
One Flood to Route Them All:
Ultra-fast Convergecast of Concurrent Flows over UWB

Matteo Trobinger, Davide Vecchia, Diego Lobba, Timofei Istomin, Gian Pietro Picco∗
{matteo.trobinger,davide.vecchia,diego.lobba,timofei.istomin,gianpietro.picco}@unitn.it

University of Trento, Italy

ABSTRACT

Concurrent transmissions (CTX) enable low latency, high reliability,
and energy efficiency. Nevertheless, existing protocols typically
exploit CTX via the Glossy system, whose fixed-length network-
wide floods are entirely dedicated to disseminating a single packet.

In contrast, the system we present here,Weaver, enables con-
current dissemination towards a receiver of different packets from
multiple senders in a single, self-terminating, network-wide flood.

The protocol is generally applicable to any radio supporting CTX;
the prototype targets ultra-wideband (UWB), for which a reference
network stack is largely missing. Our modular design separates the
low-level mechanics of CTX from their higher-level orchestration
inWeaver. Other researchers can easily experiment with alternate
designs via our open-source implementation, which includes a
reusable component estimating UWB energy consumption.

Our analytical model and testbed experiments confirm that
Weaver disseminates concurrent flows significantly faster and
more efficiently than state-of-the-art Glossy-based protocols while
achieving higher reliability and resilience to topology changes.

CCS CONCEPTS

• Networks→ Network protocol design.

KEYWORDS

Concurrent transmissions, ultra-wideband, low-power wireless.

ACM Reference Format:

Matteo Trobinger, Davide Vecchia, Diego Lobba, Timofei Istomin, Gian
Pietro Picco. 2020. One Flood to Route Them All: Ultra-fast Convergecast
of Concurrent Flows over UWB. In The 18th ACM Conference on Embedded
Networked Sensor Systems (SenSys ’20), November 16–19, 2020, Virtual Event,
Japan. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3384419.
3430715

1 INTRODUCTION

In the last decade, concurrent transmissions (CTX) have catalysed
the attention of the low-power wireless community. The term refers
to the fact that tightly-synchronized simultaneous transmissions do

∗The first two authors contributed equally to the research in this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SenSys ’20, November 16–19, 2020, Virtual Event, Japan
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7590-0/20/11. . . $15.00
https://doi.org/10.1145/3384419.3430715

not necessarily result in a collision; instead, under some conditions
determined by the underlying PHY radio layer (§2), one of the
concurrent packets is received with very high probability.
Motivation. This phenomenon was exploited in IEEE 802.15.4 nar-
rowband where, popularized by the Glossy system [12], it rapidly
became a state-of-the-art asset in designing protocols supporting
various traffic patterns [11, 17, 21]. Recent work has shown that the
same principle is applicable to other radios, notably including Blue-
tooth Low Energy (BLE) [26] and ultra-wideband (UWB) [20, 23, 29].

This surge of interest is motivated by the fact that protocols
based on CTX enable unprecedented performance by achieving
at once near-perfect reliability and very low latency and energy
consumption. Nevertheless, most of these protocols are built atop
the network-wide flooding offered by Glossy, by simply scheduling
its floods in different ways depending on the traffic pattern and
goals at hand. In other words, Glossy is used to a large extent as a
monolithic blackbox, with little or no modifications by higher-layer
protocols. This is a reasonable design decision enabling faster and
reliable prototyping, given the system-level complexity of Glossy.
On the other hand, this decision stifles the exploration of alternate,
finer-grained designs that directly and individually exploit CTX,
free from the rigid, predefined scheduling strategy of Glossy.
Exploiting the full potential of CTX: Weaver. This second
approach is precisely the one we follow in this paper, in which we
retain network-wide flooding as the main communication mecha-
nism, but fundamentally change its purpose and operation.

A Glossy flood is entirely dedicated to disseminating a single
packet across the entire network. A global scheduling of transmis-
sion (TX) and reception (RX) slots, whose redundancy is governed
by the user-defined parameter 𝑁 , achieves the aforementioned
excellent performance. Nevertheless, flooding is still a wasteful,
network-wide operation, exacerbated by the fact that reliability is
directly tied to the redundancy factor 𝑁 ; the higher its value, the
higher the number of times a packet is (concurrently) retransmitted
and, therefore, the higher the (network-wide) energy consump-
tion. Crucially, the value of 𝑁 , and hence the duration of the flood,
is fixed before execution, therefore intrinsically prone to over- or
under-provisioning, hampering lifetime and reliability, respectively.

In contrast, the system we describe here, called Weaver, is
expressly designed to concurrently disseminate towards a receiver
different packets from multiple senders in a single, self-terminating,
network-wide flood, significantly improving on latency, reliability,
and energy consumption w.r.t. Glossy-based systems.

Weaver achieves these goals with several mechanisms, each
built directly atop individual CTX. As in all Glossy-based systems,
Weaver alternates (short) periods executing its network-wide flood
with (long) periods of inactivity, all implicitly time-synchronized
by system operation. Each node, including the sink, executes a

https://doi.org/10.1145/3384419.3430715
https://doi.org/10.1145/3384419.3430715
https://doi.org/10.1145/3384419.3430715

SenSys ’20, November 16–19, 2020, Virtual Event, Japan M. Trobinger, D. Vecchia, D. Lobba, T. Istomin, G. P. Picco

time-slotted sequence formed by a TX slot followed by two RX slots,
that repeats until the flood self-terminates. Adding an extra RX
slot to the TX-RX scheme of Glossy may seem a minor change;
yet, it is crucial to unlock significant performance gains. Indeed,
the resulting 3-slot structure, combined with the propagation of an
initial message from the sink, staggers the (concurrent) TX and RX
of nodes at different hop counts from the sink, enabling multiple
flows to co-exist within the same flood without disrupting each
other. Further, it enablesWeaver to exploit a combination of local, 1-
hop broadcast acknowledgments and global, sink-initiated ones that,
together, adaptively i) suppress unnecessary packet propagation
or, on the contrary ii) trigger retransmission of packets that have
been lost, therefore decreasing energy consumption and increasing
reliability w.r.t. the fixed redundancy of Glossy-based approaches.
Goals, methodology, contributions. We discuss the design ra-
tionale and goals for Weaver (§3) and offer an analytical model
confirming the intrinsically superior performance achieved w.r.t.
Glossy-based state-of-the-art representatives, before delving into a
more in-depth illustration of protocol details (§4).

Systems based on CTX are notoriously complex. This, however,
is to a large extent a relic of a past when the lack of proper hardware
primitives required complex designs yielding timing guarantees.
Nowadays, many radio transceivers offer rich primitives notably
including the ability to schedule transmissions accurately, including
the Decawave DW1000 ultra-wideband (UWB) radio [7] we focus
on in this paper. Other works [20, 23] have shown that Glossy-based
protocols can be effectively supported by its powerful features.

Moreover, we observe that a staple communication stack, and
in particular a convergecast one, is currently missing for UWB, in
stark contrast with the plethora of protocols resulting from more
than a decade of work on IEEE 802.15.4 narrowband wireless sensor
networks. By providing a fast and efficient data collection embodied
by ourWeaver prototype we aim at fostering adoption of UWB also
for sensing and communication, besides ranging and localization.

Once the leap is made from coarse-grained, rigid Glossy floods
to finer-grained alternatives based on individual CTX, many solu-
tions are possible, catering for different requirements. Our modular
implementation (§5) sharply decouples the mechanics of accurately
scheduling TX and RX slots, delegated to a Time Slot Manager
(TSM) component, from their higher-level orchestration inWeaver,
which can be easily replaced by alternate designs. A component
estimating energy consumption is also provided. We release these
reusable components as open source [1] contributing to further
developments in the fast-growing UWB research community.

We evaluateWeaver in a 36-node testbed at our premises. We
first analyze the impact of key design decisions with dedicated ex-
periments. Next, we compare directly the performance of Weaver
against Crystal [17, 18] a state-of-the-art Glossy-based convergecast
protocol with an UWB implementation [23]. Our results confirm
the trends observed in the analytical model, e.g., showing that
Weaver can deliver at the sink 30 concurrent flows in ∼100 ms,
achieving a reduction of ∼70% in both latency and energy consump-
tion w.r.t. Crystal while achieving near-perfect reliability due to
the lower contention induced by the finer-grained, adaptive use of
CTX. Moreover, the ultra-fast dissemination achieved by Weaver,

along with the inherent redundancy offered by CTX, makes our
system resilient to topology changes, e.g., induced by mobility.

Finally, although ourWeaver prototype targets UWB, its pro-
tocol design does not rely on features specific of this PHY layer.
Therefore, it can be applied to other radios, amplifying the impact
and contribution outlined here and pushing the envelope of what
CTX can achieve in low-power wireless communications at large.
We concisely discuss these and other follow-up opportunities (§7)
before ending the paper (§8) with brief concluding remarks.

2 BACKGROUND AND RELATEDWORK

We offer the necessary background on CTX in narrowband and
UWB, along with a concise survey of the most relevant approaches.

