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Practical Data Prediction for
Real-World Wireless Sensor Networks

Usman Raza, Alessandro Camerra, Amy L. Murphy, Themis Palpanas, and Gian Pietro Picco

Abstract—Data prediction is proposed in wireless sensor networks (WSNs) to extend the system lifetime by enabling the sink to
determine the data sampled, within some accuracy bounds, with only minimal communication from source nodes. Several theoretical
studies clearly demonstrate the tremendous potential of this approach, able to suppress the vast majority of data reports at the source
nodes. Nevertheless, the techniques employed are relatively complex, and their feasibility on resource-scarce WSN devices is often not
ascertained. More generally, the literature lacks reports from real-world deployments, quantifying the overall system-wide lifetime
improvements determined by the interplay of data prediction with the underlying network. These two aspects, feasibility and
system-wide gains, are key in determining the practical usefulness of data prediction in real-world WSN applications.
In this paper, we describe Derivative-Based Prediction (DBP), a novel data prediction technique much simpler than those found in the
literature. Evaluation with real data sets from diverse WSN deployments shows that DBP often performs better than the competition,
with data suppression rates up to 99% and good prediction accuracy. However, experiments with a real WSN in a road tunnel show
that, when the network stack is taken into consideration, DBP only triples lifetime—a remarkable result per se, but a far cry from the
data suppression rates above. To fully achieve the energy savings enabled by data prediction, the data and network layers must be
jointly optimized. In our testbed experiments, a simple tuning of the MAC and routing stack, taking into account the operation of DBP,
yields a remarkable seven-fold lifetime improvement w.r.t. the mainstream periodic reporting.

Index Terms—Wireless sensor networks, data prediction, time series forecasting, energy efficiency, network protocols
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1 INTRODUCTION

W IRELESS sensor networks (WSNs) provide the flexibil-
ity of untethered sensing, but pose the challenge of

achieving long lifetime with a limited energy budget, often
provided by batteries. It is well-known that communication
is the primary energy drain, which is unfortunate, given that
the ability to report sensed data motivates the use of WSNs
in several pervasive computing applications.

An approach to reduce communication without com-
promising data quality is to predict the trend followed
by the data being sensed, an idea at the core of many
techniques [1]. This data prediction approach1 is applicable
when data is reported periodically—the common case in
many pervasive computing applications. In these cases, a
model of the data trend can be computed locally to a node.
This model constitutes the information being reported to the
data collection sink, replacing several raw samples. As long
as the locally-sensed data are compatible with the model
prediction, no further communication is needed: only when
the sensed data deviates from the model, must the latter be
updated and sent to the sink. Section 2 formulates the data
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1. The techniques discussed here are known under various names,
including time-series forecasting, data modeling, prediction-based data collec-
tion, and model-driven data acquisition. Although in a preliminary version
of this paper [2] we used the last term, in this paper we resort to the
more intuitive data prediction.

prediction problem in more detail.
The aforementioned approach is well-known, and has

been proposed by several works we concisely survey in
Section 6. Nevertheless, to the best of our knowledge none
of these works has been verified in practice, in a real-
world WSN deployment. On one hand, the techniques
employed are relatively complex, and their effectiveness is
typically evaluated based on implementations in high-level
languages (e.g., Java) on mainstream hardware platforms.
Therefore, their feasibility on resource-scarce WSN devices
remains unascertained. Moreover, the works in the literature
typically evaluate the gains only in terms of messages
suppressed w.r.t. a standard approach sending all samples.
This data-centric view, however, is quite optimistic. WSNs
consume energy not only when transmitting and receiving
data, but also in several continuous control operations driven
by the network layer protocols, e.g., when maintaining a
routing tree for data collection, or probing for ongoing
communication at the MAC layer.

Therefore, the true question, currently unanswered by
the literature, is to what extent the theoretical savings en-
abled by data prediction are actually observable in practice,
i.e., i) on the resource-scarce devices typical of WSNs, and
ii) when the application and network stacks are combined
in a single, deployed system. The goal of this paper is to
provide an answer to this question, through the following
contributions:

• We propose Derivative-Based Prediction (DBP), a novel
data prediction technique compatible with applications
requiring hard guarantees on data quality. DBP, de-
scribed in Section 3, predicts the trend of data measured
by a sensor node, and is considerably simpler than ex-
isting methods, making it amenable for resource-scarce
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WSNs, as witnessed by our TinyOS implementation for
the popular TelosB motes [3].

• We perform an extensive experimental evaluation of
DBP against state-of-the-art data prediction techniques,
based on 7 diverse real-world data sets with more than
13 million data points in total. The results demonstrate
the effectiveness of DBP, which often performs better
than the competition by suppressing up to 99% of data
transmissions while maintaining data quality within
the required application tolerances.

• We describe the first2 study of the interaction of data
prediction with WSN network protocols, directly com-
paring the theoretical application-level gains against
the practical, system-wide ones. We evaluate the perfor-
mance of a staple network stack consisting of CTP [4]
and Box-MAC [5], both in an indoor testbed and a real
application setting, a road tunnel [6]. Our results show
that the gains attained in practice lead to three- to five-
fold WSN lifetime improvements, which is a significant
achievement in absolute terms, but dramatically lower
than those derived in theory.

