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Abstract. One form of software architecture is a framework for systems
that serve the needs of a specific domain. These frameworks must contain
sufficient detail to not lose the interesting aspects of the environment, yet
they must not expose so many details as to be overwhelming and force
the developer to lose the big picture. As the environments we develop
for become more complex, it becomes more necessary to compose these
frameworks in order to manage the complexity. Mobility is precisely one
such environment that is emerging as computing components shrink in
size and become more portable. As these components change location
in space, their connectivity to other components changes and thus their
access to data changes. Some programs needs to be able to respond to
this change in connectivity. Others are able to abstract it away, simply
perceiving changes in connectivity as changes in data availability. In this
paper, we overview a solution to managing the complexity of applications
for the the mobile environment in the context of a middleware. First, we
present a meta-model, or a framework for generating middleware for
mobile environments. Second, we show how this meta-model has been
instantiated in the Lime middleware and how it has been used to develop
several mobile applications.

1 Introduction

Mobility entails the study of systems in which components change location, in a
voluntary or involuntary manner, and move across a space that may be defined
to be either logical or physical. By definition, systems of mobile components
are distributed systems, and while distributed computing has been carefully
studied for decades, mobility poses new challenges that have not previously been
addressed.

The development of compact computing devices such as notebook computers
and personal digital assistants allow people to carry computational power with
them as they change their physical location in space. The number of such compo-
nents is steadily increasing. One goal, referred to as ubiquitous computing [21], is
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for these devices to become seamlessly integrated into the environment until we
are no longer explicitly aware of their presence, much the way that the electric
motor exists in the world today. Part of enabling this vision is coordinating the
actions of these devices, most likely through wireless mediums such as radio or
infrared.

Logical mobility, or the movement of code and state through a fixed infras-
tructure of servers, is emerging as a powerful design abstraction for distributed
systems. The pervasiveness of the Java programming language and its porta-
bility have led to a wealth of mobile agent systems. Demonstration purpose
applications built on top of these systems range from logical agents managing
physical objects in a kitchen [11] to agents managing the placement of a video
conferencing server to minimize bandwidth consumption [1].

Developing applications in the mobile environment is a difficult task. Many
existing applications restrict themselves to addressing a specific aspect of mo-
bility in a highly specialized environment, such as disconnected operation in the
Coda filesystem [8] or using agents to perform remote queries on a database as
in the Oracle Agent System [13]. Development of these systems requires highly
specialized knowledge of low level networking as well as details of the application
domain.

Our goal is to enable the development of diverse classes of applications by
providing flexible abstractions that can be applied in a variety of settings. Our
success in this area comes from an integrated research approach that involves
analyzing the needs of mobile applications, formulating models to describe the
key concepts of our approaches, specifying formally these models, implementing
the abstractions, and returning to the development of applications to evaluate
our results.

Our work focuses on mobile ad hoc networks where no infrastructure exists
to support communication among physically mobile hosts. Instead, hosts com-
municate directly with one another and the distance between hosts determines
connectivity. A system is typically composed of multiple groups of hosts with
connectivity available within the group but no communication from one group
to another. Changes in connectivity and corresponding changes in available re-
sources make this a challenging environment for application design.

Our strategy for development in this arena is the design for new high-level co-
ordination abstractions, generically referred to as global virtual data structures.
The abstraction presented to the application programmer is simply a local data
structure whose content changes according to connectivity. Conceptually each
component stores a piece of a global data structure, when components are within
communication range these pieces are transiently shared and accessible to other
components. Interaction with the data structure occurs exclusively by execut-
ing operations on the local data structure, however, transient sharing enables
transparent interaction with other mobile components.

One of the features of this approach is its ability to facilitate the devel-
opment of applications that never explicitly access remote data. We term this
context-transparent interaction, where the data is part of the current context in
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which a mobile component finds itself. The distribution and changes to the data
structure are hidden from the application programmer by the abstraction itself.
Alternately, context-aware interaction can easily be provided as an extension to
the basic model by explicitly introducing the notion of location.

We have successfully applied this strategy in the development of Lime, Linda
In a Mobile Environment, which provides the simple mobile coordination ab-
straction through transiently shared Linda tuple spaces, enabling application
programmers to clearly separate the concerns of computation from the commu-
nication among hosts. The implementation of Lime in the form of middleware
presents the same interface and semantics as the model, simplifying the imple-
mentation process. Mobile application developers utilizing the Lime concepts
need not concern themselves with any of the low level details of communication
or changing connections, as all of these are handled within the implementation
of the middleware.

Work with the Lime system has shown it to be a clean conceptual tool for
introducing programmers to the concepts of mobility. Several applications have
been built on top of the middleware, demonstrating its usefulness in a variety of
mobility scenarios.

In this paper, Section 2 provides an introduction to the concept of global
virtual data structures, Section 3 describes the instantiation of this concept in
the Lime coordination model, Section 4 steps through an application that sits
on top of Lime, and Section 5 concludes with future directions for this work.

2 Global Virtual Data Structures

Physical mobility through space can be categorized into base station mobility
and ad hoc mobility. Base station mobility is similar to the cellular telephone
system, where mobile components (i.e., mobile telephones) communicate with
one another and with the fixed network by always communicating first with a
base station (i.e., cellular tower). Ad hoc mobility distinguishes itself from base
station mobility by completely removing the fixed infrastructure, leaving only
direct communication among hosts. In a mobile ad hoc network, the distance
between components determines connectivity. As components move, the system
is continuously reshaped into multiple partitions, with connectivity available
within each partition but not across partitions.

Freeing mobile users from a fixed infrastructure makes the ad hoc network
model ideal for many scenarios such as systems of small components with limited
resources to spend on communication, situations in which the infrastructure has
been destroyed such as following a natural disaster, and for settings in which
establishing an infrastructure is impossible as in a battlefield environment or
economically impractical as in a short duration meeting or conference.

The application needs in these scenarios can be classified broadly by how
they interact with their changing environment, or context. The context of a
mobile unit consists of two primary components: system configuration and data.
System configuration context describes the knowledge about which mobile units
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are connected and possibly also about topology information concerning physical
location in space or logical connectivity. This knowledge is limited to the current
partition of the network in which the mobile unit finds itself. We refer to this
as the current transient group. Because communication cannot extend beyond
the group, knowledge of configuration beyond the boundaries of the group is not
possible. Data context refers to the more passive data elements and resources
that are carried by the mobile components.