2.1 CTX in IEEE 802.15.4 narrowband

In these radios, where the concept was first developed [4], CTX rely
on two PHY-level phenomena occurring when senders simultane-
ously transmit towards the same receiver on the same RF channel.
Constructive interference is possible when copies of the same packet
arrive within 0.5 𝜇s, i.e., the duration of a bit (chip) in the DSSS
modulation; the union of concurrent, identical signals actually im-
proves the reliability of packet RX. The capture effect is possible
when different packets arrive within 160 𝜇s, i.e., the duration of the
synchronization header, enabling the radio to switch RX from a
signal to another; one of the packets is likely received, depending
on the number of senders and their relative signal strength.
Glossy as a reusable building block. Glossy [12] was the first
to exploit CTX into a reliable, efficient, and publicly-available sys-
tem providing network flooding and time synchronization. Several
others exploited the low-latency, high-reliability, low-consumption,
network-wide flooding of Glossy as a building block for higher-level
abstractions. LWB [11] supports different traffic flows (many-to-
one, one-to-many, one-to-one) by properly scheduling them as
individual Glossy floods from a single initiator. Crystal [17, 18] sup-
ports many-to-one convergecast via phases in which Glossy floods
from multiple initiators compete, followed by others in which the
sink alone has the opportunity to acknowledge the received packet.
Other systems [3, 27, 28, 31] explore variants of these concepts.
Reusability vs. degrees of freedom. Interestingly, in all these
systems Glossy is reused as a monolithic blackbox, with little or no
modification. Indeed, only few systems make relatively small modi-
fications to Glossy that, however, are not geared to change its core
functionality, rather to improve its performance, e.g., increasing
reliability via channel hopping [25] and/or reducing latency [2, 22].

The direct reusability of Glossy actually fueled research on CTX,
enabling researchers to experiment with new protocols while avoid-
ing the intricacies of the CTX implementation. Nevertheless, at the
same time it also fossilized research on CTX to a large extent.

Indeed, a Glossy flood is entirely dedicated to disseminate a single
packet from a single initiator, with the intent to exploit constructive
interference among forwarding nodes. LWB and others (e.g., [28,
31]) rely directly on this feature. Crystal and others (e.g., [27]) push
Glossy further by having multiple initiators compete within the
same flood, relying on the capture effect; however, the final outcome
is still a single packet from only one of the initiators.

One Flood to Route Them All: Ultra-fast Convergecast of Concurrent Flows over UWB SenSys ’20, November 16–19, 2020, Virtual Event, Japan

Weaver: Back to individual CTX. In contrast, we take a sig-
nificantly finer-grained perspective and free ourselves from the
mechanics of Glossy, exploiting CTX directly and individually.

Only few systems hitherto resorted to a similar approach, and
always to support many-to-many communication. Chaos [21] real-
izes network-wide aggregation of data from multiple initiators via
competing floods. Mixer [15] and CodeCast [24] exploit network
coding to improve performance and reliability. In all of them, the
TX-RX scheme of Glossy is replaced by a sequence of indistinct
slots in which a node dynamically decides whether to TX or RX;
in Chaos, a TX happens deterministically when the node observes
new information affecting the global aggregate, while in Mixer and
CodeCast the decision includes also a probabilistic component.

Our research endeavor differs from the above on two accounts.
First, it explores a strategy in which slots are not indistinct, rather
they have a preassigned role, as in Glossy. However, differently
from Glossy, our scheme is capable of deterministically intertwin-
ing multiple flows frommultiple initiators whose dissemination and
termination we govern with a novel, adaptive strategy as described
in §3 and §4. Second, instead of many-to-many, we tackle converge-
cast traffic. This communication pattern is arguably more popular,
thanks to its use in monitoring and data collection applications, yet
hitherto dominated by systems relying on monolithic Glossy floods.
By “breaking” this unit of communication and achieving better
performance via individual CTX we exemplify the power of this
alternate design mindset, possibly paving the way to exploration
of alternate schemes catering for this and other traffic patterns.

Finally, to facilitate this exploration by others, and simplify our
own system development, we follow a recent trend [15, 19, 25] and
sharply separate the fine-grained CTX engine from the Weaver
protocol built atop it, while taking advantage of features provided
by modern transceivers that greatly simplify programming.

2.2 CTX in IEEE 802.15.4 Ultra-wideband

The remarkable performance achieved by CTX in IEEE 802.15.4
narrowband led researchers to studywhether and how the same con-
cept applies to other radios, e.g., Bluetooth Low Energy (BLE) [26]
and IEEE 802.15.4 UWB [29]. The answer is not for granted, given
the significantly different characteristics of the PHY layers. How-
ever, these studies have shown that both same-packet and different-
packet CTX can be exploited, and their benefits still stand.
Why UWB? In this paper we focus on UWB, and specifically on
the Decawave DW1000, arguably the most popular and widely-
available UWB transceiver today. The DW1000, compliant with
IEEE 802.15.4, is an impulse radio encoding information via short
(∼ 1 ns) pulses andwithout a carrier signal, enabling decimeter-level
accuracy in distance estimation and a data rate up to 6.8 Mbps [7].

We focus on UWB for the following reasons. First, UWB is in-
creasingly popular, as it offers both accurate distance estimation
and communication. Although UWB is not as pervasive as other
radios, its inclusion in smartphones by Apple and Samsung hints
that this may change soon. Second, a staple UWB communication
stack is currently missing, in contrast with the many available for
IEEE 802.15.4 narrowband after almost two decades of work on
wireless sensor networks. By focusing on convergecast, a staple fea-
ture of the latter, and leveraging the superior performance of CTX,

we aim at concretely showing the effectiveness and applicability
of UWB to sensing and communication scenarios, accelerating its
adoption beyond localization-centric ones.
Glossy on UWB. A third motivation is that Glossy-based base-
lines already exist. The work in [20] reports the use of Glossy
on UWB for network-wide coordination in a localization system.
However, as communication is not the main focus, implementa-
tion details are scarce and no performance evaluation is provided.
Recent work [23] details instead several design opportunities en-
abled by the DW1000 and evaluates Glossy on UWB in a testbed.
Moreover, it also shows how Crystal, a representative higher-level
protocol supporting convergecast (§2.1), can be “ported” to UWB
with minimal modifications, yielding remarkable performance akin
to the state-of-the-art one observed for narrowband [17]. Hereafter,
we use the publicly-available UWB implementation of Crystal [23]
as the baseline we compareWeaver against.

These systems are all enabled by nearly-simultaneous packet
transmissions, similar to narrowband albeit with slightly different
temporal and environmental constraints. For an in-depth analysis of
the latter, and a comparison with narrowband, the reader is referred
to [29]. Nevertheless, we reassert that the main contribution of this
paper lies in the novel idea of merging multiple packets flows in a
single network-wide flood—a notion that is not tied to UWB and
therefore applicable to other radios, as further elaborated in §7.

3 DESIGN GOALS AND PRINCIPLES

We designedWeaver to tackle inherent inefficiencies of data collec-
tion protocols that rely on Glossy floods as the only communication
primitive. To better understand the crux of the matter, we focus on
Crystal and analyze critically its operation, in particular its reliance
on Glossy and the related shortcomings (§3.1). Motivated by this
analysis, we then provide a concise overview of the key design
decisions and goals at the core of Weaver (§3.2). We conclude
the section by providing a quantitative argument, supported by
analytical models, showing that our fine-grained CTX-based design
is intrinsically superior to Glossy-based ones (§3.3).

3.1 The Drawbacks of a Glossy Legacy

Crystal in a Nutshell. Crystal [17] targets scenarios with aperi-
odic data collection and sparse traffic, using a schedule (Figure 1a)
composed of three phases, each executing a Glossy flood: i) the
initial S phase, originating at the sink, provides network-wide time
synchronization; ii) in the T phase, concurrent floods originating
at nodes with data packets compete; due to the capture effect, one
is received at the sink with high probability, e.g., the orange one in
Figure 1a; iii) the A phase originates at the sink, which exploits it
as a network-wide acknowledgment informing senders of whether
their packet has been received; in Figure 1a, this enables retrans-
mission of the blue packet in the next T phase. The alternation
of T and A phases (TA pair in Crystal jargon) continues until all
pending packets are received and acknowledged, and a TA pair
without data is observed for a pre-defined number of times.
Crystal: A critical look. Although Crystal already achieves re-
markable, state-of-the-art performance, it is inherently limited by
its direct reliance on Glossy, as many others (§2).

SenSys ’20, November 16–19, 2020, Virtual Event, Japan M. Trobinger, D. Vecchia, D. Lobba, T. Istomin, G. P. Picco

0 (sink)
1
2
3

S (sync) T (data) A (ack)

ho
p

di
st

an
ce

T (data) A (ack)

4

(a) Crystal relies on distinct floods for data and control.

0 (sink)
1
2
3

ho
p

di
st

an
ce

4

TX control packet (sync/ack)
TX data from node 1
TX data from node 3
RX

(b) Weaver weaves data and control into the same flood.

Figure 1: Sample executions of Crystal andWeaver. Termi-

nation phase is not shown.

A first problem is that each Crystal phase is a Glossy flood that
must complete before a new one is started. The schedule on each node
must allocate enough time for flood propagation, determined with
knowledge of the network diameter and number of retransmissions.

This problem is exacerbated by the fact that the number 𝑁 of
retransmissions is fixed, yielding other inefficiencies: i) retransmis-
sions are performed regardless of whether a packet has already
successfully propagated, therefore hampering latency, lifetime, and
possibly reliability due to unnecessary contention, and ii) the fixed
value of 𝑁 cannot dynamically cater for transient sources of unreli-
ability, common in wireless communications; either the worst case
is assumed, hampering lifetime in the normal case, or the latter is
assumed, hampering reliability when disturbances occur.

These problems are shared by all Glossy-based approaches (§2).
Specific to Crystal is the sink-initiated, network-wide acknowledg-
ment in the A phase. The latter has been shown (in [17, 18] and
EWSN competitions) crucial to achieve near-perfect reliability even
with aperiodic, bursty traffic and heavy interference. This superior
reliability motivates our use of Crystal as a baseline instead of,
e.g., LWB or derivatives, besides the lack of UWB implementations.
However, the asset brought by A phases also bears drawbacks,
again inherited from Glossy. One directly descends from the prob-
lems above: successful propagation of a packet requires (at least)
two phases, transmission (T) and acknowledgment (A), both fixed-
length and strictly separated, wasting energy and time.

