, sensor
data is retrieved only on demand, saving motes the com-
munication of values that no application needs. There-
fore, when a client issues a request, the internal processing
of MoteLimeTupleSpace first queries themotes tu-
ple space for a match. If no match is found, the operation
proceeds by informing the base stations to query for the re-
quired data. This is accomplished by placing aquery tuple
into the config tuple space, and simultaneously register-
ing a reaction on themotes tuple space. (These tuples
and reactions are clearly system-defined.) The query tu-
ple causes the firing of a reaction on the base station, which
in turn retrieves the data from the sensor and posts it in
themotestuple space, where it causes the firing of the pre-
viously registered reaction, and delivers the data to the
client. The data remains in themotestuple space, possi-
bly fulfilling subsequent queries, until it is no longerfresh.
The freshness requirement is maintained by simply delet-
ing the stale tuples upon expiration of a timer. Theconfig
tuple space is also used for implementing the mote con-
figuration requests described in the previous section (e.g.,
setRadioPower ) using a similar scheme based on re-
quest tuples and reactions.

In TinyL IME, all base stations run an instance of
MoteAgent , which installs the system reactions neces-
sary to the processing we described, manages the operation
requests, and maintains the freshness of the sensor data. Be-
cause some applications may find it useful to access not
only the current value of a sensor but also its recent val-
ues, theMoteAgent also maintains historical information
in the motestuple space, albeit with a different tuple pat-
tern.

5.3. Base Station to Mote Interaction

To this point we have described how data is retrieved
by the client once it is available, however we have not
discussed in detail how it is retrieved from the motes. In
TinyL IME, this is handled by a combination of three com-
ponents: theMoteAgent that receives client requests, the
TOSMoteAccess component that asynchronously inter-
acts withMoteAgent to handle request, replies, and all
communication with the motes, and finally the compo-

nents residing on the motes themselves.MoteAgent and
TOSMoteAccess are highly decoupled, thus enabling the
reuse of the latter in applications other than TinyLIME to
provide a straightforward interface to access motes from a
base station.

The main job of theTOSMoteAccess component is to
translate high-level requests issued by TinyLIME into pack-
ets understandable by the motes. Four kinds of requests are
accepted: read, reaction, stop operation, and set parameter.
Requests which last an extended period of time, i.e. reads
and reactions, accept a listener parameter. The listener is
called when the operation is complete, e.g. data is received
or the timeout expires. Once a request is received by the
TOSMoteAccess component, it is translated into commu-
nication with the motes.

Communication.In principle, communication between the
base station to and from motes is just message passing.
However this is not as straightforward in sensor networks
as in traditional ones. To see why, one must understand a
fundamental property of motes, namely that to conserve en-
ergy they sleep most of the time, waking up on a regular ba-
sis to receive and process information. Because motes can-
not receive packets while sleeping, the base station must re-
peatedly send a single packet as shown in Figure 5. The fre-
quency at which to repeat the packet and the length of time
to repeat it are determined by two parameters: the nomi-
nal awake time and the epoch period. Thenominal awake
timeis the amount of time that a mote promises to be awake
during each epoch period. Theepoch periodis the basic cy-
cle time of a mote. Multiplying the current epoch number
by the epoch length estimates the time a mote has been ac-
tive. To avoid duplicate delivery of packets, each contains a
sequence number that the motes use to filter incoming mes-
sages. This design intentionally puts the burden of commu-
nication on the base station rather than on the motes, forc-
ing the former to repeat a message many times to ensure its
delivery. This is not an issue if, as we assume, the base sta-
tion has a larger energy reserve and is more easily recharge-
able than the motes.

Operation Processing.With this understanding of commu-
nication with motes, we return to theTOSMoteAccess
component. Sending a read or parameter set request to a
mote is accomplished by this component simply sending the
message and waiting for the reply. The processing inside the
motes will be discussed shortly, however it should be noted
that because the base station does not enter a sleep mode,
messages sent by the motes are only transmitted once. If
no mote replies within an epoch period, the request is re-
transmitted. Even if no mote within range can provide the
data, the base station may move into range of a new mote
at any time. Therefore ard request should be retransmitted
as long as the client is still waiting for a tuple. The probe
and group operations,rdp andrdg, must be handled dif-



time

M
ot

e1
Ba

se
St

at
io

n
M

ot
e2

awake sleeping awake sleeping

awake sleeping awake sleeping

awake

mote cycle time

1

Figure 5. Communication with motes that sleep for a majority of the time. To ensure all motes in one-hop range
receive the packet, each packet is broadcast by the base station at a frequency determined by the awake time
for the duration of an epoch.

ferently because the agent should receive anull reply if no
mote can service the request. Therefore, after a timeout pe-
riod theTOSMoteAccess component stops repeating the
request and returnsnull if no motes responded or, in the
case ofrdg, the set of sensor values collected before the
timeout.