• We explore the potential of cross-layer network stack
optimizations to further improve the lifetime of WSN
nodes running DBP. In our tunnel application, we show
how a careful, yet simple, joint parameter tuning of
the MAC and routing layers reduces the network con-
trol overhead considerably, without affecting the DBP
operation, and yields a remarkable seven-fold lifetime
improvement w.r.t. the standard periodic reporting.

The paper ends with the concluding remarks of Sec-
tion 7, underlining the further lifetime improvements and
enhanced reliability that can be attained by a WSN network
stack expressly designed to work in conjunction with data
prediction techniques.

2 PROBLEM FORMULATION

Data collection is a fundamental functionality of many
WSN applications, and is commonly implemented by nodes
periodically taking sensor measurements and reporting the
corresponding samples to a data sink.

The premise of applying data prediction is that com-
munication can be significantly reduced by avoiding trans-
mission of each raw sample to the sink. This is achieved
by using a model to estimate the sensed values, and by
communicating with the sink only when changes in the
sampled data render the model no longer able to accurately
describe them.

The data prediction strategy, applied on each node, in-
volves the following general steps. The sensor node builds
a model of its data based on some initial, observed values,
and transmits the model to the sink. From that point on,
the sink operates on the assumption that the data observed
by the sensor node are within the value tolerance of the
data predicted by the model. At the same time, the node
is also using the model to predict its own sensor data, and
compares the predicted values with those actually observed.
If their difference is within the error tolerance, no further

2. A preliminary version of this paper appeared in [2].
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Fig. 2. Derivative-based Pre-
diction.

action is required. Otherwise, the sensor node builds a new
model and transmits it to the sink.

To enable this strategy, the application running at the
sink must allow for a small tolerance in the accuracy of the
reported data—an assumption that holds in the majority of
WSN applications. In contrast with the ideal requirement
of the sink obtaining exact values in all data reports, the
correctness of these applications is unaffected as long as

1) the reported values match closely the exact ones;
2) inaccurate values occur only occasionally.

In other words, deviations from the exact reports are accept-
able, as long as their extent in terms of difference in value
and time interval during which the deviation occurs are small
enough. In this paper we only consider non-probabilistic
techniques that can provide hard guarantees on their predic-
tions, a requirement for several real-world applications. We
capture these assumptions with the following definitions:

• Let Vi be an exact measurement taken at time ti. The
value tolerance is defined by the maximum relative and
absolute errors acceptable, εV = (εrel , εabs). From the
application perspective, reading a value Vi becomes
equivalent to reading any value V̂i in the range RV de-
fined by the maximum error, V̂i ∈ RV = [Vi− ε, Vi+ ε],
where ε = max{ Vi

100ε
rel , εabs}. In other words, the

application considers a value V̂i ∈ RV as correct.
• Let T = |tj − tk| be a time interval, and V̂T =
{V̂j , . . . , V̂k} the set of values reported to the applica-
tion during T . The time tolerance εT is the maximum
acceptable value of T such that all the values reported
in this interval are incorrect, i.e., V̂i /∈ RV , ∀ V̂i ∈ V̂T .

The intuition behind these is shown in Fig. 1. Data
prediction aims to suppress as many data reports from the
WSN nodes as possible, while ensuring that the data used
by the application at the sink is within the value and time
tolerances εV and εT specified as part of the requirements.
The use of both absolute and relative errors in the value
tolerance is dictated by the requirements of many applica-
tions in which values can be both very small and very large.
Our evaluation in Section 4 shows a concrete example, the
TUNNEL application, where this problem is evident. If only
the absolute error εabs is used, it is difficult to set it in a way
meaningful for both very small and very large values. On
the other hand, a relative error εrel is often not very useful
in the case of very small values, when the quantities at stake
are negligible. Using the maximum between relative and
absolute error as the value tolerance allows one to specify
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error in relative terms, and at the same time set an absolute
threshold beyond which variations can be ignored.

3 DERIVATIVE-BASED PREDICTION (DBP)
With this general statement of the problem, we next turn
to the details of our solution as embodied in the novel
data prediction technique we refer to as Derivative-Based
Prediction (DBP). We first discuss the rationale and offer the
intuition behind our algorithm, then present the technical
details and implementation considerations.

Goals and Requirements. The idea behind DBP is to use
a simple model that can effectively capture the main data
trends, and to compute it in a way that is resilient to the
noise inherent in the data. DBP is based on the observation
that the trends of sensed values in short and medium time
intervals can be accurately approximated using a linear
model. Although this idea has already appeared in the
literature, there is a key difference to our approach: previous
studies compute models that aim to reduce the approxima-
tion error (i.e., Root Mean Squared Error, RMSE) w.r.t. recent
data points, producing models that are accurate w.r.t. past
data. Instead, DBP computes models capturing the trends
in recently-observed data, producing models accurate w.r.t.
future data. Evidently, these trends are best modeled when
data exhibit short-term linear behavior. As we discuss in
the experimental evaluation, DBP can effectively describe
data with long-term non-linear trends, at the cost of more
frequent model updates.