A less obvious problem is that the A phase is oblivious of the
reason why packets are not received. In Crystal, the common case is
that transmissions from𝑈 initiators compete in the same T phase;
the A phase is crucial to inform senders of whether their packet
should be re-sent. Nevertheless, the A phase also counters packet
losses due to collisions. These are often concentrated in network
“pockets” where packet transmissions violate the constraints for
successful CTX, yielding a collision. This situation stems from a
combination of neighbor density, relative signal power, and envi-
ronmental conditions, extremely hard to predict yet likely to repeat
due to the periodic operation of the protocol. Unfortunately, in
Crystal the only option is to inform the network about the missed
packet, and hope that somehow the problem solves itself.

3.2 Weaver: The Power of Fine-grained CTX

We tackle the limitations above at their core by removing the depen-
dency on Glossy, therefore regaining the full degrees of freedom

available once the unit of communication becomes an individual
CTX rather than a monolithic Glossy flood. This finer-grained de-
sign mindset enables us to bring to the table several techniques that,
together, improve significantly the already remarkable performance
of Crystal, in its role of representative of Glossy-based approaches.
The most significant point of departure is that Weaver collects
and acknowledges multiple packets within a single flood, where the
different flows coexist without disrupting each other.

On the surface,Weaver resembles other CTX-based converge-
cast protocols, e.g., Crystal or LWB. Time is divided in rounds
(epochs) of fixed length, each containing a time-slotted communica-
tion schedule. The sink, i.e., the node collecting data, periodically
starts a new epoch by broadcasting a synchronization packet; nodes
re-propagate it concurrently, exploiting CTX, and align their slots
to the one of the sink, beginning execution of the global schedule.
Epoch bootstrap: Acquiring one-shot topology information.

Differences begin with this first step, which inWeaver is exploited
not only to enable nodes to time-synchronize, but also to learn their
hop distance from the sink. This topology information is exploited by
a node to relay only packets from nodes at the same hop distance,
or higher, from the sink, i.e., favoring packets in need to make
progress and quenching those already ahead, reducing contention.

This topology information is not explicitly maintained, as in con-
ventional route-based approaches, rather passively learned during
the initial dissemination, hereafter termed as epoch bootstrap. In
this respect, the ultra-fast dissemination achieved by Weaver dou-
bles as a fundamental asset for its operation. As we show later (§6),
Weaver disseminates 30 flows over 6 hops in only ∼100 ms. There-
fore, during this very short time span the network can be effectively
considered as static, and the topology learned during bootstrap safely
assumed to persist throughout the entire flood, even in scenarios
with node and/or sink mobility, as we investigate in §6.4.
Weaving packet flows. Weaver merges flows from multiple sen-
ders (initiators) into a single flood where data implicitly follows the
upward gradient towards the sink established by the epoch boot-
strap, and acknowledgments flow downwards towards initiators.

This goal is intrinsically at odds with the classic Glossy schedule
alternating a TX slot with a RX one, which causes floods two hops
apart to systematically compete. A node in RX mode hears TX from
both nodes on the next and previous hop towards the sink, with
the latter potentially halting propagation of data upstream. For
instance, in Figure 2a, the TX of the ACK from the sink for the
orange packet is performed concurrently with the TX of the blue
packet. If the latter prevails, the ACK is lost and the orange packet
must be retransmitted, as shown. Otherwise, the ACK prevails and
delays the TX of the blue packet. Which one occurs depends on the
vagaries of CTX and is therefore unpredictable, ultimately making
it impossible to distinguish between data and acknowledgments.

G-ACK Data packets

ho
p

di
st

an
ce 0

ACK –
data 1

ACK –

ACK –
data 2

ACK 1

ACK –
data 2

ACK –
data 1

ACK 1

…1

2

(a) TX-RX schedule (Glossy).

ho
p

di
st

an
ce 0

ACK –
data 1

ACK –

ACK –
data 2

ACK 1

ACK 1
data 2

ACK 1,2

ACK 1,2

ACK 1

1

2

(b) TX-RX-RX schedule (Weaver).

Figure 2: Weaving flows of data and acknowledgments.

One Flood to Route Them All: Ultra-fast Convergecast of Concurrent Flows over UWB SenSys ’20, November 16–19, 2020, Virtual Event, Japan

Weaver replaces the 2-slot TX-RX structure of Glossy with a
3-slot TX-RX-RX one (Figure 2b). This simple addition, combined
with information gathered during the epoch bootstrap, decouples
the TX from nodes at different hop distances, enabling each node to
consistently receive i) in the first RX slot, data flowing upwards, i.e.,
from nodes farther from the sink and to be forwarded towards it,
and ii) in the second RX slot, acknowledgments flowing downwards
from nodes closer to the sink, to be forwarded to initiators.

The effect is clearly visible in Figure 2b: CTX from nodes at differ-
ent hop distances no longer interfere. During the first RX slot, a node
at hop ℎ can receive only from senders at ℎ + 1, nodes at ℎ + 3 from
senders at ℎ + 4, and so on. Receivers then relay data concurrently
in their next TX slot, providing forwarding progress. Therefore,
different data flows coexists within a single flood and proceed to-
wards the sink in an orderly fashion. If these non-overlapping flows
carry packets from different initiators, collection speed increases
dramatically, as shown by comparing Figure 1b with Figure 1a.
The role of (different) acknowledgments. An obstacle remains
on the path to sink: packets from same-hop initiators compete to-
wards the next hop. The use of CTX ensures that one is decoded at
the receiver with high probability, but what happens to the others?

Weaver solves the problem with two types of ACKs, both piggy-
backed on data packets whenever possible. A local acknowledgment
(L-ACK) is sent by a receiver to its 1-hop neighbors to (temporarily)
suppress their TX for a packet that has already made progress up-
wards, therefore leaving room for the propagation of other packets
still behind. A global acknowledgment (G-ACK) is instead sent by
the sink upon receiving a packet, and re-propagated by each node,
informing the whole network that retransmissions are no longer
needed for this packet, and it can be discarded.

The two ACKs are implicitly related. A node whose TX is sup-
pressed by a L-ACK should eventually receive a G-ACK; otherwise,
the packet has been lost on the way to the sink, and its TX should be
resumed. The crucial question then becomes: How long should the
node wait before resuming TX? The answer comes, again, from the
topology knowledge accrued during the epoch bootstrap that, by
informing the node of its hop distance from the sink, enables an ac-
curate estimation of the number of slots expected to elapse between
a L-ACK and the corresponding G-ACK for the same packet.

3.3 Is It Worth? An Analytical Model

A full understanding of Weaver entails several details (§4) whose
treatment we postpone to first offer evidence that our strategy
achieves significant improvements w.r.t. the state of the art.

We achieve this goal with simplified models for Crystal and
Weaver, where we assume that i) all data packets originate from𝑈

initiators placed at the same hop distance ℎ, whose value ℎ = 𝐻 is
the worst-case maximum distance from the sink ii) packet collisions
never occur, i.e., one of the packets concurrently transmitted is
always received, and iii) we do not consider the overhead induced
by protocol termination, present in both protocols.

Our models compute the number of slots required to disseminate
𝑈 data packets under these assumptions, offering a proxy for la-
tency and energy consumption. This allows us to directly compare
Crystal and Weaver in an abstract setting, eliciting their intrinsic
differences, independent of the PHY layer or other system factors.

ho
p

di
st

an
ce 0

1
2
3
4

H H H H H H H

(a) Crystal

h 1 2 (h – 1) 3 (U – 1) 1 H

ho
p

di
st

an
ce 0

1
2
3
4

Sync/ACK

Data packets

(b)Weaver

Figure 3: Latencymodels forCrystal andWeaverwith𝑈 = 3
initiators (orange, blue, and green) all at maximum hop dis-

tance 𝐻 . Termination phase is not shown.

Assuming the most energy-efficient (but least reliable) configu-
ration with a single Glossy retransmission (𝑁 = 1), Crystal requires

𝐿𝐶 = 𝐻 (2𝑈 + 1) (1)

CTX slots to deliver and acknowledge all 𝑈 packets. 𝐻 slots are
required for the initial, synchronisation phase (S), followed by one
TA pair with 2𝐻 slots for each of the𝑈 initiators.

This is exemplified in Figure 3, which also shows how Weaver
significantly increases the parallelism of the𝑈 data flows and their
ACKs. In the worst-case scenario we consider, the nodesℎ = 𝐻 hops
away from the sink must wait ℎ slots before they can TX data, to
first receive the epoch bootstrap packet from the sink. On the other
hand, differently from Crystal, TX can begin immediately after, as
in Weaver CTX occur free from the many constraints of Glossy
floods. The first packet reaches the sink after 1 + 2(ℎ − 1) slots, as it
takes 2 slots to relay a packet one hop upwards. The remaining𝑈 −1
packets reach the sink once every 3 slots, completing after 3(𝑈 − 1)
slots. Finally, the network-wide G-ACKs triggered by the sink upon
receipt of each packet account for 1 + 𝐻 slots each, yielding

𝐿𝑊 = 3(ℎ +𝑈 − 1) + 𝐻 (2)

as the total number of slots utilized byWeaver.
Figure 4 compares the protocol performance based on our simpli-

fied models, for several values of network diameter𝐻 and initiators
𝑈 . Crystal is more efficient in the (degenerate) case of 1-hop net-
works, as it uses a 2-slot schedule instead of the 3-slot one used by
Weaver and, for the same reason, latency is marginally better with
a single initiator (𝑈 = 1) atℎ = 𝐻 . However, in a multi-hop network,
the number of slots required by Crystal is directly proportional to
the network diameter 𝐻 . This is not the case forWeaver, which
is also faster and more scalable as𝑈 increases due to its ability to

Crystal Weaver

0 5 10 15 20 25 30
U

0

100

200

300

400

N
um

b
er

of
sl

ot
s

H=1

0 5 10 15 20 25 30
U

H=4

0 5 10 15 20 25 30
U

H=7

Figure 4: Estimated number of slots required to deliver 𝑈

data packets in a network of 𝐻 hops.