Next we consider reaction requests. One option is to send
a reaction installation message to the motes, indicating that
sensor values should be sent every epoch until they are no
longer needed. This would require the motes to maintain
information about all requests, including the conditions that
must be met (e.g., required value ranges). At least two prob-
lems arise with this solution. Consider the case where a
client/base station pair moves through a region with a re-
action installed for temperature sensors. Here the base sta-
tion must repeatedly send the request to install the reaction
on all motes and, moreover, the motes that are no longer
in contact need to detect disconnection and stop transmit-
ting temperature values. This can be difficult and energy
consuming to the motes. These problems led us to a base
station driven solution, where theTOSMoteAccess com-
ponent continuously sends reaction requests to the motes.
Reaction requests differ from normal read requests because
they contain the condition to be met by data, allowing the
motes to avoid transmitting sensor values that are useless
for the application. Motes are expected to reply once per
epoch, even if their sensor value has not changed, there-
fore the packet filter mechanism on the motes is designed
to accept packets with the same reaction request identifier
once per epoch. In this solution, the motes remain stateless;
when the base station moves out of range no processing is
needed on the motes to cancel the operation. When a client
moves out of range of the base station, the client’s reac-
tions must be disabled, but such disconnection is easily de-

tected using LIME mechanisms inside theMoteAgent and
theTOSMoteAccess is informed to stop requesting sen-
sor values on behalf of the disconnected client. By choosing
this solution, we require that the base stations both maintain
more state and send more messages to repeatedly request in-
formation. However, this is reasonable given that the base
station is likely to have both a larger on-board energy sup-
ply and more memory than the motes.

5.4. On-Mote Components

The only remaining component is that deployed on the
motes themselves. Given the choices made up to this point,
the motes component is designed as a reactive system, re-
sponding to incoming messages and of course managing
its epoch and awake periods. Figure 6 shows the ar-
chitecture of software deployed on motes as a set of
interconnected TinyOS components. TheTimers mod-
ule controls the epoch and awake periods. TheFiltered
Communication module receives all incoming pack-
ets, eliminating duplicates based on packet identifiers.
The Sensors Subsystem invokes the appropri-
ate TinyOS components to take sensor readings, including
powering sensors on and off before and after use. If ad-
ditional sensors are added to the system, this component
must be modified. TheTuning module handles the set-
ting of mote parameters such as transmission power.
Finally, the Core module links all these components to-
gether, triggering events and calling parameters.

To understand the functionality of the sensor compo-
nent, consider the processing of an incoming reaction re-
quest. Assuming the incoming packet is not a duplicate,
theFiltered Communication module passes it to the
Core , where the sensor type and condition are extracted



Core

Photo Temp Volt GPS

Sensors Subsystem

Genericcomm

Main

∑Stats

Tuning Timers

Filtered
Comm

Figure 6. Architecture of components installed
on motes. Shaded components have been devel-
oped for Tiny L IME, while the others are provided
by TinyOS.

from the packet. TheCore then communicates with the
Sensor Subsystem requesting a reading for the spec-
ified sensor, e.g., light. When the reading has been taken, an
event is raised on theCore , the value is checked against the
conditions contained in the packet and, if the value meets
the condition, a packet containing the sensed value is as-
sembled and passed to theGeneric Communication
module to be sent back to the base station.

5.5. An Example

To summarize how the components fit together, we walk
through a simple example where a client reads a sensor
light value, as shown in Figure 7. The client first creates
the desired template, and invokes therdp function on an
instance ofMoteLimeTupleSpace . Inside it, therdp
is converted to a query which is posted to themotestuple
space to see if a fresh light value already exists. If a value
is returned, it is passed back to the client immediately. Oth-
erwise, a configuration tuple is output toconfig, indicating
that a sensed light value is needed, and at the same time a re-
action is installed onmotesfor the required sensor data. The
MoteAgent , which is registered to react to every configu-
ration tuple, receives the agent’s request, passes it along to
the TOSMoteAccess component, which in turn sends a
read request to the motes. When the value is returned, it is
placed into themotestuple space, triggering the earlier in-
stalled reaction to fire, which finally delivers the tuple with
the sensed value back to the client.