This view of context fosters two distinct programming styles: context aware
programming and context transparent programming. Context aware applications
are those that access both the system configuration context and the data context
explicitly. For example, a context aware application may store a piece of new
data on a specific mobile host, or retrieve a piece of data from a named mobile
host. All operations must be carried out within the current connectivity context,
but this style is distinguished by the needs of the application to be aware of the
current context. In contrast, context transparent applications can be developed
without explicit knowledge of the current context. Data access is performed on
the data in the current context without regard to where it is located. Such
applications do not need to be aware of the details of the configuration changes,
but simply aware that they are occurring and that these changes affect the
available resources. Many applications require a combination of both context
aware and context transparent programming.

Our goal is to enable the rapid and dependable development of both styles
of application programs for the mobile ad hoc environment. Fundamentally our
approach is to design abstractions tailored to the ad hoc environment that hide
many of the unnecessary details, but give the programmer sufficient power to
tailor the abstraction to their specific needs. This involves providing both context
aware and context transparent operations within the same abstraction. At the
same time, implementations of these abstractions must be responsive to the
technical challenges of the environment.

Our approach to abstractions to simplify the programming task comes from a
study of coordination models for distributed computing that separate the com-
putation, or the task-specific programming, from the communication, or the
interaction among processes. Distributed coordination models also consider the
need to take local decisions while still conceptualizing the effect of these actions
on the global scale. Thus, our driving design strategy can be summarized by the
desire to coordinate mobile ad hoc applications by thinking globally but acting
locally.

2.1 The GVDS Model

One common coordination mechanism in distributed systems is shared memory,
or more structured shared data structures. Through this, the complexity of large
systems is managed by accessing a single, global data structure. An implementa-
tion may be distributed, but the user is not aware of this. The concept of shared
memory is appealing in the mobile environment, which is itself a distributed
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Fig. 1. Transforming a matrix into a global virtual data structure by distributing it
among mobile units.

system, however disconnections and the resulting inaccessibility of data make a
direct application of shared memory to mobile systems impossible.

By applying our design strategy to shared memory data structures the global
data structure emerges as the concept we wish to conceive of globally, but con-
nectivity does not allow this. The first step toward a mobility-viable global data
structure is to make explicit the distribution of data across the mobile compo-
nents, or mobile hosts. For example, Figure 1(a) shows how a large matrix can
be evenly divided among four hosts. While all mobile components are within
communication range, the entire structure remains accessible to all processes.

When mobile components move and connectivity changes, the available por-
tions of the data change to reflect only reachable data. In Figure 1(b) mobile
components a and b are each isolated from all other components, restricting ac-
cess only to their local partitions of the matrix. However, components c and d
remain connected to one another and have access to the combination of c’s and
d’s data.

The global matrix data structure of Figure 1(a) can be visualized at any time
from outside the system by ignoring connectivity constraints and combining the
data from all mobile components. This is, however, only a virtual data structure
because it cannot be created in reality. Despite this it remains a powerful concept
to the programmer to view how local changes affect the entire system.

We have discussed how connectivity limits the availability of data, but we
must also consider how the operations that access the data structure change
in response to this accessibility constraint. Some operations must clearly be re-
stricted if full connectivity is not available. In the matrix example, computations
such as matrix inversion require the entire matrix and must be restricted. Many
operations, however, require no changes and can simply be evaluated over the
current projection of the global virtual data structure. These operations play an
important role in implementing context-transparent applications as they do not
require the programmer to be aware of the details of the environment, but are
simply aware that it is changing. Finally some operations can be extended to
explicitly address the distribution of data over the hosts. Consider an alternate
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division of the matrix example that distributes data based on some aspect of
the data other than its location in the matrix. In this case, it may be meaning-
ful to query the part of the distributed data located at a specific agent. These
operations are likely to play a role in context-aware applications.

For any global virtual data structure to be successful, its development cycle
must include not only the model definition, but also formal specification and im-
plementation. The informal model presents the underlying data structure, how
it changes with respect to connectivity, what the primitives are, and how they
are affected and extended. Most importantly, the informal model also describes
the abstraction provided to the programmer and a way of thinking to effec-
tively develop applications on top of the model. Next, formal semantics force
clear definitions of all model concepts and how they are affected by mobility
before beginning an implementation. The formal specification also enables user
applications to be formally specified and reasoned about, lending dependability
to the resulting system. Finally, the data structures must be implemented and
applications built. One mechanism to deliver the data structures is via a mid-
dleware that sits between the application and the operating system, providing
the abstractions defined by the model and formal specification.

The key to development from these three key perspectives is to allow each
step to inform the others in an iterative fashion. By considering the needs of
the applications, the primitives of the model can be defined and extended to
meet the demands of the application programmer. A formal specification can
reveal key parts in the model where restrictions must be made to keep the op-
erations computable in the presence of disconnections. The formal specification
also informs the implementation, showing where the complexity is involved in
the interactions of concurrent programs. A proper implementation must adhere
to the formal specification. The process of implementing may reveal atomicity
assumptions of the model that are either impossible or impractical to imple-
ment. This can lead to an expansion of the model to include more elements of
the environment, or to a weakening of the model constructs to make them more
practical. Complementary changes must also be made to the formal specification.

2.2 Instantiating a GVDS

Many standard distributed data structures have the potential to be converted
into global virtual data structures. For each structure, the fundamental issues to
address as part of the evaluation and development processes are similar: Does
the data structure match the basic needs of the underlying application? Is there
a natural and useful partitioning of the data structure across units in a mobile
ad hoc network? How is the data structure perceived by the individual units as
changes in connectivity occur?

A tree, as in Figure 2, could be partitioned among units with the nodes where
a cut occurs being replicated. A global naming convention would allow commu-
nicating units to determine the relation between the tree fragments they carry
and make content and structural changes (e.g., swapping subtrees) as long as no
disconnected units are affected. In principle, certain operations (e.g., adding a
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Fig. 2. A hierarchical data structure where units in range agree to transfer a subtree
that is under their jurisdiction even though parts of the global structure remain hidden.
Moving a subtree distributes data to a different location to satisfy changing access
patterns.

leaf node) could be issued at any time with their evaluation being delayed until
such time that the affected units are within range. Attempts to access nodes
on disconnected units may result in blocking the respective agent. The gener-
alization to a directed graph is straightforward and can overcome the problems
caused by the possible loss of one of the units.