SenSys ’20, November 16–19, 2020, Virtual Event, Japan M. Trobinger, D. Vecchia, D. Lobba, T. Istomin, G. P. Picco

parallelize flows, up to ∼2x faster for a 4-hop diameter and ∼4x for
a 7-hop one with𝑈 = 30 (Figure 4).

Although the magnitude of the performance gap between the
protocols is evident, and sufficient to confirm the validity of our
design choices, there are obviously several aspects that are not
captured by our simplistic models. Specifically, they do not cater
for system and environmental factors affecting reliability and, in
turn, latency and energy consumption. These can be ascertained
only with real-world experiments, which we present in §6 after
further detailing our protocol and its implementation.

4 PROTOCOL DETAILS

We now complete the description of the Weaver protocol with
additional, important details.
Epoch bootstrap. The bootstrap packet sent by the sink and re-
propagated throughout the network at the beginning of each epoch
is key to provide nodes with a common time reference and topology
information. Initiators can immediately transmit data inside the re-
propagated bootstrap packet; unlike Glossy-based systems, there is
no need to separate data collection from the initial synchronization.

In theory, one bootstrap network-wide flood is enough; in prac-
tice, it may not reach all nodes due to collisions. When this happens,
functionality is impaired; nodes that missed the bootstrap packet
are unaware of their hop distance from the sink and do not know
how to realign their schedule, preventing reliable operation. This
is less of a problem with several initiators, as the hop distance in-
cluded in all packets gives nodes that missed the bootstrap multiple
chances to realign; however, it is crucial with few initiators.

The nodes that missed the bootstrap packet can reuse the infor-
mation learned during the previous epoch. Often, this information
is unchanged and can be refreshed in the next epoch, if collisions
are rare. However, this may be not enough to accommodate the
vagaries of wireless communication, or scenarios encompassing
mobility. A simple and more reliable solution is to retransmit the
bootstrap packet a pre-defined number 𝐵 of times. We analyze the
impact of the value of 𝐵 on reliability and energy efficiency in §6.2.
Local acknowledgments (L-ACKs). Upon packet TX, nodes em-
bed the initiator ID of their last heard packet in theWeaver header.
When received at another node in the second RX slot, the one de-
voted to communication from upstream nodes, this ID indicates
that the corresponding packet has already made progress towards
the sink. Therefore, the original data packet doubles as a L-ACK
for previous packets at downward nodes waiting to TX the same
old data; these nodes can suppress this unnecessary packet TX and
replace it with one for a new packet, if any, speeding up propa-
gation of the latter and avoiding unnecessary contention due to
the former. Nodes without new data listen during TX slots to hear
same-hop neighbors and help them deliver their packets.
Global acknowledgments (G-ACKs). The G-ACKs sent by the
sink contain a bitmap with one bit for each node in the system,
signaling whether a packet from the corresponding node has been
delivered at the sink during the epoch. G-ACKs are interwoven
with data collection; they are received in the second RX slot from
upward nodes and subsequently propagated downwards in the
next TX slot. As with L-ACKs, nodes piggyback the G-ACK bitmap
on data packets, if any, as part of the mandatoryWeaver header.

2 (h – 2) h+1

ho
p

di
st

an
ce 0

1
2
3
4

G-ACK

Data
Suppression
period

(a) 𝑌 = 1
3Y

ho
p

di
st

an
ce 0

1
2
3
4

2 (h – 2) hD

(b) 𝑌 > 1

Figure 5: Determining the suppression period 𝐿.

Nodeswithout data to send re-propagate theG-ACK as a no-payload
packet only if it contains new bits, to reduce contention.
Linking the two ACKs: Suppression period 𝐿. The reception
of a L-ACKs by a downward node suppresses the TX of the cor-
responding packet. Nevertheless, the latter must eventually be ac-
knowledged by the sink via a G-ACK; if this does not happen, the
packet never reached the sink and dissemination must be resumed.
This combination of acknowledgments exploits spatial diversity
and, as we verified experimentally, is more reliable than trigger-
ing retransmissions only upon a missed L-ACK, which is prone to
packets remaining stuck in areas with weak links towards parents.

The availability of topology information passively gathered dur-
ing epoch bootstrap enables an accurate estimation of the number
𝐿 of slots expected to elapse between the RX of an L-ACK for a
packet and the G-ACK (Figure 5a). Indeed, for a G-ACK to be sent,
the corresponding packet must first be received; for an initiator at ℎ
hops from the sink, this requires 2(ℎ−2) slots after RX of the L-ACK.
At the sink, because of the 3-slot scheme, an additional slot elapses
between packet reception, in the first RX slot, and the next TX.
Finally, in the latter slot the sink disseminates the G-ACK, which
travels back to the initiator, requiring additional ℎ slots. Therefore,
upon receiving a L-ACK, a node computes a suppression period

𝐿 = 2(ℎ − 2) + ℎ + 1. (3)

If the suppressed packet is not acknowledged by the sink after 𝐿
slots, the node resumes its transmission.

Both types of ACK are not immune from packet loss due to
collisions, potentially causing wasteful TX that nonetheless rarely
affect reliability. A missed L-ACK prevents packet suppression.
As for G-ACKs, when a node receives a packet already known to
be acknowledged by the sink, it resumes the piggybacking of the
G-ACK bitmap, to cater for nodes that may have missed it.

In summary, i) L-ACKs avoid wasteful retransmissions of packets,
hampering the progress of others ii) G-ACKs achieve the same goal
definitely and globally iii) together, as determined by 𝐿, they avoid
that a packet stuck in a “dead end” area is lost and forgotten.
Tuning Weaver: Batching G-ACKs. Acknowledgments bring
several benefits, but also cause their share of problems.

Consider the example in Figure 6. Nodes 𝐵 and 𝐶 are at the
same hop distance from the sink; their schedule is aligned and their
packets, whether containing data or ACKs, compete in the same
TX slot. A problem arises if one node enjoys better link quality

One Flood to Route Them All: Ultra-fast Convergecast of Concurrent Flows over UWB SenSys ’20, November 16–19, 2020, Virtual Event, Japan

A

B

C

h h + 1
G-ACK

data
B
A
C

…

Figure 6: Example scenario inwhichG-ACKs block the prop-

agation of data packets.

than the other(s) towards their upward node 𝐴, e.g., because 𝐶 is
physically closer to 𝐴. In this case, the G-ACKs re-broadcast by 𝐶
are likely to suppress the data TX from 𝐵 at𝐴, and do so repeatedly
due to the periodicity of schedules, until G-ACK propagation ends.

To counter situations like this, which do occur in practice, we
introduce a batching period 𝑌 for G-ACKs at nodes other than the
sink. Instead of immediately re-propagating a G-ACK upon RX,
nodes send a cumulative G-ACK once every 𝑌 executions of the
3-slot TX-RX-RX pattern, i.e., every 3𝑌 slots (Figure 5b). When the
TX of a G-ACK occurs on a node, its bitmap is up-to-date w.r.t.
G-ACKs received during this period. Therefore, the same informa-
tion is delivered to the network, but 3(𝑌 − 1) slots are now free
from data/ACK interference like the one in Figure 6. However, if
data packets are transmitted in the meanwhile, the G-ACK bitmap
is still piggybacked on them, as this does not cause problems.

As this technique changes the mechanics of G-ACK propagation,
we revisit the earlier definition (3) of the suppression period 𝐿 as

𝐿 = 2(ℎ − 2) + ℎ + 𝐷 (4)

accounting for the additional 𝐷 slots (Figure 5b) introduced by G-
ACKs batching. As G-ACKs are issued with a predefined, globally-
known period, nodes can autonomously determine the value of 𝐷
upon receiving a L-ACK for a packet and before its next G-ACK.
Termination.Weaver targets fast, reliable, and energy-efficient
data collection. This entails quickly turning off the network upon
detecting absence of data packets while ensuring that key nodes
do not leave before all packets have been delivered to the sink.

Every node terminates and enters low-power mode (sleep) after
accumulating in a termination counter𝑇 a given number of inactive
slots in which no new data is received. RX errors are considered
an attempt from neighbors to transmit new information, and reset
𝑇 . Similarly, the RX of G-ACKs informs a node that the sink is
still active and whether it is aware of the data the node already
transmitted; if it is not, the node postpones its termination.

The value of𝑇 depends on the protocol phase. During the epoch
bootstrap,𝑇 = 3𝐻 + 3𝐵, where 𝐵 is the number of bootstrap packets
sent and 𝐻 the maximum hop distance of nodes from the sink.
Indeed, i) 𝐻 slots are required for the bootstrap packet to reach the
farthest possible initiator and enable its packet TX; ii) 2𝐻 slots are
required, due to the 3-slot scheme, for a packet from this worst-case
initiator to reach the sink; however, iii) this packet competes with
the 𝐵 bootstrap packets rebroadcast by neighbors in consecutive TX
slots; therefore, in the worst case where these are always received
upstream instead of the packet, additional 3𝐵 slots must elapse.

If the sink does not receive any data packet 𝑇 slots after send-
ing the bootstrap packet, it enters sleep. Otherwise, an alternate
counter is defined and reset every time a data packet is received.
The sink waits𝑇 = 3𝐻 + 3 slots at the end of every G-ACK batching

period. Similar to the above, i) 𝐻 slots are required for the G-ACK
to propagate downwards and enable the TX of a new packet, ii) 2𝐻
slots are required to collect it at the sink, plus iii) 3 slots to account
for the worst case where the re-propagation of the G-ACK by a
same-distance neighbor blocks the data TX. The suppression period
𝐿 after a L-ACKs was defined precisely to allow transmissions to
resume timely for packets that did not receive the G-ACK, giving
them another chance to reach the sink before termination.