Component Language LOC

MoteLimeTupleSpace Java 446
MoteAgent Java 361
TOSMoteAccess Java 470
On-Mote Components nesC 550

Table 1. Uncommented lines of source code for
all major Tiny L IME components.

6. Implementation Details

TinyL IME is available for download athttp://lime.
sf.net/tinyLime.html . Table 1 shows the break-
down of source code lines across components.

Evaluation. To get a feel for response times, we ran some
indicative test cases with an epoch time of8s and an awake
time of 2s. These values, especially the epoch time, heav-
ily influence the numbers below, and should be tuned ac-
cording to the application needs.

Our test cases involved only the blockingrd operation.
Results would have been the same for therdp since in our
test a mote is always in range to provide the requested value.
Therdg instead would produce different but rather uninter-
esting results, because its performance is not dependent on
the motes but on the parameter of theTOSMoteAccess
component that determines how long to wait to collect all
replies. All tests were run with the TinyLIME client co-
located with the base station in order to eliminate the net-
work delays on the non-mote network.

Our first test involved a single mote and two requests.
For the firstrd request, response times varied from0.35s
to 5.8s, with an average over 11 runs of3.2s. In a twelfth
run, the response time was observed at12.1s, clearly an un-
expected value since it is longer than the epoch time. This
can be explained by the lossy nature of mote communica-
tion. Likely, the request packet was corrupted and the mote
did not receive the request until the second epoch. Immedi-
ately following the firstrd request, a second request was is-
sued. In this case, the previously sensed value was still con-
sidered fresh, so no communication with the motes was re-
quired. This time, response times varied from0.0049s to
0.20s, depending on CPU load. With low CPU usage, the
average was approximately0.008s.

Our second set of tests involved three motes. In this case,
the firstrd request response times varied from0.29s to 2.3s
with an average of1.2s. This reduction in time over the sin-
gle mote scenario is expected since the awake time of the
motes is likely to be scattered, increasing the chance that at
least one of the motes is awake shortly after the query is is-
sued. We also repeated the test with a second, immediaterd
showing the same results as before. Again, this is expected



ClientAgent MoteLimeTupleSpace LimeTupleSpace
"motes"

MoteAgent

rdp[cur,dest,MoteID]
(SensorType,Int,Int,Timestamp) rdp[cur,dest,MoteID]

(SensorType,Int,Int,Timestamp)

null

LimeTupleSpace
"config"

Reaction firing

MoteAccess

doRead(mote,sensor)

Mote
Interaction

addData(values)
out(mote data)

addWeakReaction(...)

Reaction firing: 
mote data

out(config)

mote data

base station 
lime node

client 
lime node

Figure 7. Sequence diagram showing the processing of a rdp.

since no mote communication is involved as the fresh value
is simply observed in the tuple space.

Tests with reactions confirm the previous results, assum-
ing the readings match the specified conditions. Again, this
is expected since reaction are implemented like queries—
they are simply repeated for more than one epoch.

Wakeup scattering.As observed during the tests, the re-
sponse time for a request is quite variable and dependent on
when it is issued with respect to when the motes wake up
and receive the request packet. With multiple motes the av-
erage response time was shorter, albeit still quite variable.
This is because the awake times of the motes are not coor-
dinated in any fashion; motes wake up at random times in
the epoch period and these times are not evenly distributed.
The left side of Figure 8 shows the consequence of this phe-
nomenon. If the first transmission of the request is atA, then
the response will be immediate. However, if the first trans-
mission is atB, no mote is awake to reply, and the request
will not be answered until the second transmission during
the next mote epoch. Interestingly, even if the first transmis-
sion is atA and TinyOS provides provisions such as carrier

sense and collision avoidance for multiple motes transmit-
ting at the same time, multiple motes can still saturate the
channel and affect performance. Again the left half of Fig-
ure 8 shows this possibility with four motes, whose wakeup
times are not exactly aligned, but nonetheless may respond
all at the same time when a request is made.