Other data structures may be devised to meet the needs of highly specialized
applications. For instance, resource-limited units searching a physical space may
appear logically as ants crawling on a fixed network of passageways (Figure 2.2).
Each unit’s knowledge of the surrounding geography is enhanced by the knowl-
edge of all the other units within range. As the density of units decreases, each
unit must maintain more and more information. Finally, at a point when the
unit’s memory is full, information needs to be dropped, e.g., only the main pas-
sageways are kept. In an application involving the construction of distributed
predictive models of the changes taking place in a physical environment it is con-
ceivable to have the units tied together by a complex structure that combines
information about space and time. Each unit may be exploring and collecting
data in the present while simulating the future in order to build a predictive
model. As units meet they may exchange information about the present but also
about various points in the future since some units may be further ahead than
others in their simulation.

In the field of parallel programming, tuple space communication à la Linda
provides a good example of how coordination can simplify the programming task.
Tuple space coordination facilitates temporal and spatial decoupling among par-
allel programs. By limiting the power of the tuple space access primitives, effi-
cient implementation is achieved as well. The programmer is presented with the
appearance of a persistent global data structure that can be readily understood
and operated on: a set of tuples accessed by content. Applying the concept of
global virtual data structures to Linda yields a model that distributes the global
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A

Ant 2Ant 1

Fig. 3. Ant 1 learns from Ant 2 about landmark A when, by virtue of being in range,
the locally built maps are merged. Solid lines denote paths explored by Ants 1 and
2, and dashed lines denote unexplored regions. After sharing, each ant has the same
knowledge of the global structure.
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Fig. 4. Creating the illusion of a globally shared tuple space.

tuple space among the mobile units and limits access to the confines of each
mobile ad hoc network. For a programmer, mobility is perceived simply as an
independently evolving host tuple space, i.e., a continuously changing context.
When the mobile components are co-located, the tuple spaces are transiently
shared and all tuple space accesses, including pattern matching for reading and
removing data, are done on the now shared data space (see Figure 4). Additional
primitives with extensions for location are straightforward to access specific tu-
ple spaces, however the presence of the specified tuple space is dependent on
connectivity. This data structure has been explored in detail and has resulted
in the Lime model, Linda in a Mobile Environment. The details of Lime are
presented in the next section.
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3 Lime, a GVDS

The Lime model [15, 12] is the first full instantiation of the gvds concept, and as
such, it provides a proof of concept of the idea itself. Lime borrows and adapts
the communication model made popular by Linda [4] to provide a coordination
abstraction for the mobile environment. After presenting a concise Linda primer,
the remainder of this section discusses how the core concepts of Linda are re-
shaped in the Lime model and embodied in the programming interface of the
corresponding middleware implementation.

3.1 Linda in a Nutshell

In Linda, processes communicate through a shared tuple space that acts as a
repository of elementary data structures, or tuples. A tuple space is a multiset
of tuples that can be accessed concurrently by several processes. Each tuple is a
sequence of typed fields, such as 〈“foo”, 9, 27.5〉, and contains the information
being communicated.

Tuples are added to a tuple space by performing an out(t) operation, and
can be removed by executing in(p). Tuples are anonymous, thus their selection
takes place through pattern matching on the tuple content. The argument p is
often called a template or pattern, and its fields contain either actuals or formals.
Actuals are values; the fields of the previous tuple are all actuals, while the last
two fields of 〈“foo”, ?integer, ?float〉 are formals. Formals act like “wild cards”,
and are matched against actuals when selecting a tuple from the tuple space.
For instance, the template above matches the tuple defined earlier. If multiple
tuples match a template, the one returned by in is selected non-deterministically.
Tuples can also be read from the tuple space using the non-destructive rd(p)
operation. Both in and rd are blocking, i.e., if no matching tuple is available
in the tuple space the process performing the operation is suspended until a
matching tuple becomes available. A typical extension to this synchronous model
is the provision of a pair of asynchronous primitives inp and rdp, called probes,
that allow non-blocking access to the tuple space4. Moreover, some variants of
Linda (e.g., [19]) provide also bulk operations, which can be used to retrieve all
matching tuples in one step. In Lime we provide a similar functionality through
the ing and rdg operations, whose execution is asynchronous like in the case of
probes5.

3.2 The Lime Model

Linda characteristics resonate with the mobile setting. In particular, communi-
cation in Linda is decoupled in time and space, i.e., senders and receivers do not
4 Additionally, Linda implementations often include an eval operation that provides

dynamic process creation and enables deferred evaluation of tuple fields. For the
purposes of this work, however, we do not consider this operation further.

5 Hereafter we often do not mention this pair of operations, since they are useful
in practice but do not add significant complexity either to the model or to the
implementation.
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need to be available at the same time, and mutual knowledge of their identity
or location is not necessary for data exchange. This form of decoupling is of
paramount importance in a mobile setting, where the parties involved in com-
munication change dynamically due to their migration or connectivity patterns.
Moreover, the notion of tuple space provides a straightforward and intuitive
abstraction for representing the computational context perceived by the com-
municating processes. On the other hand, decoupling is achieved thanks to the
properties of the Linda tuple space, namely its global accessibility to all the
processes, and its persistence—properties that are clearly hard if not impossible
to maintain in a mobile environment. Finally, these properties make Linda tuple
spaces amenable to providing the basis for the gvds meta-model.

The Core Idea: Transparent Context Maintenance In Linda, the data
accessible through the tuple space represents the data context available during
process interaction. In the model underlying Lime, the shift from a fixed context
to a dynamically changing one is accomplished by breaking up the Linda tuple
space into many tuple spaces, each permanently associated to a mobile unit, and
by introducing rules for transient sharing of these individual tuple spaces based
on connectivity.

The individual tuple space permanently and exclusively attached to a mobile
unit is referred to as the interface tuple space (its) because it provides the only
access to the data context for that mobile unit. Each its contains the tuples
the mobile unit is willing to make available to other units, and access to this
data structure uses standard Linda operations, whose semantics remain basically
unaffected. These tuples represent the only context accessible to a mobile unit
when it is alone.

When multiple mobile units are able to communicate, either directly or tran-
sitively, we say these units form a Lime group. We can restrict the notion of
group membership beyond simple communication, but for the purposes of this
paper, we consider only connectivity. Conceptually, the contents of the itss of
all group members are merged, or transiently shared, to form a single, large
context that is accessed by each unit through its own its. The sharing itself is
transparent to each mobile unit, however as the members of the group change,
the content of the tuple space each member perceives through operations on the
ITS changes in a transparent way.