Once the sink decides to terminate, it floods a special packet
to shutdown the entire network before entering sleep; there is no
point in keeping nodes awake if the sink is not. However, nodes
are also capable of entering sleep autonomously, as they maintain
the same termination counter𝑇 as the sink; this serves as a fallback
ensuring node termination when the shutdown packet is lost.

5 A MODULAR IMPLEMENTATION

Weaver relies on the ability to individually manage CTX. This,
however, involves low-level radio programming, time slot manage-
ment and synchronization, i.e., tedious and repetitive work that
complicates and distracts from the high-level protocol logic and,
worse, must be largely modified when the latter changes.

Radio Driver

Time Slot Manager Radio State Monitor
Weaver

Application

Figure 7: System architecture.

To simplify our iterative
development, and enable
other researchers to build
their own protocols atop
fine-grained CTX (§7), we
designed our prototype to
sharply separate these two
layers. We implement the low-level functionality necessary to CTX
in generic and reusable way, available to protocol designers via a
simple yet expressive API (§5.1): the Time Slot Manager (TSM). The
actual Weaver protocol is implemented as a thin veneer atop it,
easily replaceable and modifiable. The architecture of our prototype
(Figure 7), implemented on Contiki [9], is completed by an optional
module enabling accurate estimation of energy consumption (§5.2).

5.1 Time Slot Manager: A Flexible CTX Engine

Our goal is to avoid complexity when implementing simple things
while giving fine-grained control to the higher layer, when needed.
Enabling factors. The decoupling of protocol logic is enabled by
new capabilities of modern radio chips, allowing access to inter-
nal high-precision timers for timestamping radio RX events and
scheduling TX/RX operations at specified times.

Without these capabilities, meeting the strict timing require-
ments of CTX forced protocols to trigger the next action right
within the handler of the previous radio event and keep the dura-
tion of event processing constant for all nodes, packets, and protocol
states to guarantee that all nodes trigger the next operation at the
same time. This approach limited code branching and therefore the
complexity of the higher-level protocol logic. Instead, if the next
operation is scheduled directly via the internal timer of the radio,
autonomously from the MCU, the protocol logic can become more
rich and dynamic, expanding through levels of abstraction and in-
direction. The only requirement is that event processing finishes
within the predefined deadline, leaving enough time for the radio
to initialize and perform the next operation at the scheduled time.

SenSys ’20, November 16–19, 2020, Virtual Event, Japan M. Trobinger, D. Vecchia, D. Lobba, T. Istomin, G. P. Picco

Protocol logic

ActionRadio

TSM

Weaver
protothread

Action done
 - OK/Fail/Timeout

Resume
- PrevActDescr
- NextActDescr

Yield
- NextActDescr

Slot i Slot i+1
Schedule

action

Action

Figure 8: Flow of control.

Basic principles. We observe that all CTX systems (§2) share
the same time structure. They organise communication in rounds
(epochs), placing the radio to sleep between them. Each round
consists of multiple fixed-duration time slots associated with a TX
or RX operation (sometimes neither) and related data processing;
the number of slots per round may vary. The transmitted messages
contain the current slot index within the round, enabling receivers
to establish the round reference time (i.e., its beginning) from the
start-of-frame delimiter (SFD) timestamp of the received packet.

We delegate to TSM all this common bookkeeping related to syn-
chronization, i.e., computing the round reference time, executing
radio operations at the right times, and updating the synchroniza-
tion information in the header of TX packets to allow reference
time to propagate over multiple hops. Instead, we leave it to the
higher layer (e.g.,Weaver) to decide what action (TX, RX, or none)
to perform in each slot, the data payload for each TX slot, and when
to stop the current round and enter sleep until the next begins.

A node joins the network via the TSM_SCAN operation, instructing
TSM to listen to the channel until a packet is received. When this
happens, TSM automatically synchronizes with the network and
starts the slotted operation. Optionally, the higher layer can instruct
TSM to adjust its reference time upon any successful RX; it is wise
to do so periodically, to counter clock drift. Unlike Glossy, TSM is
agnostic of node roles, leaving it to the higher layer to determine
which node(s) provide the authoritative time reference, but provides
all the necessary time calculations, adjustments, and scheduling.
API and control flow. A protocol built atop TSM begins with a
TSM_START call providing the desired slot duration and a pointer
to the slot handler function. The control flow is then driven by
TSM, which automatically calls the latter function before every
slot (Figure 8), passing as a parameter a special read-only structure
describing the operation performed in the previous slot, if any,
including the code of the action performed, its status (success or
error code), the RX payload data and size (if any), and the slot index.

Another structure describing the next slot action is passed by ref-
erence, to be filled by the slot handler function. TSM pre-configures
most fields with default values based on settings and context; only
few must be set by the protocol. This next-slot structure includes
the action to perform (SCAN,RX,TX,RESTART,STOP), a pointer to
the TX payload or RX buffer, and other fields described later. After
the slot handler function ends, control returns to TSM which uses
the values set in this structure to schedule the next action.

In principle, a conventional function can be used as slot handler.
However, TSM was designed to take full advantage of Contiki pro-
tothreads by providing convenience calls (C macros) that combine
the configuration of the next action with protothread interaction,
effectively mimicking a conventional blocking function (Figure 8).
These convenience calls yield control to the system, letting theMCU

1 while (1) {

2 TSM_SCAN(buf); // scan until RX

3 if (prevActDescr.status == SUCCESS) {

4 // forward the packet in the next slot

5 TSM_TX(buf , prevActDescr.data_len);

6 TSM_RESET(ROUND_PERIOD); // skip to the next round

7 }}

Figure 9: Glossy forwarder logic (𝑁 = 1) atop TSM.

perform other tasks or go to a low-power mode while waiting for
the requested action to complete; when this occurs, the protothread
is resumed from the point where it requested the TSM action. This
enables the description of a complex protocol logic as a sequential
program with branching and loops, arguably more natural than the
cumbersome event-driven style necessary with classic callbacks.

Figure 9 shows a naïve yet working implementation of the Glossy
forwarder logic with 𝑁 = 1, written atop TSM in only 6 lines of
code. A full-blown Glossy re-implementation is outside the scope of
this paper; the code is meant to illustrate the simplicity induced by
TSM, fully exploited in our Weaver prototype. Each loop iteration
is a Glossy round. The forwarder, i.e., any node other than the
initiator, begins each round by scanning the channel for incoming
packets. When one arrives, TSM automatically uses it to resume
the protothread and begin slotted operation; in case of successful
RX the node retransmits the exact same payload in the next slot
via the TSM_TX call. TSM advances the slot index automatically
and updates the TX packet header accordingly. After packet TX is
finished, the TSM_RESET call instructs TSM to finalize the current
round and sleep for the rest of the specified ROUND_PERIOD.

This example shows how TSM keeps simple things simple, by
hiding all operations related to timing and slot scheduling, and
allowing the higher layer to concentrate on the protocol logic. On
the other hand, the fact thatWeaver, a significantly more complex
protocol, was implemented atop TSM confirms that the abstractions
in TSM are not only simple but also expressive.
Delayed TX. As reported in [29], CTX perform significantly better
in UWB if they are slightly de-synchronized, unlike in narrowband.
TSM caters for this by allowing the definition of a small TX delay
(ns to 𝜇s) on a per-slot basis. This requires adding the value of the
delay used to the nominal slot reference in the TSM header, enabling
receiving devices to compensate the delay when computing the
round time reference.Weaver exploits this feature by inserting a
random delay before all TX, specified in the corresponding field of
the next-action structure. Delay values are reported in §6.1.
RX timeouts and energy savings. Idle listening (preamble hunt)
is the most energy-consuming operation of the DW1000. Therefore,
we minimize the time the radio listens to the channel in RX slots.
Since we expect nodes to be synchronized, the radio can begin
listening shortly before we expect the frame preamble to arrive,
and stop shortly after if none is received. We achieve this by setting

Guard Time RX Timeout

Frame PayloadPreamble

TX Delay

ProcessingSlot Reference

SFD

Preamble Timeout

Frame Timestamp

Figure 10: TSM slot structure.

One Flood to Route Them All: Ultra-fast Convergecast of Concurrent Flows over UWB SenSys ’20, November 16–19, 2020, Virtual Event, Japan

a preamble detection timeout equal to the sum of i) the initial guard
time ii) the maximum TX delay senders could use, and iii) half
the preamble duration. If no preamble symbols are detected before
timeout, the radio switches to idle mode automatically and triggers
an event to TSM. Moreover, we set a frame RX timeout to guarantee
that any RX operation leaves enough time within the slot for the
protocol layer to run its logic and prepare for the next slot. Figure 10
shows the resulting structure of a RX slot. In case a timeout triggers,
TSM reports a failed RX action to the higher layer.

5.2 Monitoring Energy Consumption

An accurate estimation of energy consumption is crucial to validate
the performance of our prototype. Systems built atop Contiki for
IEEE 802.15.4 narrowband can rely on the well-known Energest [10]
component. Unfortunately, no equivalent exists for UWB.

Therefore, we designed our own component to estimate the en-
ergy spent during radio operations. Our Radio StateMonitormodule
(Figure 7) brings the core concepts of Energest to the more complex
state machine of the DW1000 radio. This entails supporting several
key features not present in Energest, e.g., delayed operations and
timeouts, and using the precise timer of the radio. As in Energest,
our module maintains several counters aggregating the overall time
spent by the radio in the various states. However, differently from
it, our module tracks separately different portions of the frame RX
and TX for more accurate estimation of the energy spent, as these
consume very different amounts of energy on the DW1000. Finally,
the current drawn in idle mode is also accounted for.