To avoid these situations, we propose a wakeup scatter-
ing algorithm that more uniformly distributes the points at
which the motes wake up during the epoch, resulting in a
wakeup distribution similar to the right side of the figure.
Although a centralized solution may be able to optimize a
large, multi-hop network, our solution is distributed, and en-
ables local decisions with relatively little overhead. In short,
our solution proceeds in rounds. At the beginning of the first
round, the process is initiated by a special packet sent by
one of the motes or an external agent. Immediately after re-
ceiving this packet, each mote randomly places its wakeup
time in the next one-epoch-long period of time (the calibra-
tion period). When this time arrives, it sends ascatter notify
packet. During the entire epoch, each mote records the ar-
rival times of the notify packets of the others. Only two such
packets are of interests, the one received immediately be-



BA BA

Figure 8. Left: with non-ideal wakeup times, all motes compete for bandwidth to reply to the query and there
may be a delay if the first transmission is at time B. After scatter wakeup times, fewer motes compete and with
higher probability some mote is awake to receive the transmission.

fore the transmission of the mote’s own scatter notify, and
the one received immediately after. At the end of the epoch,
the mote finds the midpoint between these two transmis-
sions, and moves its own wakeup time closer to, but not ex-
actly to, this point. How far to move the wakeup time is a pa-
rameter we determined through experimentation. The pro-
cess of detecting the scatter notify packets and moving the
wakeup time can be repeated any number of times, itera-
tively refining distribution.

This solution has been implemented directly in nesC and
simulated in tossim, a TinyOS simulator. It yielded the ex-
pected results, namely distributing the wakeup times more
evenly throughout the epoch. We are still evaluating sev-
eral aspects of this approach including choosing how far to
move the wakeup time each epoch, evaluating how many
rounds are needed on average to stabilize the wakeup time,
and how the algorithm is affected by the fact that the initial-
ization packet will not reach all motes at the same time.

7. Related Work

The idea of providing middleware for sensor networks
has been growing in popularity, providing application pro-
grammers with a variety of useful abstractions easing the
development process. EnviroTrack [3], a middleware for
environmental tracking applications, supports event-driven
programming by identifying an event at a given location,
collecting the data from proximate sensors, and reporting
the readings and event to the user. TinyLIME supports a sim-
ilar notion through reactions, although it does not perform
the in-network aggregation of EnviroTrack.

An alternative model is data-oriented and thus closer to
TinyL IME. In Directed Diffusion [8], applications specify
“interest queries” for the necessary data attributes, and the
nodes collaborate to set up routes for this information to
follow back to the application. It is explicitly multi-hop in
nature, unlike TinyLIME that focuses on local, contextual
interactions with sensors. Other systems provide database
interaction with sensors. TinyDB [12] provides an SQL-

like interface with optimization for placement of parts of
the query (e.g., joins, selects) to minimize power consump-
tion. Cougar [4] and SINA [18] also provide a distributed
database query interface towards a sensor network with
an emphasis on power management either by distributing
queries or clustering low-level information in the network.
Although TinyLIME also provides a simplified database
model, the Linda tuple space, it has no notion of collect-
ing information at a single point. Instead multiple clients
can be distributed, and the system can dynamically recon-
figure, something not inherent in the other systems. More-
over, since TinyLIME protocols are simpler and do not re-
quire a tree structure, its communication delays tend to be
smaller.

Other data-oriented approaches, such as DSWare [11],
address the redundancy of data collected by geographically
proximate sensors. By aggregating the data of several sen-
sors and reporting it as a single value, some amount of sen-
sor failure can be tolerated. QUASAR [10] addresses qual-
ity concerns, allowing applications to express Quality aware
Queries (QaQ). For example, QaQs can express quality re-
quirements as either set-based (e.g., find at least 90% of the
sensors with temperature greater than 50oC) or value-based
(e.g., estimate the average temperature within 1oC). Nei-
ther of these optimizations is incorporated into TinyLIME,
although we plan to explore how aggregation and quality
concerns can be addressed in the system.

Tuple spaces have also been considered previously for
use in sensor networks. Claustrophobia [5] replicates a sin-
gle tuple space among multiple motes, providing a vari-
ety of efficiency-reliability tradeoffs for populating the tu-
ple space with sensor data as well as retrieving that data.
However, it is based on a different operational setting than
the one we chose in this paper. ContextShadow [9] exploits
multiple tuple spaces, each holding only local information
thus providing contextual information. The application is
required to explicitly connect with the tuple space of in-
terest to retrieve information. TinyLIME, being focused on
the combination of MANET and sensor networks, exploits



physical locality to restrict interactions without application
intervention.