The joining of a group by a mobile unit, and the subsequent merging of
its local context with the group context is referred to as engagement, and is
performed as a single, atomic operation. A mobile unit leaving a group triggers
disengagement, that is, the atomic removal of the tuples representing its local
context from the remaining group context. In general, whole groups can merge,
and a group can split into several groups due to changes in connectivity.

In Lime, agents may have multiple itss distinguished by a name since this is
recognized [2] as a useful abstraction to separate related application data. The
sharing rule in the case of multiple tuple spaces relies on tuple space names: only
identically-named tuple spaces are transiently shared among the members of a
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Fig. 5. Transiently shared tuple spaces encompass physical and logical mobility.

group. Thus, for instance, when an agent a owning a single tuple space named
X joins a group constituted by an agent b that owns two tuple spaces named X
and Y , only X becomes shared between the two agents. Tuple space Y remains
accessible only to b, and potentially to other agents owning Y that may join the
group later on.

Transient sharing of the its constitutes a very powerful abstraction, as it
provides a mobile unit with the illusion of a local tuple space that contains all
the tuples coming from all the units belonging to the group, without any need
to know the members explicitly. The notion of transiently shared tuple space is
a natural adaptation of the Linda tuple space to a mobile environment. When
physical mobility is involved, and especially in the radical setting defined by
mobile ad hoc networking, there is no stable place to store a persistent tuple
space. Connections among machines come and go and the tuple space must
be partitioned in some way. Analogously, in the scenario of logical mobility,
maintaining locality of tuples with respect to the agent they belong to may
be complicated. Lime enforces an a priori partitioning of the tuple space in
subspaces that get transiently shared according to precise rules, providing a
tuple space abstraction that depends on connectivity.

Encompassing Physical and Logical Mobility In Lime, mobile hosts are
connected when a communication link is available. Availability may depend on
a variety of factors, including quality of service, security considerations, or con-
nection cost; all of which can be represented in Lime, although in this paper we
limit ourselves to availability determined by the presence of a functioning link.
Mobile agents are connected when they are co-located on the same host, or they
reside on hosts that are connected. Changes in connectivity among hosts depend
only on changes in the physical communication links. Connectivity among mo-
bile agents may depend also on arrival and departure of agents, with creation
and termination of mobile agents being regarded as a special case of connection
and disconnection, respectively. Figure 5 depicts the model adopted by Lime.
Mobile agents are the only active components; mobile hosts are mainly roaming
containers that provide connectivity and execution support for agents. In other
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words, mobile agents are the only components that carry a “concrete” tuple
space with them.

The transiently shared itss belonging to multiple agents co-located on a
host define a host-level tuple space. The concept of transient sharing can also
be applied to the host-level tuple spaces of connected hosts, forming a federated
tuple space. When a federated tuple space is established, a query on the its of an
agent returns a tuple that may belong to the tuple space carried by that agent,
to a tuple space belonging to a co-located agent, or to a tuple space associated
with an agent residing on some remote, connected host.

In this model, physical and logical mobility are separated in two different
tiers of abstraction. Nevertheless, many applications do not need both forms
of mobility, and straightforward adaptations of the model are possible. For in-
stance, applications that do not exploit mobile agents but run on a mobile host
can employ one or more stationary agents, i.e., programs that do not contain
migration operations. In this case, the design of the application can be modeled
in terms of mobile hosts whose its is a fixed host-level tuple space. Applications
that do not exploit physical mobility—and do not need a federated tuple space
spanning different hosts—can exploit only the host-level tuple space as a local
communication mechanism among co-located agents.

Nevertheless, it is interesting to note how mobility is not dealt with directly
in Lime, i.e., there are no constructs for triggering the mobility of agents or
hosts. Instead, the effect of migration is made indirectly manifest to the model
and middleware only through the changes observed in the connectivity among
components. This choice, that sets the nature of mobility aside, keeps our model
as general as possible and, at the same time, enables different instantiations of
the model based on different notions of connectivity.

Controlling Context Awareness Thus far, Lime appears to foster a style
of coordination that reduces the details of distribution and mobility to content
changes in what is perceived as a local tuple space. This view is very powerful,
and has the potential for greatly simplifying application design in many sce-
narios by relieving the designer from the chore of maintaining explicitly a view
of the context consistent with changes in the configuration of the system. On
the other hand, this view may hide too much in domains where the designer
needs more fine-grained control over the portion of the context that needs to
be accessed. For instance, the application may require control over the agent
responsible for holding a given tuple, something that cannot be specified only in
terms of the global context. Also, performance and efficiency considerations may
come into play, as in the case where application information would enable access
aimed at a specific host-level tuple space, thus avoiding the greater overhead of
a query spanning the whole federated tuple space. Such fine-grained control over
the context perceived by the mobile unit is provided in Lime by extending the
Linda operations with tuple location parameters that operate on user-defined
projections of the transiently shared tuple space. Further, all tuples are implic-
itly augmented with two fields, representing the tuple’s current and destination
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location. The current location identifies the single agent responsible for holding
the tuple when all agents are disconnected, and the destination location indicates
the agent with whom the tuple should eventually reside.

The out[λ] operation extends out with a location parameter representing
the identifier of the agent responsible for holding the tuple. The semantics of
out[λ](t) involve two steps. The first step is equivalent to a conventional out(t),
the tuple t is inserted in the its of the agent calling the operation, say ω. At this
point the tuple t has a current location ω, and a destination location λ. If the
agent λ is currently connected, the tuple t is moved to the destination location
in the same atomic step. On the other hand, if λ is currently disconnected the
tuple remains at the current location, the tuple space of ω. This “misplaced”
tuple, if not withdrawn6, will remain misplaced unless λ becomes connected. In
the latter case, the tuple will migrate to the tuple space associated with λ as
part of the engagement. By using out[λ], the caller can specify that the tuple is
supposed to be placed within the its of agent λ. This way, the default policy of
keeping the tuple in the caller’s context until it is withdrawn can be overridden,
and more elaborate schemes for transient communication can be developed.

Variants of the in and rd operations that allow location parameters are
allowed as well. These operations, of the form in[ω, λ](p) and rd[ω, λ](p), enable
the programmer to refer to a projection of the current context defined by the
value of the location parameters, as illustrated in Table 1. The current location
parameter enables the restriction of scope from the entire federated tuple space
(no value specified) to the tuple space associated to a given host or even a given
agent. The destination location is used to identify misplaced tuples.