Overall, the Radio State Monitor is a valuable contribution per se,
not tied to CTX, that can be exploited by other researchers working
on UWB at large to assess the energy consumption of their systems.

6 EVALUATION

We evaluateWeaver in a UWB testbed at our premises, considering
two topologies with different characteristics. We first provide an in-
depth analysis of parameters 𝐵 and 𝑌 , which control the reliability
of the epoch bootstrap and the periodicity of G-ACK dissemina-
tion, and analyse their impact on performance. We then compare
Weaver to the UWB implementation of Crystal [23] in the same
conditions. For both protocols we report i) the packet delivery rate
(PDR) at the sink, ii) the per-epoch estimated energy consumption
of non-sink nodes, and iii) the latency, defined as the time between
the beginning of an epoch and the delivery of the last data packet
at the sink. Finally, we experiment with mobile nodes to assess
whetherWeaver is suitable for use in dynamic topologies.

6.1 Experimental Setup

Hardware and testbed. We report experiments from a 36-node
testbed installed on the ceiling above the corridors of an office
building, over a 84 × 33 m2 area (Figure 11). Each node includes a
Raspberry Pi, a JTAG programmer, and a DecaWave EVB1000 board
equippedwith a DW1000 UWB radio and a STM32F105 ARMCortex
M3 MCU. A dedicated Ethernet infrastructure enables automated
and remote control of experiments and collection of logs.
Network topologies. We consider two topologies, called Floor
and Linear, with different characteristics. In Floor, node 1 is desig-
nated as the sink, all nodes are active, and the network spans 3 hops.

21 22
23

24
25

26
27

28
29

30
31

32
33

34

35

36

2 3 4

1

7 6 5
8

9
10

11
12

13
14

15
16

17

18

19

20

Figure 11: Testbed spanning 84 × 33𝑚2
. In Floor, node 1 is

the sink. Linear excludes node 20–22; node 19 is the sink.

Data can flow along two paths—clockwise and counter-clockwise—
providing spatial diversity. The sink is deployed in a dense area
where 10 neighbors have near-perfect link quality towards it, and
most (nodes 2–7) are placed at similar distances from it. As reported
in [29], a similar scenario can be challenging for CTX-based proto-
cols, and therefore intriguing to analyze, since multiple signals with
similar strengths and timing are likely to reach the sink, increasing
collisions especially with several and different packets.

In Linear, node 19 acts as the sink and nodes 20–22 (top left cor-
ner) are disabled, preventing communication between the sink and
node 23. This i) increases the maximum hop distance to 6 hops, and
ii) forces all data flows to proceed along a single path, significantly
reducing spatial diversity. Moreover, node 18 cannot communicate
with any of nodes 8–16 on the bottom corridor; therefore, node 17
is the only connection between the sink and the remaining (large)
part of the network. The absence of receiver redundancy, known
to be detrimental for CTX-based protocols, makes this topology
particularly challenging, yet realistic in indoor environments.
Radio configuration.We use channel 4 with 64 MHz pulse repeti-
tion frequency (PRF). To minimize energy consumption, we choose
the highest 6.8 Mbps data rate on the DW1000 and the shortest
∼64 𝜇𝑠 preamble, in line with [23]. We set the TX power to the max-
imum recommended [8] for our channel and PRF . We exploit TSM
to randomly delay all transmissions by up to 1 𝜇𝑠 (i.e., roughly the
duration of one preamble symbol) as this small de-synchronization
significantly reduces the chance of collision in UWB [29].
Packet size and slot duration. Long packets are known to in-
crease the chance of collision when transmitted concurrently [12,
23]. To assess how this impacts reliability and energy consumption,
we perform experiments with both short (2B) and long (100B) pay-
loads. We set the duration of Weaver slots to 813 𝜇𝑠 , enough to
accommodate the maximum IEEE 802.15.4 frame length.

6.2 DissectingWeaver

We study the impact of parameters 𝐵 and 𝑌 on the performance
of Weaver. The former impacts the reliability of epoch bootstrap,
while the latter controls the trade-off between latency and energy
consumption depending on the expected traffic patterns.
Reliability of epoch bootstrap. We explored 𝐵 ∈ {1..3}. Table 1
reports the number of failed epoch bootstrap attempts across 10, 000
epochs, with no initiators (𝑈 = 0). In Floor, 𝐵 = 1 yields 59
occurrences of a node missing the bootstrap packet (0.015%), while
𝐵 = 2 yields only 1 occurrence (0.0003%). Linear is less prone to a

SenSys ’20, November 16–19, 2020, Virtual Event, Japan M. Trobinger, D. Vecchia, D. Lobba, T. Istomin, G. P. Picco

Table 1: Occurrence of failed bootstrap for any node and av-

erage energy consumption vs. number 𝐵 of bootstrap packet

retransmissions. Data acquired over 10, 000 epochs in two

topologies with no initiator (𝑈 = 0).

% of failed bootstraps Energy (mJ)
Topology 𝐵=1 𝐵=2 𝐵=3 𝐵=1 𝐵=2 𝐵=3
Floor 0.015 0.0003 0 2.49 3.00 3.35
Linear 0.0016 0.0006 0 3.19 3.46 3.73

failed bootstrap, with the same values of 𝐵 yielding only 5 and 2
occurrences (0.0016% and 0.0006%), respectively.

The value 𝐵 = 3 guarantees a correct bootstrap in all epochs for
both topologies. However, this reliability comes at the cost of energy
consumption (Table 1) whose increase is more evident without
traffic (𝑈 = 0) as node termination directly depends on 𝐵 (§4). In
this case, consumption is 3.35 mJ and 3.73 mJ in Floor and Linear,
a +35% and +17% increase w.r.t. 𝐵 = 1. However, when traffic is
present (𝑈 > 0), the influence of 𝐵 is less marked as i) the network
remains awake for longer to collect all data, and ii) collection starts
immediately, in parallel with bootstrap. Hereafter, we set 𝐵 = 2, the
best compromise between reliability and energy efficiency.
Impact of G-ACK batching period. The period 𝑌 used to dis-
seminate G-ACKs upon data reaching the sink is the main knob to
controlWeaver, balancing timeliness in acknowledging packets
via G-ACKs with their interference with data (§4). We analyze the
impact of 𝑌 on the duration of the flood (Figure 12). For each com-
bination of topology, packet size, 𝑌 ∈ {1..9}, and 𝑈 ∈ {1, 10, 30}
the results are obtained by aggregating 1000 epochs.

The impact of 𝑌 on termination, while not high in relative terms,
varies in function of the amount of traffic (Figure 12). In both topolo-
gies, Weaver shows a similar response to the increase of 𝑌 , al-
though the trend is more evident in Floor. Similarly, packet size
does not have a substantial impact, with longer packets causing
only a slight increase in latency. With sparse traffic, increasing 𝑌
does not yield benefits as G-ACKs rarely interfere with data floods,
making the duration of the collection phase independent from 𝑌 .
Thus, 𝑌 = 1 is the fastest and the most energy-efficient solution, as
it minimizes the time a nodewaits in between the last packet RX and
termination (§4). However, as the number𝑈 of initiators increases,
a small value of 𝑌 becomes detrimental; with 𝑌 = 1, each packet
reaching the sink triggers a new G-ACK, disseminated network-
wide. This increases contention and the risk of interference between
data and G-ACKs, slowing down the collection process. By increas-
ing 𝑌 and therefore reducing the number of G-ACKs, we increase
the chance to collect multiple packets in between two consecutive
G-ACKs floods. The impact on the flood duration is clearly visible
for𝑈 = 30. For instance, in Floor and with short packets a flood
requires 174 slots to terminate with 𝑌 = 1, and only 143 with 𝑌 = 4
(−18%). On the other hand, increasing 𝑌 further does not pay off, as
it forces the system to remain active for several slots after the last
packet collected; this is very costly with sparse traffic and brings
little to no improvement with a denser one.

The best choice of 𝑌 ultimately depends on the behavior of
initiators. If the traffic profile is known beforehand, users can tune
the value of𝑌 to further reduce the latency and energy consumption

Slots per epoch Last RX U=1 U=10 U=30

1 2 3 4 5 6 7 8 9
Y

0

50

100

150

200

S
lo

ts

(a) Topology Floor, short packets.

1 2 3 4 5 6 7 8 9
Y

0

50

100

150

200

S
lo

ts

(b) Topology Linear, short packets.

1 2 3 4 5 6 7 8 9
Y

0

50

100

150

200

S
lo

ts

(c) Topology Floor, long packets.

1 2 3 4 5 6 7 8 9
Y

0

50

100

150

200

S
lo

ts

(d) Topology Linear, long packets.

Figure 12: G-ACK batching period 𝑌 vs. number of slots re-

quired for termination and last packet collected at sink.

of Weaver. Otherwise, Figure 12 shows that the impact is relatively
limited anyway. In the rest of this section, we assume the application
has no a priori knowledge of traffic and set 𝑌 = 4 as in our case
this is a good balance across all dimensions.

Finally, Weaver achieved PDR ≥ 99.9% independently from the
value of 𝑌 . A more thorough study of reliability is described next.

6.3 Weaver vs. Crystal

We compare against Crystal [17], a state-of-the-art data collection
protocol, using its publicly-available implementation for UWB [23].
Protocol configurations.We configureWeaver with 𝐵 = 2 boot-
strap packet retransmissions and a G-ACK batching period 𝑌 = 4,
informed by our analysis in §6.2. Configuring Crystal entails tuning
the underlying Glossy for every phase, by defining 𝑁 and adapting
the maximum phase duration𝑊 accordingly. Large values of 𝑁
enhance flood reliability, by increasing the spatio-temporal redun-
dancy of Glossy, but also increase energy consumption. In our anal-
ysis we consider 𝑁 ∈ {1, 2}, exploring different trade-offs between
reliability and energy efficiency. 𝑁 = 1 is the most energy-savvy
configuration possible, but also the most fragile. Table 2 reports a
summary of the configurations. Following the methodology of [17],
we dimension𝑊 for each phase to accommodate the maximum
hop count 𝐻 , plus a small slack to cope with possible flood delays
due to collisions. Other Crystal parameters (e.g., number of empty
TA pairs before termination) are unchanged w.r.t. [17, 23].
Results. For each combination of topology, number of initiators
𝑈 ∈ {0, 1, 5, 10, 20, 30}, packet size, and protocol configuration, we
collect execution traces of 5000 epochs for both protocols.