Technical Details. Fig. 2 provides an illustration of DBP.
The model is computed based on a learning window, con-
taining m data points; the first and the last l we call edge
points. The model is linear, computed as the slope δ of
the segment connecting the average values over the l edge
points at the beginning and end of the learning window.
This computation resembles the calculation of the deriva-
tive, hence the name Derivative-Based Prediction. Involving
only 2l points makes DBP computationally efficient, and
therefore appealing for implementation on resource-scarce
nodes, but also robust against noise and outliers present in
the samples, as shown in Section 4.2.

The first DBP model generated is sent to the sink. From
that time on, each node buffers a sliding window of the
last m data points (the learning window) sampled from
its sensor. Upon sampling a point, the “true” value sensed
is compared to the one “predicted” by DBP according to
the current model, i.e., following the slope δ. If the sensor
reading is within the value tolerance εV w.r.t. the model, no
action is required: the sink automatically generates a new
value that is an acceptable approximation of the real one.
Otherwise, if the readings continuously deviate from the
model for more than εT time units, a new model must be
recomputed based on them buffered data points. The model
is then sent to the sink.

Implementation Considerations. As our final goal is to
deploy DBP on real WSN nodes, the complexity and re-
source requirements (i.e., memory and CPU) of the imple-
mentation are very important, as these devices are typically
not equipped with large memory or powerful CPUs. For
instance, the popular TelosB motes used by the majority of

WSN deployments reported in the literature, including the
one about adaptive lighting in road tunnels [6] we illustrate
in the next section, are equipped with only 48 kB of code
memory, 10 kB of RAM, and an 8 MHz micro-controller
suited for integer operations only.

In this respect, DBP is very efficient, involving only
one subtraction, two summations, and two divisions to
build the model, and a single summation for predicting the
next value. Our DBP implementation in TinyOS requires
only 50 lines of low-level code (equivalent to only 8 lines
of Java code), without including any external libraries, or
using floating point arithmetic. As node memory is limited,
eliminating the floating point arithmetic module is highly
desirable. Further, our DBP implementation uses only 108 B
of RAM, leaving almost all of the data memory to the
application and the network stack.

In contrast, other state-of-the-art techniques (e.g., those
compared in Section 4) employ mathematical libraries for
solving linear equations with 2–3 unknowns to compute
an autoregressive model (SAF), and a linear (PLA and
SAF) and quadratic polynomial (POR) regression using
least squares minimization. Such requirements render these
approaches considerably more resource-intensive. At the
same time, DBP does not sacrifice accuracy, as shown in
Section 4.2.

4 APPLICATION-LEVEL EVALUATION

This section analyzes the ability of our data prediction
technique, DBP, to reduce the amount of data that must
be transmitted to the sink. This is notably different from the
system-wide energy savings enabled by such data suppres-
sion, which we analyze in Section 5.

We evaluate and compare data prediction techniques
using the suppression ratio

SR = 1− # messages generated with prediction
# messages generated without prediction

as our primary performance metric. SR directly measures
the fraction of application-layer messages whose reporting
can be avoided: the higher the value of SR, the more
effectively a technique is performing.

4.1 Applications and Datasets
Our evaluation is based on 7 datasets from 4 applications,
described next, covering a variety of data variation patterns,
sampling periods, and number of nodes. Table 1 outlines the
main features of the datasets. Moreover, it reports the error
tolerance we set as a requirement, based on the real one used
in the application as defined by its designers or, in absence,
by considering the nature of the application. Finally, we
report the learning window m, which is a characteristic not
only of DBP but of all approaches, and is set at the same
value for the sake of comparison.

These datasets contain real collected data, which was
subject to losses on the wireless channel or to hardware
failures of some nodes. This is different from an online
application of data prediction, where each node has a perfect
record of the sensed values, as they are being sampled on
the node itself. Therefore, before running our evaluation, we
reconstruct a perfect data series for each node by removing
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TABLE 1
Datasets characteristics and evaluation parameters

Application Dataset Sampling
Period

Nodes Samples
Error Tolerance Learning

Window (m)( εrel ,εabs ) εT
TUNNEL Light 30s 40 5,414,400 (5%, 25 counts) 2 20

SOIL
Air Temperature 10 minutes 10 225,360 (5%, 0.5°C) 2 6
Soil Temperature 10 minutes 4 77,904 (5%, 0.5°C) 2 6

INDOOR

Humidity 31s 54 2,303,255 (5%, 1%) 2 20
Light 31s 54 2,303,255 (5%, 15 lx) 2 20

Temperature 31s 54 2,303,255 (5%, 0.5°C) 2 20
WATER Chlorine 5 minutes 166 715,460 (5%, 0.0001) 2 6
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Fig. 3. Physical placement of WSN nodes in TUNNEL.

duplicates and interpolating for missing values, in the line
of similar evaluations found in the literature [7].
Adaptive Lighting in Road Tunnels (TUNNEL). Our first
case study involves a real-world WSN application, deployed
in a road tunnel to acquire light readings [6]. The values
are relayed in multi-hop to a gateway, and from there to a
Programmable Logic Controller (PLC) that closes the control
loop by setting the intensity of the lamps inside the tunnel.
In contrast with the state of the art in tunnels, where light
intensity is pre-set based on the current date and time, or
at best determined by the external conditions, this closed-
loop adaptive lighting system maintains optimal light levels
by considering the actual conditions inside the tunnel. This
increases safety, and enables considerable energy savings.