Current location Destination location Defined projection

unspecified unspecified Entire federated tuple space

unspecified λ Tuples in the federated tuple space and
destined to λ

ω unspecified Tuples in ω’s tuple space

Ω unspecified Tuples in Ω’s host-level tuple space,
i.e., belonging to any agent at Ω

ω λ Tuples in ω’s tuple space and destined to λ

Ω λ Tuples in Ω’s host-level tuple space
and destined to λ

Table 1. Accessing different portions of the federated tuple space by using location
parameters. In the table, ω and λ are agent identifiers, while Ω is a host identifier.

6 Note how specifying a destination location λ implies neither guaranteed delivery nor
ownership of the tuple t to λ. Linda rules for non-deterministic selection of tuples
are still in place; thus, it might be the case that some other agent may withdraw t
from the tuple space before λ, even after t reached λ’s its.
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Reacting to Changes in Context In the fluid scenario we target, the set of
available data, hosts, and agents change rapidly according to the reconfiguration
induced by mobility. Reacting to changes constitutes a significant fraction of an
application’s activities. At first glance, the Linda model would seem sufficient to
provide some degree of reactivity by representing relevant events as tuples, and
by using the in operation to execute the corresponding reaction as soon as the
event tuple appears in the tuple space. Nevertheless, in practice this solution has
a number of drawbacks. For instance, programming becomes cumbersome, since
the burden of implementing a reactive behavior is placed on the programmer
rather than the system. Moreover, enabling an asynchronous reaction would
require the execution of in in a separate thread of control, hence degrading
performance. Therefore, Lime explicitly extends the basic Linda tuple space
with the notion of reaction. A reaction R(s, p) is defined by a code fragment s
that specifies the actions to be executed when a tuple matching the pattern p
is found in the tuple space. The semantics of reactions are based on the Mobile
Unity reactive statements [10]. Informally, a reaction can fire if a tuple matching
pattern p exists in the tuple space. After every regular tuple space operation, a
reaction is selected non-deterministically and, if it is enabled, the statements in s
are executed in a single, atomic step. This selection and execution continues until
no reactions are enabled, at which point normal processing resumes. Blocking
operations are not allowed in s, as they may prevent the execution of s from
terminating.

Lime reactions can be explicitly registered and deregistered on a tuple space,
and hence do not necessarily exist throughout the life of the system. Moreover,
a notion of mode is provided to control the extent to which a reaction is allowed
to execute. A reaction registered with mode once is allowed to fire only one
time, i.e., after its execution it becomes automatically deregistered, and hence
removed from the reactive program. Instead, a reaction registered with mode
oncepertuple is allowed to fire an arbitrary number of times, but never twice
for the same tuple. Finally, reactions can be annotated with location parameters,
with the same meaning discussed earlier for in and rd. Hence, the full form of
a Lime reaction is R[ω, λ](s, p, m), where m is the mode.

Reactions provide the programmer with very powerful constructs. They en-
able the specification of the appropriate actions that need to take place in re-
sponse to a state change and allow their execution in a single atomic step. In
particular, it is worth noting how this model is much more powerful than many
event-based ones [18], including those exploited by tuple space middleware such
as TSpaces [6] and JavaSpaces [7], that are typically stateless and provide no
guarantee about the atomicity of event reactions.

Nevertheless, this expressive power comes at a price. In particular, when mul-
tiple hosts are present, the content of the federated tuple space depends on the
content of the tuple spaces belonging to physically distributed, remote agents.
Thus, maintaining the requirements of atomicity and serialization imposed by re-
active statements requires a distributed transaction encompassing several hosts
for every tuple space operation on any its—very often, an impractical solution.
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For specific applications and scenarios, e.g., those involving a very limited num-
ber of nodes, these kind of reactions, referred to as strong reactions, would still
be reasonable and therefore they remain part of the model. For practical perfor-
mance reasons, however, our implementation currently limits the use of strong
reactions by restricting the current location field to be a host or agent, and by
enabling a reaction to fire only when the matching tuple appears on the same
host as the agent that registered the reaction. As a consequence, a mobile agent
can register a reaction for a host different from the one where it is residing, but
such a reaction remains disabled until the agent migrates to the specified host.
These constraints effectively force the detection of a tuple matching p and the
corresponding execution of the code fragment s to take place (atomically) on a
single host, and hence does not require a distributed transaction.

To strike a compromise between the expressive power of reactions and the
practical implementation concerns, we introduce a new reactive construct that
allows some form of reactivity spanning the whole federated tuple space but with
weaker semantics. The processing of a weak reaction proceeds as in the case of a
strong reaction, but detection and execution do not happen atomically: instead,
execution is guaranteed to take place only eventually, after a matching tuple is
detected. The execution of s takes place on the host of the agent that registered
the reaction.

Exposing System Configuration It is interesting to note that the extension
of Linda operations with location parameters, as well as the other operations
discussed thus far, foster a model that hides completely the details of the sys-
tem (re)configuration that generated those changes. For instance, if the probe
inp[ω, λ](p) fails, this simply means that no tuple matching p is available in the
projection of the federated tuple space defined by the location parameters [ω, λ].
It cannot be directly inferred whether the failure is due to the fact that agent ω
does not have a matching tuple, or simply agent ω is currently not part of the
group.