In Floor,Weaver is largely unaffected by packet size, achieving
near-perfect reliability with both short and long ones (Figure 13a,
13b) even under heavy contention, with PDR > 99.99%when𝑈 = 30.
Instead, the reliability of Crystal is significantly lower, especially
with 𝑁 = 1, and the negative impact of long packets is clearly
visible as𝑈 increases, due to the higher chance of collisions.

One Flood to Route Them All: Ultra-fast Convergecast of Concurrent Flows over UWB SenSys ’20, November 16–19, 2020, Virtual Event, Japan

Crystal N=1 Crystal N=2 Weaver

0 5 10 15 20 25 30
U

99.4

99.6

99.8

100.0

P
D

R
(%

)

(a) PDR, short packets.

0 5 10 15 20 25 30
U

99.4

99.6

99.8

100.0

P
D

R
(%

)

(b) PDR, long packets.

0 5 10 15 20 25 30
U

0

20

40

60

E
(m

J)

(c) Energy, short packets.

0 5 10 15 20 25 30
U

0

20

40

60

E
(m

J)

(d) Energy, long packets.

0 5 10 15 20 25 30
U

0
100
200
300
400
500

L
at

en
cy

(m
s)

(e) Latency, short packets.

0 5 10 15 20 25 30
U

0
100
200
300
400
500

L
at

en
cy

(m
s)

(f) Latency, long packets.

Figure 13: Weaver vs. Crystal in the Floor topology.

0 5 10 15 20 25 30
U

88.0

92.0

96.0

100.0

P
D

R
(%

)

(a) PDR, short packets.

0 5 10 15 20 25 30
U

88.0

92.0

96.0

100.0

P
D

R
(%

)

(b) PDR, long packets.

0 5 10 15 20 25 30
U

0

20

40

60

E
(m

J)

(c) Energy, short packets.

0 5 10 15 20 25 30
U

0

20

40

60

E
(m

J)

(d) Energy, long packets.

0 5 10 15 20 25 30
U

0

100

200

300

400

L
at

en
cy

(m
s)

(e) Latency, short packets.

0 5 10 15 20 25 30
U

0

100

200

300

400

L
at

en
cy

(m
s)

(f) Latency, long packets.

Figure 14:Weaver vs. Crystal in the Linear topology.

We actually found an increased rate of collisions for long packets
also inWeaver, by analyzing the RX error rate at the level of single
slots. For instance, with 𝑈 = 30 each node incurs in a RX error
5.83 times per epoch with short packets and 9.07 with long ones.
However,Weaver can tolerate more collisions, as the continuous
flood grants each node many chances to retransmit. Further, the
number of retransmissions is not fixed beforehand, as in Glossy
and therefore Crystal, rather it adapts to data traffic, as nodes keep
attempting to forward packets upon collisions. Moreover, thanks to
the L-ACKs,Weaver can promptly suppress transmissions before
the arrival of G-ACKs from the sink, quickly reducing contention.

High reliability often comes with extra energy consumption.
This is not the case for Weaver, specifically designed to remove
the inefficiencies of Glossy-based solutions. Indeed, the fast, reliable
and contention-resilient operation of Weaver yields significant
energy improvements w.r.t. Crystal (Figure 13c, 13d).

Without traffic (𝑈 = 0), Weaver consumes 40% and 57% less
than Crystal with short and long packets, respectively. The benefits
of fine-grained control over CTX increase with𝑈 , as Weaver fully
unleashes its ability to parallelize collection floods, reducing energy
consumption by ∼70% for𝑈 = 30 initiators regardless of packet size.

In the Floor topology explored so far, multiple paths enable
packets to reach the sink, itself surrounded by many relays. In
Linear, all data towards the sink must flow through the bottleneck
of node 17; continued collisions at this node can lead to interruption
of the flood and multiple packet losses. Crystal behaves poorly in
these conditions; even with the more reliable 𝑁 = 2, PDR decreases

Table 2: Parameters used for the two configurations of Crys-

tal considered.𝑇𝑠 and𝑇𝑙 are the duration of the T phase opti-

mized for a short (2B) and long (100B) packet, respectively.

Topology 𝑁

(S,T,A)
𝑊 (ms)

S A T𝑠 T𝑙

Floor 1 2.7 2.8 2.8 4.5
2 3.6 3.7 3.6 6.1

Linear 1 4.0 4.1 4.0 6.0
2 4.8 5.0 4.9 8.4

as 𝑈 increases, down to ∼97% and ∼93% for 𝑈 = 30 and short and
long packets, respectively (Figure 14a, 14b).Weaver is affected to
a much smaller extent, achieving PDR > 99.9% in all conditions.

Energy consumption increases for both protocols in Linear, due
to the larger diameter. However,Weaver consumes a fraction of
the energy required by Crystal (Figure 14c, 14d) similar to what
observed in Floor; with𝑈 = 0,Weaver saves 40% and 63% with
short and long packets, and ∼70% for both packet sizes with𝑈 = 30.

Weaver is highly reliable and energy efficient in both our topolo-
gies, despite Linear being quite challenging. The question is whether
it is also faster, as predicted by our model (§3.3). Many definitions
of latency are possible. We report the time needed to complete data
collection (i.e., RX of last packet) because i) the average latency
incurred by a packet is roughly half the duration of collection, and
ii) flood termination at the sink happens consistently a few slots
after the RX of the last packet, making these two metrics redundant.

Our experiments confirm that Weaver is significantly faster
than Crystal. With long packets and𝑈 = 30, Crystal receives the
last packet after 361 ms in Floor, and 438 ms in Linear, while
Weaver does the same in only 109 ms and 121 ms, respectively
(Figure 13f, 14f). Interestingly, switching from Floor to Linear
causes a 21% latency increase for Crystal, but only 11% forWeaver.
Even with a single packet (𝑈 = 1) Weaver is faster at 7 ms and
11 ms, against the 15 ms and 18 ms of Crystal, also thanks to the
ability to begin packet TX concurrently with the initial bootstrap.
Weaver is faster than Crystal also with short packets, in both
topologies (Figure 13e, 14e). For 𝑈 = 30, its latency is 97 ms and
107 ms, against 285 ms and 351 ms for Crystal. For𝑈 = 1, Weaver
incurs a latency similar to long packets, while the one of Crystal,
reduced to 12 ms and 15 ms, remains higher thanWeaver.

Optimizing the fixed slot duration (§6.1) for packet size leads to
large improvements. For 2B packets, a shorter slot of 455 𝜇𝑠 reduces
latency and energy consumption respectively by 43% and 22% w.r.t.
Figure 13–14, regardless of traffic and without affecting reliability.

6.4 Weaver and mobility

Among the advantages of CTX-based protocols is that they are
agnostic of the underlying network; being resilient to topology

SenSys ’20, November 16–19, 2020, Virtual Event, Japan M. Trobinger, D. Vecchia, D. Lobba, T. Istomin, G. P. Picco

changes they are suitable for scenarios with mobile nodes [11].
However, this is not entirely true forWeaver. Nodes learn their hop
distance during the epoch bootstrap, and leverage this information
to direct data and G-ACKs flows during collection; this potentially
makes the protocol susceptible to topology changes.

Nevertheless, Weaver completes the collection of packets from
30 initiators over a 6-hop network in ∼100 ms (Figure 14e). During
this time, a person walking covers ∼14 cm and a car traveling at
100 km/h covers ∼3 m. AWeaver flood is so fast that even when
nodes are moving the topology inside it remains essentially static.

We ascertainwhether this is true, and the applicability of Weaver
to mobile scenarios, through experiments in which 3 people, each
carrying a node, walk at brisk pace in the testbed area for the entire
duration of the test. In these experiments, all 39 nodes of the testbed
are active. As mobile nodes traverse the testbed, their links to other
nodes degrade or even interrupt abruptly due to obstacles.

Table 3 shows PDR, latency, and energy consumption with a
static or mobile sink. In the first scenario, node 1 is the sink, as in
Floor, and all mobile nodes are initiators; in the second, one of
them serves as mobile sink. The latter scenario is particularly chal-
lenging, as sink movement i) alters the structure of the collection
scheme, and ii) explores several topologies at once, including prob-
lematic ones like Linear. We run 2000 epochs for each𝑈 ∈ {10, 30}
and short packets, and observed no packet loss with 𝑈 = 10 and
PDR > 99.9% with𝑈 = 30, regardless of sink mobility.

Overall, the values in Table 3 are in line with those in §6.3;
mobility appears to have little to no impact on performance. This
confirms the resilience of Weaver w.r.t. mobility, which we are
evaluating more extensively as part of our future work.

7 DISCUSSION AND OUTLOOK

We concisely elaborate on the potential impact of our work and
how it could be extended and generalized by other researchers.
What did we accomplish? The evaluation we presented, along
with the analytical model in §3.3, confirm that protocols based on
fine-grained CTX rather than monolithic Glossy floods can unlock
remarkable improvements over the already impressive performance
achieved by the latter. The ability to weave and consolidate multiple
floods into a single, coordinated one improves on latency, but also
on reliability and energy consumption—i.e., all three metrics in
which CTX excel. On the other hand, the very small latency also
enables a novel way to exploit topology information, allowing
protocol designers to treat the network as static even when it is
not, as in scenarios encompassing mobility. We argue that these
design principles are a contribution per se, which goes beyond the
nonetheless remarkable performance of Weaver.
What about other radios? Although we focused on UWB, we
argue that our contribution is not limited to it, as neither Weaver
nor TSM rely on features specific to the PHY or radio chip we used.