WSNs are an asset in this scenario, as nodes can be
placed anywhere along the tunnel, not only where power
and networking cables can reach. This drastically reduces
installation and maintenance costs, and makes WSNs par-
ticularly appealing for existing tunnels, where infrastructure
changes should be minimized. The downside to such flex-
ibility is reliance on an autonomous energy source. Never-
theless, battery costs are minimal and their replacement can
be combined with regularly-planned tunnel maintenance.

Fig. 3 shows the placement of WSN nodes inside our
260 m long, two-way, two-lane tunnel. Overall, 40 nodes are
split evenly between the tunnel walls and placed at a height
of 1.70 m, compatible with legal regulations. Their data
reports are collected by a gateway, installed 2 m from the
entrance. Each node is functionally equivalent to a TelosB
mote [3], augmented with a sensor board equipped with
4 ISL29004 digital light (illuminance) sensors. This setup
is similar to the one reported in [6], where we detail and
evaluate the operational WSN-based, closed-loop adaptive
lighting system. In this paper we use a different application
and network stack, and compare data prediction techniques
against the baseline represented by the aforementioned pe-
riodic reporting of all samples.

The dataset we use contains the light readings reported
every 30 s from each node for 47 days, for a total of
5, 414, 400 measurements—the largest among the datasets
we consider here. To offer an intuition of the data, the
dashed line in the top of Fig. 6(b) shows the raw sensor
readings at a single node near the entrance of the tunnel
over a one-day period. To establish the proper value and
time tolerances, we consulted the lighting engineers who
designed the control algorithm that establishes the lamp
levels. By taking into consideration the inherent error of
illuminance sensors, they determined a value tolerance
εV = (5, 25), i.e., values generated by the model can differ
from the raw sensor reading by at most 5% or 25 counts, the
latter corresponding approximately to 15 lx. Based on the
application requirement that lamp levels must be adjusted
slowly to minimize the effects of changes on the drivers,
they also identified a time tolerance of one minute. For
convenience, we express εT in terms of the 30 s reporting
intervals of the application; a one-minute time tolerance
corresponds to εT = 2. We further establish the number of
values in the learning phase of data prediction techniques
to be m = 20, corresponding to a period of 10 minutes.

Soil Ecology (SOIL). Our second case study uses data
originating in the Life Under Your Feet (LUYF) project [8].
LUYF brings biologists and WSN experts together to study
the soil micro-climate in different forests of Maryland. As
environmental conditions affect the activities and behavior
of plants, micro-organisms and insects in the soil, a large
WSN offers accurate, fine-grained spatial and temporal data,
collected without being intrusive to the living creatures. Our
study uses the soil and air temperature datasets collected
in an urban forest in Baltimore, over a period of 225 days
between September 2005 and July 2006. The soil and air
temperatures are measured on the surface of earth and
inside the box of the node, respectively. Despite their com-
monalities such as the presence of a diurnal cycle, the two
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temperature datasets exhibit distinctly different variation
patterns. The soil temperature varies gradually over time
with changes lagging behind those of the air temperature
by several hours due to the large inertia caused by the
soil. We determined the value tolerance for the temperature
datasets in consultation with the soil scientists of LUYF
project. Interestingly, the scientists are not interested in the
temperature itself, rather in the production of CO2 due
to the respiration of organisms and plants in soil, which
is affected by temperature. A significant change in the
concentration of CO2 occurs with temperature changes of
0.5° C or 5% of the actual temperature. Given the sampling
period of 10 minutes, we set the learning phase to 1 hour to
accumulate m = 6 samples before applying the prediction
technique.

Indoor Sensing (INDOOR). Our next application case study
is arguably one of the first publicly available datasets col-
lected from a WSN. As such it has been used by earlier
data prediction studies [7], [9], offering direct compari-
son between our results and prior published results. In
this dataset, the light, temperature, humidity, and battery
voltage of 54 nodes (Mica2Dot) deployed inside the Intel
Berkeley Research Lab are collected. The data trends are
dramatically different from those of outdoor WSNs, as the
indoor sensors are influenced by artificial factors such as
the heating ventilation and air conditioning (HVAC) system
and human-controlled lighting.

The dataset covers 36 days, in which the nodes reported
2.3 million values for each of the aforementioned physical
quantities. In our experiments, we do not consider voltage
as it is highly correlated to temperature. With this dataset,
we set the tolerance parameters for temperature as in SOIL,
and those of the other two quantities as an estimate of the
perceivable effect on the comfort of the building occupants.

Water distribution (WATER). In our final case study we
consider a simulated sensor network monitoring hydraulic
and chemical phenomena in drinking water distribution
piping systems. The data comes from EPANET 2.0 [10],
an accurate modeling tool that tracks the water flow in
each pipe, the water height in each tank, the pressure at
each node, and the chlorine concentration throughout the
network during a specified simulation period. This dataset
has been used in several previous studies (e.g., in [11]–[14])
and thus offers a valuable point for comparative studies.