Without awareness of the system configuration, only a partial context aware-
ness can be accomplished, where applications are aware of changes in the portion
of context concerned with application data. Although this perspective is often
enough for many mobile applications, in many others the portion of context
more closely related to the system configuration plays a key role. For instance,
a typical problem is to react to departure of a mobile unit, or to determine the
set of units currently belonging to a Lime group. Interestingly, Lime provides
this form of awareness of the system configuration by using the same abstrac-
tions discussed thus far: through a transiently shared tuple space conventionally
named LimeSystem to which all agents are permanently bound. The tuples in this
tuple space contain information about the mobile units present in the group and
their relationship, e.g., which tuple spaces they are sharing or, for mobile agents,
which host they reside on. Insertion and withdrawal of tuples in LimeSystem is a
prerogative of the run-time support. Nevertheless, applications can read tuples
and register reactions to respond to changes in the configuration of the system.
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public class LimeTupleSpace {
public LimeTupleSpace (String name);
public String getName ();
public boolean isOwner ();
public boolean isShared ();
public boolean setShared (boolean isShared);
public static boolean setShared (LimeTupleSpace[] lts, boolean isShared);
public void out (ITuple tuple);
public ITuple in (ITuple template);
public ITuple rd (ITuple template);
public void out (AgentLocation destination, ITuple tuple);
public ITuple in (Location current, AgentLocation destination, ITuple template);
public ITuple inp (Location current, AgentLocation destination, ITuple template);
public ITuple[] ing (Location current, AgentLocation destination, ITuple template);
public ITuple rd (Location current, AgentLocation destination, ITuple template);
public ITuple rdp (Location current, AgentLocation destination, ITuple template);
public ITuple[] rdg (Location current, AgentLocation destination, ITuple template);
public RegisteredReaction[] addStrongReaction (LocalizedReaction[] reactions);
public RegisteredReaction[] addWeakReaction (Reaction[] reactions);
public void removeReaction (RegisteredReaction[] reactions);
public boolean isRegisteredReaction (RegisteredReaction reaction);
public RegisteredReaction[] getRegisteredReactions ();

}

Fig. 6. The class LimeTupleSpace, representing a transiently shared tuple space.

Together, the LimeSystem tuple space and the other application-defined tran-
siently shared tuple spaces enable the definition of a fully context aware style of
computing.

3.3 Programming with Lime

We complete the presentation of the Lime model by concisely illustrating the
application programming interface provided in the current implementation7 of
Lime.

The class LimeTupleSpace, whose public interface is shown8 in Figure 6,
embodies the concept of a transiently shared tuple space. In the current im-
plementation, agents are single-threaded and only the thread of the agent that
creates the tuple space is allowed to perform operations on the LimeTupleSpace
object; accesses by other threads fail by returning an exception. This represents
the constraint that the its must be permanently and exclusively attached to
the corresponding mobile agent. The name of the tuple space is specified as a
parameter of the constructor.

Agents may also have private tuple spaces, i.e., not subject to sharing and
not appearing in the LimeSystem tuple space. A private LimeTupleSpace can be
used as a stepping stone to a shared data space, allowing the agent to populate
it with data prior to making it publicly accessible, or it can be useful as a prim-
itive data structure for local data storage. All tuple spaces are initially created
private, and sharing must be explicitly enabled by calling the instance method
7 The Lime Web site [20] contains extensive documentation and programming exam-

ples.
8 Exceptions are not shown for the sake of readability.
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setShared. The method accepts a boolean parameter specifying whether the
transition is from private to shared (true) or vice versa (false). Calling this
method effectively triggers engagement or disengagement of the corresponding
tuple space. The sharing properties can also be changed in a single atomic step
for multiple tuple spaces owned by the same agent by using the static ver-
sion of setShared (see Figure 6). Engagement or disengagement of an entire
host, instead, can be triggered explicitly by the programmer by using the meth-
ods engage and disengage, provided by the LimeServer class, not shown here.
Otherwise, they are implicitly called by the run-time support according to con-
nectivity. The LimeServer class is essentially an interface towards the run-time
support, and exports additional system-related features, e.g., loading of an agent
into a local or remote run-time support, setting of properties, and so on. In par-
ticular, it also allows the programmer to define whether transient sharing is
constrained to a host-level tuple space, or whether it spans the whole federated
tuple space.

LimeTupleSpace contains the Linda operations needed to access the tu-
ple space, as well as the operation variants annotated with location param-
eters. The only requirement for tuple objects is to implement the interface
ITuple, which is defined in a separate package providing access to a lightweight
tuple space implementation. As for location parameters, Lime provides two
classes, AgentLocation and HostLocation, which extend the common super-
class Location, enabling the definition of globally unique location identifiers for
hosts and agents. Objects of these classes are used to specify different scopes for
Lime operations, as described earlier. For instance, a probe inp(cur,dest,t)
may be restricted to the tuple space of a single agent if cur is of type AgentLocation,
or it may refer the whole host-level tuple space, if cur is of type HostLocation.
The constant Location.UNSPECIFIED is used to allow any location parameter to
match. Thus, for instance, in(cur,Location.UNSPECIFIED,t) returns a tuple
contained in the tuple space of cur, regardless of its final destination, including
also misplaced tuples. Note how typing rules allow the proper constraint of the
current and destination location according to the rules of the Lime model. For
instance, the destination parameter is always an AgentLocation object, as
agents are the only carriers of “concrete” tuple spaces in Lime. In the current
implementation of Lime, probes are always restricted to a local subset of the
federated tuple space, as defined by the location parameters. An unconstrained
definition, as the one provided for in and rd, would involve a distributed trans-
action in order to preserve the semantics of the probe across the federated tuple
space.

All the operations retain the same semantics on a private tuple space as on a
shared tuple space, except for blocking operations. Since the private tuple space
is exclusively associated to one agent, the execution of a blocking operation when
no matching tuple is present would suspend the agent forever, effectively waiting
for a tuple that no other agent can possibly insert. Hence, blocking operations
always generate a run-time exception when invoked on a private tuple space.
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public abstract class Reaction {
public final static short ONCE ;
public final static short ONCEPERTUPLE ;
public ITuple getTemplate ();
public ReactionListener getListener ();
public short getMode ();
public Location getCurrentLocation ();
public AgentLocation getDestinationLocation ();

}
public class UbiquitousReaction extends Reaction {

public UbiquitousReaction (ITuple template, ReactionListener listener, short mode);
}
public class LocalizedReaction extends Reaction {

public LocalizedReaction (Location current, AgentLocation destination,
ITuple template,ReactionListener listener, short mode);

}
public class RegisteredReaction extends Reaction {

public String getTupleSpaceName ();
public AgentID getSubscriber ();
public boolean isWeakReaction ();

}
public class ReactionEvent extends java.util.EventObject {

public ITuple getEventTuple ();
public RegisteredReaction getReaction ();
public AgentID getSourceAgent ();

}
public interface ReactionListener extends java.util.EventListener {

public void reactsTo (ReactionEvent e);
}

Fig. 7. The classes Reaction, RegisteredReaction, ReactionEvent, and the interface
ReactionListener, required for the definition of reactions on the tuple space.