Table 3: Performance of Weaver with 3 mobile nodes.

Sink PDR Latency (ms) Energy (mJ)
𝑈=10 𝑈=30 𝑈=10 𝑈=30 𝑈=10 𝑈=30

Static 100 99.993 57.72 119.51 7.58 14.07
Mobile 100 99.95 61.79 123.58 8.22 15.24

The superior performance of Weaver is intrinsically determined
by its use of fine-grained CTX, as shown quantitatively in §3.3. In-
deed, the efficient organization of multiple data flows inWeaver
builds solely on the assumption that receivers can successfully de-
code, with high probability, one among different packets transmit-
ted concurrently. As mentioned, this assumption has been shown
to hold for other popular PHY layers besides UWB. Therefore, we
expect the principles of Weaver, if not the exact protocol, to find
direct application for these other radio technologies.

However, the extent to which our quantitative findings can be
transferred to other radios is yet to be established experimentally,
for which TSM provides a handy framework. We argue that it is
simple to port TSM to any platform that, like DW1000, supports
timestamping and scheduling of packet TX and RX precisely enough
to enable non-destructive interference of TX signals. A short-term
item on our research agenda is to port TSM and Weaver to a
modern IEEE 802.15.4 narrowband radio supporting these features,
e.g., the CC2538 for which Contiki-based implementations of Glossy
already exist [16], further simplifying the transfer of our results.
What about other traffic patterns? The role of TSM, however,
is not limited to simplifying the transfer of our results to other
platforms. On the contrary, ourmainmotivation for its development
was to sharply separate the general low-level mechanics of CTX
from the specific higher-layer protocol exploiting them.

In this respect,Weaver is only one of the possibilities, geared
towards data collection. We argue that the benefits unlocked by
the key insight of Weaver, i.e., its fine-grained use of individual
CTX instead of monolithic floods, can be reaped for other traffic
patterns similar to what happened for Glossy, whose availability as
a core communication primitive was exploited in many directions.
What about ranging and localization?Our focus on UWB opens
intriguing opportunities. For instance, the work in [5] has recently
shown that CTX in UWB enable concurrent distance estimation
(ranging) towards multiple nodes at once, inspiring several follow-
up works [6, 13, 14, 30]. The concepts in Weaver, and the core
building blocks in TSM, could therefore be exploited to rejoin the
two perspectives of communication and localization enabled by
UWB under a single framework efficiently enabling both.

8 CONCLUSIONS

CTX have been studied for about a decade, but largely within the
perimeter of what enabled by the popular Glossy system. In this pa-
per, we show that an alternate design mindset is possible; one where
the protocol designer regains control over all degrees of freedom
enabled by using individual CTX as building blocks, significantly
finer-grained than the monolithic one offered by Glossy. We offer
analytical and experimental evidence that this alternate design par-
adigm brings remarkable advantages in the context of convergecast,
and provide publicly-available, open-source software [1] enabling
researchers to explore other ways to harvest its benefits.

9 ACKNOWLEDGMENTS

This work is partially supported by the Italian government via the
NG-UWB project (MIUR PRIN 2017).

One Flood to Route Them All: Ultra-fast Convergecast of Concurrent Flows over UWB SenSys ’20, November 16–19, 2020, Virtual Event, Japan

REFERENCES

[1] https://github.com/d3s-trento/contiki-uwb.
[2] M. Baddeley, A. Stanoev, U. Raza, M. Sooriyabandara, and Y. Jin. Competition:

Adaptive software defined scheduling of low power wireless networks. In Proc.
of EWSN, 2019.

[3] M. Brachmann, O. Landsiedel, and S. Santini. Concurrent transmissions for
communication protocols in the internet of things. In Proc. of LCN, 2016.

[4] T. Chang, T. Watteyne, X. Vilajosana, and P. H. Gomes. Constructive interference
in 802.15.4: A tutorial. IEEE Communications Surveys Tutorials, 2019.

[5] P. Corbalán and G. P. Picco. Concurrent Ranging in Ultra-wideband Radios:
Experimental Evidence, Challenges, and Opportunities. In Proc. of EWSN, 2018.

[6] P. Corbalán, G. P. Picco, and S. Palipana. Chorus: UWB Concurrent Transmissions
for GPS-like Passive Localization of Countless Targets. In Proc. of IPSN, 2019.

[7] DecaWave Ltd. DW1000 Data Sheet, version 2.19, 2017.
[8] DecaWave Ltd. DW1000 User Manual, version 2.18, 2017.
[9] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and flexible

operating system for tiny networked sensors. In Proc. of LCN, 2004.
[10] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He. Software-based on-line energy

estimation for sensor nodes. In Proc. of EmNets, 2007.
[11] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. Low-power Wireless Bus. In

Proc. of SenSys, 2012.
[12] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient Network Flooding

and Time Synchronization with Glossy. In Proc. of IPSN, 2011.
[13] B. Großwindhager et al. Concurrent Ranging with Ultra-Wideband Radios: From

Experimental Evidence to a Practical Solution. In Proc. of ICDCS, 2018.
[14] B. Großwindhager et al. SnapLoc: An Ultra-Fast UWB-Based Indoor Localization

System for an Unlimited Number of Tags. In Proc. of IPSN, 2019.
[15] C. Herrmann, F. Mager, and M. Zimmerling. Mixer: Efficient many-to-all broad-

cast in dynamic wireless mesh networks. In Proc. of SenSys, 2018.
[16] K. C. Hewage, S. Raza, and T. Voigt. Protecting glossy-based wireless networks

from packet injection attacks. In Proc. of MASS, 2017.
[17] T. Istomin, A. L. Murphy, G. P. Picco, and U. Raza. Data Prediction + Synchronous

Transmissions = Ultra-low Power Wireless Sensor Networks. In Proc. of SenSys,
2016.

[18] T. Istomin, M. Trobinger, A. L. Murphy, and G. P. Picco. Interference-Resilient
Ultra-Low Power Aperiodic Data Collection. In Proc. of IPSN, 2018.

[19] R. Jacob, J. Baechli, R. D. Forno, and L. Thiele. Synchronous transmissions made
easy: Design your network stack with baloo. In Proc. of EWSN, 2019.

[20] B. Kempke, P. Pannuto, B. Campbell, and P. Dutta. SurePoint: Exploiting Ultra
Wideband Flooding and Diversity to Provide Robust, Scalable, High-Fidelity
Indoor Localization. In Proc. of SenSys, 2016.

[21] O. Landsiedel, F. Ferrari, and M. Zimmerling. Chaos: Versatile and Efficient
All-to-all Data Sharing and In-network Processing at Scale. In Proc. of SenSys,
2013.

[22] R. Lim, R. Da Forno, F. Sutton, and L. Thiele. Competition: Robust flooding using
back-to-back synchronous transmissions with channel-hopping. In Proc. EWSN,
2017.

[23] D. Lobba, M. Trobinger, D. Vecchia, T. Istomin, and G. P. Picco. Concurrent
transmissions for multi-hop communication on ultra-wideband radios. In Proc.
of EWSN, 2020.

[24] M. Mohammad and M. C. Chan. Codecast: Supporting Data Driven In-Network
Processing for Low-Power Wireless Sensor Networks. In Proc. of IPSN, 2018.

[25] B. A. Nahas, S. Duquennoy, and O. Landsiedel. Network-wide Consensus Utilizing
the Capture Effect in Low-power Wireless Networks. In Proc. of SenSys, 2017.

[26] B. A. Nahas, S. Duquennoy, and O. Landsiedel. Concurrent Transmissions for
Multi-Hop Bluetooth 5. In Proc. of EWSN, 2019.

[27] F. Sutton, R. Da Forno, D. Gschwend, T. Gsell, R. Lim, J. Beutel, and L. Thiele.
The design of a responsive and energy-efficient event-triggered wireless sensing
system. In Proc. of EWSN, 2017.

[28] M. Suzuki, Y. Yamashita, and H. Morikawa. Low-power, end-to-end reliable
collection using glossy for wireless sensor networks. In Proc. of VTC Spring, 2013.

[29] D. Vecchia, P. Corbalan, T. Istomin, and G. P. Picco. Playing with Fire: Exploring
Concurrent Transmissions in Ultra-wideband Radios. In Proc. of SECON, 2019.

[30] T. Wang, H. Zhao, and Y. Shen. An Efficient Single-Anchor Localization Method
Using Ultra-Wide Bandwidth Systems. Applied Sciences, 2020.

[31] M. Zimmerling, L. Mottola, P. Kumar, F. Ferrari, and L. Thiele. Adaptive real-
time communication for wireless cyber-physical systems. ACM Transaction on
Cyber-Physical Systems, 2017.

https://github.com/d3s-trento/contiki-uwb

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 CTX in IEEE 802.15.4 narrowband
	2.2 CTX in IEEE 802.15.4 Ultra-wideband

	3 Design Goals and Principles
	3.1 The Drawbacks of a Glossy Legacy
	3.2 Weaver: The Power of Fine-grained CTX
	3.3 Is It Worth? An Analytical Model

	4 Protocol Details
	5 A Modular Implementation
	5.1 Time Slot Manager: A Flexible CTX Engine
	5.2 Monitoring Energy Consumption

	6 Evaluation
	6.1 Experimental Setup
	6.2 Dissecting Weaver
	6.3 Weaver vs. Crystal
	6.4 Weaver and mobility

	7 Discussion and Outlook
	8 Conclusions
	9 Acknowledgments
	References