From this application, we consider a dataset containing
measurements of the chlorine concentration every 5’ at
166 junctions in the water distribution network for a 15-
day interval, for a total of 715, 460 measurements. This
dataset exhibits a global, daily periodic pattern following
residential demand, partly shown in Fig. 6(b), with a slight
time shift across different junctions, due to the time it takes
for fresh water to flow down the pipes from the reservoirs.
We assume a value tolerance of (5, 0.0001), which allows
sensors measuring very low chlorine concentrations to re-
port data. In general, the data exhibits a periodic, quasi-
sinusoidal pattern whose frequency is higher than in our
other datasets. As such, it is more difficult to model with
linear prediction techniques, and thus constitutes a worst-
case scenario for our evaluation.

4.2 Comparing DBP against the State of the Art
The goal of data prediction is to reduce the transmission
ratio without crossing the tolerated error values. To evaluate
this, we consider all the available data sets described earlier
and compare the suppression percentage of DBP to several
other techniques from the literature we concisely describe
here, and place in a wider context in Section 6:

• Piecewise Linear Approximation (PLA) is a popular tech-
nique that uses least square error linear segments to
approximate a set of values [9]. In our case, each node
uses a single segment to model sensed values.

• Similarity-based Adaptable Framework (SAF) [7] relies on
an autoregressive moving-average model of order 3
with a moving-average parameter of order 0. In SAF
a value Vi is predicted by a linear combination of the
last three: Vi = li + α1(Vi−1 − li−1) + α2(Vi−2 − li−2) +

α3(Vi−3−li−3), where α1, α2, α3 are constants the model
must estimate, and li models the linear trend of data
over time.

• Polynomial Regression (POR). In contrast to DBP, POR
allows the use of non-linear models for prediction.
Intuitively, this may yield better performance through
a better fit to the data. Like PLA, POR uses the least
squares measure for selecting the most appropriate
coefficients for the polynomials, which have the form
y =

∑p
i=0 αix

i. For this study, we evaluated polyno-
mials of order p = 2, 3, 4, but show only p = 2 as it
provides the best results for POR.

We used the value and error tolerances matching each
target application as outlined in Table 1. The duration of
the learning window m is the same across all techniques,
and is also specified in Table 1. Finally, for DBP we used
l = 3 edge points; this value yields the best performance,
although its impact is nonetheless rather limited, as we
show in Section 4.4.

First we consider the error of predicted vs. actual sensor
values. Like other studies [9], [11], we use Root Mean
Squared Error (RMSE) as an indicator of the quality of
the predicted time series at the sink. We define it as

RMSE =

√
1
N

N∑
i=1

(Vi − V̂i)
2

where Vi and V̂i are the

sensed and predicted values, respectively, and N is the total
number of values sensed. Table 2 shows the RMSE across
all data sets. DBP minimizes the error in 4 of 7 datasets
and is second best in the others, confirming its ability
to accurately predict the sensed values. This impressive
result may be surprising, considering that the approaches
we compare against, unlike DBP, are expressly designed to
reduce RMSE. Note however, that these techniques try to
reduce the RMSE between the produced model and the past
data values, while here we are interested in measuring the
RMSE between the model and the future data values.

All approaches perform well in terms of data suppres-
sion, but DBP achieves the best results in 5 out 7 datasets.
Table 2 shows that DBP suppresses 99.7% of the message re-
ports in TUNNEL, and 99.6% and 99.5% for the temperature
and humidity INDOOR datasets.

On the other hand, the WATER dataset is characterized
by non-linear periodic trends, that are better approximated
by the polynomial regression function of POR rather than
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TABLE 2
Root Mean Squared Error and Suppression Ratio

Application Dataset
Root Mean Squared Error * Suppression Ratio(%) *

DBP PLA SAF POR DBP PLA SAF POR
TUNNEL Light 18.867 19.121 20.031 19.307 99.74 99.71 99.71 99.09

SOIL
Air Temperature 0.618 0.613 0.6196 0.794 91.83 91.77 91.79 89.30
Soil Temperature 0.352 0.352 0.3495 0.361 98.80 98.82 98.83 97.83

INDOOR

Humidity 4.494 4.540 4.528 4.513 99.50 99.47 99.48 98.59
Light 23.980 30.981 25.493 31.480 97.58 97.10 97.47 96.43

Temperature 1.972 2.130 1.972 2.336 99.60 99.58 99.59 98.95
WATER Chlorine 0.008 0.008 0.008 0.007 89.81 89.44 89.57 92.58

* Underlined bold-face numbers denote the lowest RMSE error or the highest suppression ratio.

by linear approximations as in DBP. Indeed, we chose this
dataset as a sort of stress test for our technique. Although
POR suppresses 2.77% more data reports than DBP, the
performance of the latter is still very good, considering
that: i) DBP still outperforms both PLA and SAF, ii) DBP’s
implementation is significantly easier and less memory-
hungry than the other techniques, and therefore easier to
integrate on resource-scarce WSN devices, and, iii) POR
exhibits the worst performance in all other datasets, up to
2.53% less reports suppressed w.r.t. DBP in SOIL.