The remainder of the interface of LimeTupleSpace is devoted to managing
reactions; other relevant classes for this task are shown in Figure 7. Reactions
can either be of type LocalizedReaction, where the current and destination
location restrict the scope of the operation, or UbiquitousReaction, that spec-
ifies the whole federated tuple space as a target for matching. The type of a
reaction is used to enforce the proper constraints on the registration through
type checking. These two classes share the abstract class Reaction as a common
ancestor, which defines a number of accessors for the properties established for
the reaction at creation time. Creation of a reaction is performed by specifying
the template that needs to be matched in the tuple space, a ReactionListener
object that specifies the actions taken when the reaction fires, and a mode. The
ReactionListener interface requires the implementation of a single method
reactsTo that is invoked by the run-time support when the reaction actually
fires. This method has access to the information about the reaction carried by
the ReactionEvent object passed as a parameter to the method. The reac-
tion mode can be either of the constants ONCE or ONCEPERTUPLE, defined in
Reaction. Reactions are added to the its by calling either addStrongReaction
or addWeakReaction, depending on the desired semantics. As we discussed ear-
lier, in the current implementation strong reactions are confined to a single host,
and hence only a LocalizedReaction can be passed to the first method. Regis-
tration of a reaction returns an object RegisteredReaction, that can be used to
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deregister a reaction with the method removeReaction, and provides additional
information about the registration process. The decoupling between the reaction
used for the registration and the RegisteredReaction object returned allows
for registration of the same reaction on different itss and for the same reaction
to be registered with strong and, subsequently, with weak semantics.

4 Application Development

Lime has been used in the development of a variety of mobile applications. In
this section, we focus on applications dealing with physical mobility of hosts and
first present a high level description of several different applications built on top
of Lime, then we go into detail of another application that shows how physical
hosts can perform collaborative tasks in the presence of disconnection.

4.1 Three Brief Examples

The first two applications presented here are not stand-alone applications, but
instead add an additional layer of abstraction on top of Lime to support the
development of mobile applications. The third is a mobile game that exploits the
system configuration information available through Lime to react to changes in
connectivity.

Because mobility of hosts defines a working environment in which the acces-
sible components is constantly in flux, applications that must avail themselves
of services need a mechanism to discover those services in a dynamic manner. A
group from Washington University built a Jini-like service discovery mechanism
as an application layer on top of Lime [5]. This project uses the tuple space for
sharing service advertisements and performing pattern-based service discovery.
This extends the client-server model of service discovery for the mobile ad hoc
environment by coupling the services available for discovery with the services
available in the network, and maintaining this connection even as connectivity
changes.

In another project at Politecnico di Milano, the Lime tuple space is used
to support code mobility by storing Java class bytecode [14]. The class loading
mechanism is extended to resolve class names by searching the federated tu-
ple space, instead of a well-known, centralized code repository. This mechanism
enables the code on demand paradigm for code mobility in the mobile ad hoc
environment, where connections to specific code servers are not always available.

The third application exploits the context aware features of Lime. It is a
spatial game we refer to as RedRover, in which individuals equipped with small
mobile devices form teams and interact in a physical environment augmented
with virtual elements. This forces the participants to rely to a great extent on
information provided by the mobile units and not solely on what is visible to the
naked eye. The display to the players is dominated by a radar-like image with
an icon of the player in the middle, and icons indicating the current locations of
the other connected players. Up-to-date location information is maintained by
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each player periodically inserting a tuple into their local tuple space indicating
their current location. All other players register a reaction for these location
tuples, and are notified when a player moves. When a player disconnects, their
icon is changed to indicate their temporary unavailability. This functionality is
attained with a single reaction registered on the LimeSystem tuple space whose
listener changes the icon of the disconnected player. RedRover also exploits the
ability to create multiple tuple spaces for a single application. Location updates
are fed to a common tuple space that is shared by all player, but RedRover
uses separate team-only tuple spaces to share private information, such as the
location of a flag when playing “capture the flag”.

4.2 Extended Example: Accessing Shared Data

RoamingJigsaw, is a multi-player jigsaw assembly game. A group of players
cooperate in a disconnected fashion on the solution of the jigsaw puzzle. They
can construct assemblies independently (e.g., while disconnected), and share
intermediate results or acquire pieces from each other when connected. Play
begins with one player loading the puzzle pieces into a shared workspace that
is visualized by the user as a puzzle tray. The workspace is shared among all
connected users, therefore the puzzle trays of all users show the same set of
puzzle pieces at this point.

Players can select pieces in the puzzle tray by clicking on them. The visual
effect is that the piece outline is highlighted on all users’ displays with the color
of the selecting player. Selection has deeper consequences. In fact, although all
the puzzle pieces are displayed on the tray, a player can make assemblies using
only the pieces that she has selected, and that are currently displayed with her
color. A player can select pieces or assemblies that are currently selected by
another player, provided that the target player is connected.

Disconnection of a player does not have an immediate effect on the puzzle
tray of the others. Nevertheless, pieces that have been selected by the departing
player can no longer be selected by the others—and vice versa. Hence, the dis-
connected player can now construct assemblies by using only the pieces outlined
with her color. Nevertheless, the pieces of all players remain visible. The as-
semblies made by each player during disconnection become visible to the others
when connectivity among the players is restored. At this point, the view provided
by the user interfaces is reconciled with the changes made during disconnection,
and the selection of a piece belonging to a connected player is again possible.
Figure 8 shows the appearance of the puzzle tray during disconnection and after
reconnection.

From the description, it is evident that RoamingJigsaw embodies a pattern
of interaction where the shared workspace displayed by the user interface of each
player provides an accurate image of the state of all connected players, but only
a weakly consistent image of the global state of the system. For instance, a user’s
display contains only the last known information about each puzzle piece in the
tray. If two pieces have been assembled by a disconnected player, this change
is not visible to others. However, this still allows the players to work towards



21

Fig. 8. RoamingJigsaw. The top two images show the puzzle trays of the black and
white players while they are disconnected and able to assemble only their selected
pieces. The bottom two images show the black and white puzzle trays after the players
re-engage and see the assemblies that occurred during disconnection.

achieving the global goal, i.e., the solution of the puzzle, through incremental
updates of their local state.

RoamingJigsaw is a simple game that nonetheless exhibits the character-
istics of a general class of applications in which data sharing is the key element.
Hence, the design strategy we exploited in RoamingJigsaw may be adapted
easily to handle updates in the data being shared by real applications. One ex-
ample could be provided by collaborative work applications involving mobile
users, where our mechanism could be used to deal with changes in sections of a
document, or with paper submissions and reviews to be evaluated by a program
committee.