8. Conclusions

In this paper we proposed a novel operational setting
for wireless sensor networks, and a middleware supporting
the development of corresponding applications. The opera-
tional setting, in contrast with mainstream approaches, does
not assume a centralized data collector. Data is coopera-
tively collected by mobile monitors interconnected through
a MANET, which can access only those sensors that are
directly available to them. This configuration brings more
flexibility, simplifies the communication infrastructure, and
naturally provides for context-awareness through proxim-
ity of sensors to the monitors. The middleware, TinyLIME,
is an extension of the LIME middleware originally designed
for MANETs. While communication between the mobile
monitors is entirely handled through LIME, a new layer is
built entirely on top of it to interact efficiently with the spe-
cialized components deployed on the sensors.

An instantiation of the middleware has been imple-
mented for the Crossbow mote platform, and is available
for download athttp://lime.sf.net/tinyLime.
html .

References

[1] Lime. http://lime.sourceforge.net .

[2] Crossbow Technology Inc. http://www.xbow.com ,
2005.

[3] T. Abdelzaher, B. Blum, D. Evans, J. George, S. George,
L. Gu, T. He, C. Huang, P. Nagaraddi, S. Son, P. Sorokin,
J. Stankovic, and A. Wood. EnviroTrack: Towards an en-
vironmental computing paradigm for distributed sensor net-
works. InProc. of the 24th Int. Conf. on Distributed Com-
puting Systems (ICDCS), 2004.

[4] P. Bonnet, J. Gehrke, and P. Seshadri. Querying the physical
world. IEEE Personal Communication, 7(5):10–15, October
2000.

[5] V. Bychkovskiy and T. Stathopoulos. Claustrophobia: Tiny
tuple spaces for embedded sensors. Course Project, UCLA
CS233, http://lecs.cs.ucla.edu/˜thanos/
cs233/cs233_vlad_thanos_report.ps , 2002.

[6] D. Gelernter. Generative communication in Linda.ACM
Computing Surveys, 7(1):80–112, January 1985.

[7] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for network sen-
sors. InProc. of the 9th Int. Conf. on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS), pages 93–104, Cambridge, MA, USA, Novem-
ber 2000.

[8] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
Diffusion: A scalable and robust communication paradigm

for sensor networks. InProc. of the 6th Int. Conf. on Mo-
bile Computing and Networks (MobiCom), 2000.

[9] M. Jonsson. Supporting context awareness with the context
shadow infrastructure. InWorkshop on Affordable Wireless
Services and Infrastructure, June 2003.

[10] I. Lazaridis, Q. Han, X. Yu, S. Mehrotra, N. Venkatasubra-
manian, D. Kalashnikov, and W. Yang. QUASAR: Quality-
aware sensing architecture.SIGMOD Record, 33(1):26–31,
March 2004.

[11] S. Li, S. Son, and J. Stankovic. Event detection services us-
ing data service middleware in distributed sensor networks.
In Proc. of the 2nd Int. Workshop on Information Process-
ing in Sensor Networks, April 2003.

[12] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. The design of an acquisitional query processor for
sensor networks. InProc. of the ACM SIGMOD Int. Conf.
on Management of Data, 2003.

[13] A. L. Murphy, G. P. Picco, and G.-C. Roman. LIME: A mid-
dleware for physical and logical mobility. In F. Golshani,
P. Dasgupta, and W. Zhao, editors,Proc. of the 21st Int. Conf.
on Distributed Computing Systems (ICDCS), pages 524–533,
May 2001.

[14] G. P. Picco, D. Balzarotti, and P. Costa. LIGHTS: A
lightweight, customizable tuple space supporting context-
aware applications. InProc. of the 20th ACM Symposium
on Applied Computing (SAC), Santa Fe, New Mexico, USA,
March 2005.

[15] G. P. Picco, A. L. Murphy, and G.-C. Roman. LIME: Linda
meets mobility. In D. Garlan, editor,Proc. of the 21st Int.
Conf. on Software Engineering (ICSE), pages 368–377, May
1999.

[16] J. Polastre, R. Szewcyk, A. Mainwaring, D. Culler, and
J. Anderson. Analysis of wireless sensor networks for habi-
tat monitoring. In Raghavendra, Sivalingam, and Znati,
editors,Wireless Sensor Networks, pages 399–423. Kluwer
Academic Pub, 2004.

[17] A. Rowstron. WCL: A coordination language for geographi-
cally distributed agents.World Wide Web Journal, 1(3):167–
179, 1998.

[18] C.-C. Shen, C. Srisathapornphat, and C. Jaikaeo. Sensor in-
formation networking architecture and applications.IEEE
Personal Communication, 8(4):52–59, August 2001.