Table 2 shows the aggregate data suppression rate, but
different nodes enjoy different SR values, based on the
trends they observe in the sensed data. Fig. 4(a) provides
a concrete view of this statement in WATER, our worst-case
dataset, by showing SR for each node. Fig. 5 provides a
more intuitive view on the same dataset by plotting the
cumulative distribution function (CDF): a point on the curve
represents the number of nodes, on the x-axis, whose SR
is less than or equal to the one on the y-axis. The charts
confirm the non-uniformity of data suppression, and show
again that POR is consistently more efficient at suppressing
reports than the other techniques, a consequence of the par-
ticular nature of the WATER dataset, as already mentioned.
The lack of detailed information about the deployment of
nodes and the trends of the physical phenomena observed,
and the inability to run specific tests, prevents us from
providing more in-depth observations in WATER, as well as
SOIL and INDOOR.

On the contrary, in TUNNEL we do have all the infor-
mation above. Fig. 4(b) shows the data suppression rate for
the individual nodes in the tunnel. The chart is split in two
to remind the reader that the deployment is constituted by
two parallel lines of WSN devices, arranged as shown in
Fig. 3. Indeed, the node placement motivates the difference
in performance among the various nodes. The nodes in the
tunnel interior are only marginally affected by the outside
lighting conditions; the light data they sense is determined
by the rather constant illumination provided by the tunnel
lamps. All data prediction techniques are very effective in
this case. On the other hand, the nodes near the entrance
are subject to variations in light that can be also quite abrupt
(e.g., upon sunrise) and that, contrary to the WATER dataset,
are consistently predicted less effectively by POR.

4.3 DBP in Action
In this section we take a closer look at the operation of DBP,
showing that our technique can satisfy the error and delay
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Fig. 4. DBP vs. state-of-the-art techniques on individual nodes in WATER
and TUNNEL.
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Fig. 5. A different view on Fig. 4(a): CDF of suppression ratio for the
individual nodes in WATER.

tolerance requirements set by applications. We focus most
of our discussion on the TUNNEL dataset, as it is the one for
which we have most information, and occasionally compare
with the WATER dataset, which is the worst case for DBP.

We begin by analyzing DBP in the small, dissecting the
operation of a single node over a single day of operation
for both these datasets, as shown in Fig. 6. In WATER, we
chose node 1 because it has an average suppression ratio
w.r.t. other nodes in the same deployment. In TUNNEL, we
choose node 1 because, as shown in Fig. 3, it is placed at
the tunnel entrance where, in comparison with nodes in the
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Fig. 6. Absolute values (top) and error (bottom), from the WATER and TUNNEL applications with DBP.

interior, most of the changes in light readings occur. The
top charts in Fig. 6 show the values sensed by these nodes
both in the original case where data is reported periodically
(every 5’ for WATER and 30 s for TUNNEL, according to
Table 1) and when DBP is applied. In the latter case, the
cross points indicate the generation of a new model, while
the lines between the points show the values automatically
calculated at the sink from those models. The two datasets
exhibit different trends: while the values in TUNNEL reflect
the light changes induced by sunrise and sunset, the values
in WATER are affected only by the concentration of chlorine,
which is set arbitrarily by the simulation from which the
dataset is extracted. Nevertheless, the charts show that DBP
is able to predict very closely the actual values in both cases,
while suppressing the majority of messages. For instance, in
TUNNEL 2, 880 messages are sent without DBP, against only
25 messages with DBP: a suppression ratio of 99.13%.

As expected, most DBP models are generated in corre-
spondence of slope changes in the value trends. Interest-
ingly, in TUNNEL these are almost all concentrated around
sunrise and sunset: the rest of the time, DBP generates very
few models. These observations are confirmed on a global
scale by Fig. 7, where we show the overall number of models
generated by all the nodes in TUNNEL, over time. To measure
this, we divide our 24-hour experiment into 5’ intervals and
count the number of models generated by all nodes in each
interval. The number of models in any 5’ interval reaches a
peak of 10 after sunrise, a second peak of 4 around sunset,
and remains well below this value during the rest of the day.
At night, many intervals generate no models.

Finally, the bottom charts in Fig. 6 focus again on in-
dividual nodes as representative examples, analyzing the
error of the values provided by DBP to the application. The
solid line indicates the value tolerance set by our application
requirements—εV = (5, 0.0001) in WATER and εV = (5, 25)
in TUNNEL—while the lighter line shows the error of DBP as
the difference between the predicted value and the sensed
value. In most cases, the error falls below the value toler-
ance. Excursions above the value tolerance occur when data
predicted at the sink, albeit incorrect, are within the time tol-
erance. In each of these cases, either subsequent values fell
back below value tolerance or a new model was generated
after the maximum number of incorrect reports (εT = 2 in
our case) was exceeded. Interestingly, in many cases (e.g.,

at night in TUNNEL) one can see the absolute error growing
for a while, then dropping and growing again. The drop in
error corresponds to the generation of a new model, visible
also in the top charts of Fig. 6. The growing error is because
the DBP model is linear with a small, but non-zero slope,
which is slightly off the measured light values that remain
mostly constant. It is also worth noting that, in TUNNEL, the
value tolerance at night is dominated by the absolute error
εabs , while during the day it is dominated by the relative
error εrel . Indeed, the light at the entrance of the tunnel at
night amounts to only a few lux, while during the day it can
easily exceed a thousand lux. This disparity motivates the
use of two different value tolerances.