Design and Implementation. In our design of RoamingJigsaw, we chose to
represent pieces and assemblies as tuples, and the shared workspace as a tuple
space. When a player selects a piece, the corresponding tuple is withdrawn and
subsequently reinserted in the tuple space, with the field indicating the current
“owner” automatically changed by Lime. Similarly, when a player builds an
assembly out of several pieces, a new tuple is written containing information
about the assembled pieces; the tuples associated with the latter are removed
from the tuple space.
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The critical issues in the design of RoamingJigsaw are the detection of piece
selection and assembly, the reconciliation of the puzzle tray taking place on re-
connection, and the joining of a new player. Interestingly, all of these rely upon
a single weak reaction of type UbiquitousReaction and mode oncepertuple.
Registration of the reaction is specified so that its template looks for any new
tuple corresponding to a puzzle piece, while its listener takes care of updating
the puzzle tray by using the information found in the tuple, thus correctly main-
taining the weakly consistent view of the workspace. Since the reaction type
sets its scope to the whole federated tuple space, the application receives up-
dates about new pieces regardless of where and why they have been inserted,
and hence notably without any need to be explicitly aware of the arrival and
departure of players. Thus, the programming effort can be rightfully spent on
handling data changes, rather than monitoring the system configuration.

Although the processing described thus far operates on the federated tuple
space, fine-grained control over the location of tuples is critical in dealing with
disconnections. To ensure that a player can access her selected pieces during a
disconnection period, piece selection should actually transfer the corresponding
tuple into the local tuple space of the player’s application. Moreover, according to
what we discussed earlier, a player must be prevented from selecting a piece that
is currently not present in the federated tuple space. For this reason, selection
is performed by the application agent by issuing an inp operation on the tuple
space of the player last known to have the piece. If the piece is returned, it is
reinserted in the local tuple space of the new owner, thus leading to a successful
selection. Otherwise, if no tuple is returned it means that the piece is unavailable
for selection, and a message is displayed to the user.

Design Process. The Lime version of RoamingJigsaw was developed as a port
of a previous version written on top of the TSpaces middleware [6]. In this
version, all puzzle pieces were held at the tuple space server and players issued
remote operations. Porting the application to the mobile environment and Lime
involved only minor changes to the application, including the introduction of
puzzle piece ownership and the conversion of TSpaces clients to Lime agents.

Interestingly, the coordination necessary to handle the inaccessibility of tu-
ples due to disconnection was already addressed in the original application. In
the original, when two pieces are assembled, two independent inp operations are
performed to remove the separate pieces, following by a single out to insert the
joined piece. If one of the original two pieces is not present (i.e., the inp returns
null), the non-mobile application assumes that some other player is attempting
to assemble the same piece simultaneously, and therefore the player backs-off,
allowing the other player to continue. If the conflict occurs on the second piece
removed, then the first removed piece must be reinserted. The same problem
occurs in the mobile version, and similar corrective action is required. Also in
the mobile version, a similar issue arises when a player tries to select a piece to
become the owner. This operation involves an inp that may fail either because
another player is trying to select the same piece or because the piece is not acces-
sible due to disconnection. The significance of this is that the programmer of the
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mobile version had already encountered complex coordination issues during the
development of the server version, and the mobile issues were much the same.

Finally, in converting from TSpaces to Lime, the event mechanisms were
changed. TSpaces uses events that fire in response to an operation on the tuple
space. Therefore, in order to update a player’s puzzle tray, an event was registered
on the insertion (i.e., out) of a tuple. In Lime, reactions are registered on the
state of the tuple space. By replacing the original TSpaces event with a Lime
oncepertuple reaction, we achieved the same functionality, and simultaneously
were able to update the player puzzle trays to reflect changes that occurred
during disconnection.

5 Conclusions and Future Directions

Mobility is emerging as an important area for computing research, posing
many challenges that must be overcome in a society that is increasingly plac-
ing demands on computing technology. Our research into methods for designing
middleware for mobile computing, specifically the instantiation of the global vir-
tual data structures concept in Lime has demonstrated the benefit of providing
high level abstractions to application developers, easing the software develop-
ment process and ultimately resulting in reliable applications built on top of a
stable platform.

Future work remains to be done in adapting other data structures to the
gvds concept, although some work has already proceeded in this direction. For
example, the xmiddle [9] system developed at University College of London
presents the user with a tree data structure based on XML data. When con-
nectivity becomes available, trees belonging to different users can be composed,
based on the node tags. After disconnection, operations on replicated data are
still allowed, and their effect is reconciled when connectivity is restored. Also
PeerWare [3], a project at Politecnico di Milano, exploits a tree data struc-
ture, albeit in a rather different way. In PeerWare, each host is associated
with a tree of document containers. When connectivity is available, the trees
are shared among hosts, meaning that the document pool available for searching
under a given tree node includes the union of the documents at that node on
all connected hosts. We are also working on a parallel project to formalize the
gvds concept, identifying the core concepts, making it more accessible to other
researchers, and clarifying the process of instantiating the model.

Lime itself is a promising middleware that has taken on a life of its own
outside the gvds model. While the version Lime described here has already
been shown to be useful for a variety of applications, and is general enough
to provide a foundation for additional mobile ad hoc services, the model itself
makes strong guarantees about connectivity that are not always possible in the
mobile ad hoc environment. For example, even by incorporating the notion of
safe distance [17] as part of the engagement and disengagement protocols, it is
still possible for a host to disconnect without prior warning. Work is continuing
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on Lime to weaken the model to both handle unannounced disconnection and
to remove the transactional nature of engagement. We expect this weakening to
result in an implementation which is widely applicable, but for which guaran-
tees are difficult to formally describe and even to achieve. We have also begun
to explore the issues of security in tuple space based mobile ad hoc environ-
ments [16] by allowing applications to protect selected tuple spaces and even
individual tuples through the use of passwords. The same passwords are also
used to encrypt communication among hosts when exchanging messages related
to sharing specific tuples spaces.

Finally, Lime, in addition to demonstrating the practical use of coordina-
tion technology in mobile computing, opens a new area of research involving
the application of state-based coordination models and middleware to context-
aware computing. The complex mobile environment becomes manageable with
the abstractions provided by the middleware, the software development process
is simplified, and the resulting applications are more reliable.

Availability. Lime continues to be developed as an open source project, available
under GNU’s LGPL license. Source code and development notes are available at
lime.sourceforge.net.
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