4.4 Impact of Parameter Settings

The previous evaluation shows that DBP performs well
on our datasets, representative of real-world applications.
However, we want to explore the parameter space for DBP,
to understand the effect on the suppression ratio of changes
to the error tolerances εV and εT , learning window m, and
edge points l. Given the large number of combinations, we
restrict ourselves to TUNNEL because, as discussed earlier,
our direct knowledge of the application allows us to better
interpret the impact of parameter changes.

Error Tolerance. Figs. 8(a)–8(c) show how SR changes at in-
dividual tunnel nodes, for various parameter combinations.
Recall from Fig. 3 that nodes 1–20 are placed on the same
North wall, while nodes 21–40 are on the South wall. We
plot a line connecting the SR at each node, because this best
highlights the trends as one proceeds from the entrance to
the interior of the tunnel (e.g., from node 1 to 20 on the
North wall).
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In Fig. 8(a) we vary the relative error εrel from 1% to 25%,
keeping the absolute error constant εabs = 25. By setting
the time tolerance to εT = 0, we force all deviations from
the value tolerances to be reported. To put these values in
context, recall that the value tolerance εV is defined as the
maximum between the relative and absolute errors, εrel and
εabs . In Fig. 8(b) we fix εrel = 5% and vary εabs between
0 and 50, keeping εT = 0. In Fig. 8(c), we use the value
tolerance εV = (5, 25) of our target application and vary εT
between 0 and 4, i.e., from 0 to 2 minutes.

In all cases it is worth noting that, as expected, the
biggest savings are seen at the nodes inside the tunnel,
where light variations are rare, and absolute illuminance
values are smaller. Under these conditions, the linear nature
of DBP accurately models the linear nature of the data.

Interestingly, the trends for nodes 21–24 in Fig. 8(a) are
due to the flickering of a lamp that introduced noise to the
sensor readings. Nevertheless, DBP achieved SR ≥ 95%
even for these nodes. Further, in Fig. 8(b), we clearly see the
need for both the absolute and relative value tolerances, as
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Fig. 8. TUNNEL, in-field: Impact of error tolerance parameters on sup-
pression ratio.

when the error tolerances are very low, e.g., εabs ∈ {0, 10},
SR is off the bottom of the charts. This is because the
light sensors themselves have an error that often takes them
outside the small, fixed relative error εrel = 5%, triggering
unpredictable model changes. Further, the flickering light
introduces additional noise that DBP cannot compensate for
with low error thresholds.

For each of these parameter combinations we also show,
in Fig. 8(d), the average SR over all nodes. An increase in
the value of εrel brings a near linear increase of SR. Instead,
εabs and εT both achieve the greatest benefit at small values,
with diminishing returns as the value increases. In the
former case, the increase in SR progresses rapidly as εabs

varies from 0 to 10, going from a suppression ratio of 88%
to 98%; a further (and larger) εabs increase from 10 to 25
yields only an additional 2% increase of SR. Similarly, time
tolerance reflects the fact that changes in light values are
gradual, and thus introducing even a small delay εT = 1
achieves most of the possible gain.

In addition to the combinations in Fig. 8, we also com-
puted the SR achieved with the strictest combination of the
three parameters: εrel = 1%, εabs = 0, and εT = 0. Even
with these worst-case requirements DBP still suppresses,
on average, 63% of the reports. More interesting is the real
combination of parameters (εrel = 5%, εabs = 25, and
εT = 2) suggested by the TUNNEL engineers, and used
in the rest of our experiments. In this case, the average
suppression rate is a staggering 99.7%—SR is increased by
almost two orders of magnitude w.r.t. reporting raw values.

Learning Window and Edge Points. The learning window
m and the edge points set l, used to compute the derivative,
also have the potential to affect SR. Their value must be
chosen based on the data properties and on the sampling
interval. The intuition is that m should not be too big w.r.t.
the sampling interval, to avoid ignoring important data
trends. The number of edge points, l ≤ m/2, should be small
if the learning window contains few data points, although a
value too small may increase the prediction error, especially
in the presence of noise.

To verify the extent to which this intuition holds,
we first applied DBP to our TUNNEL dataset with m ∈
{10, 15, 20, 25, 100} and a fixed l = 3. In all cases, SR
remains very high, between 99.7% and 99.8%. This is due to
the nature of the TUNNEL dataset. The nodes at the entrance
have large light variations during sunrise and sunset, when
indeed larger m values yield a smaller SR. Interior nodes
see minimal light variations throughout the day; a larger m
yields a larger SR. The two effects cancel one another out,
resulting in a constant performance, irrespective of m.

As this does not hold in general, we performed a similar
analysis in the other datasets. Based on the sampling period
(Table 1), we used the m values as in TUNNEL for the 3 IN-
DOOR datasets, and m ∈ {6, 9, 12, 24, 48} for the others. In
all cases, we fixed l = 3. The impact, higher than in TUNNEL,
is still negligible; in most datasets, the change in SR is
< 0.19%. WATER confirms to be the worst case; SR drops
from 89.8% to 83.6%, showing that indeed too large of a
learning window may miss important data trends, reducing
the performance of DBP. Even in this case, however, the
impact is limited; an 8-fold increase of m causes only a
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Fig. 9. Map of our 50-node testbed, including connectivity among the
40 nodes used for the TUNNEL dataset.

6.18% reduction in SR.
We similarly explored the impact of the number of edge

points, by applying DBP with l ∈ {2, 3, 4, 5, 10} and m =
20, to all datasets. Results show that the sensitivity of DBP to
l is even lower. In TUNNEL, SR = 99.7% and differences are
confined to the second decimal, due to the remarks above.
In all cases, the change in SR is always < 0.18%.

We conclude that, at least in our datasets, representative
of mainstream WSN applications, DBP is only marginally
sensitive to m and l, whose values must however be chosen
relative to the sampling period.

5 A SYSTEM-WIDE EVALUATION

We now shift our focus from the application layer to the
entire system, assessing the impact of data prediction with
the full WSN network stack. As observed in the previous
section, all the data prediction techniques studied achieve
good results with all data sets, resulting in extremely low,
aperiodic traffic. Therefore, here we focus our evaluation
on two applications and datasets, TUNNEL and INDOOR
temperature, that represent two extremes w.r.t. the traffic in-
duced by DBP. In TUNNEL, model updates are concentrated
at the nodes near the tunnel entrance, while in INDOOR,
updates are more evenly distributed across all nodes. How-
ever, the reporting period is similar (30 s vs. 31 s; see Table 1)
making a comparison meaningful.

We consider a system where DBP runs atop the main-
stream WSN network stack composed of CTP [4], BoX-
MAC [5], and TinyOS v2.1.1, a common choice in many
WSN deployments, due its energy efficiency and relative
ease of use. To evaluate the WSN behavior under different
connectivity conditions, we perform experiments in two
settings: an operational road tunnel, representing the real
conditions of our target application, and an indoor testbed.

Tunnels are complex environments where factors such
as road traffic affect network behavior. For example, we
previously observed [15] that in the presence of high traffic,
nodes consistently select parents on their same side of the
tunnel, while at low traffic nodes across the tunnel are often
selected. This is due to the interference caused by vehicles,
which profoundly affects the shape and maintenance cost of

the routing tree. For the in-field experiments reported here,
we used the 40-node WSN shown in Fig. 3.

The testbed, instead, is composed of 50 TelosB nodes in a
60× 40 m2 office area, shown in Fig. 9. The INDOOR dataset
uses all 50 nodes. TUNNEL uses only the first 40 that, at the
−1 dBm power setting, yield a network topology forming
three segments that approximate the linear tunnel topology,
but with a larger diameter than our real tunnel.

To assess directly the impact of the network stack on
the improvements theoretically attainable by DBP, we “re-
played” the same data used in Section 4. As we could not
re-execute the entire multi-day datasets with multiple pa-
rameter combinations, we selected a single 23-hour period
from TUNNEL, ensuring variability in the vehicular traffic.
Moreover, restrictions on the usage of the testbed forced us
to run experiments only for a few hours. Therefore, when
using TUNNEL data, we chose to focus on the sunrise period,
the most challenging because values change dramatically.
Finally, for INDOOR, we identified an interval for which the
SR is close to the average one across the entire data set.
Fig. 10 shows the number of models generated by each node
in all cases. We begin the evaluation after DBP has been
initialized, specifically after generation and transmission of
the first model.

We next consider how application data delivery, network
lifetime, and routing costs are affected by DBP, with the
goal of understanding if improvements can be achieved by
coordinating its functionality with the layers below it. All
these metrics are deeply affected by the operation of the
MAC layer, in particular the rate at which the radio duty
cycles, which therefore becomes a key parameter in our
experiments. At low sleep intervals, nodes frequently check
the channel but find no activity, increasing idle listening
costs. On the other hand, with long sleep intervals, the cost
to transmit a packet increases. Specifically in BoX-MAC,
transmission to a non-sink node takes on average half the
sleep interval, due to the fact that the sender must transmit
until the receiver wakes up, receives the packet, then ac-
knowledges its reception [5]. Long transmission times also
increase the probability of packet collisions among hidden
terminals, further decreasing the delivery ratio and increas-
ing energy consumption. The ideal sleep interval balances
idle listening and active transmission costs. To identify the
best interval for our applications, we ran our experiments
with a range of values from 100 to 3000 ms.

5.1 Data Delivery
DBP greatly reduces the amount of data in the network
w.r.t. the baseline where all nodes send data periodically.
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Fig. 11. Delivery ratio for the TUNNEL dataset.
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Fig. 10. Number of model update messages.
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Fig. 12. Duty cycle. Note the varying y-axis scale.

The reduction in data transmitted reduces the probability
of collisions, therefore increasing the delivery ratio. This
is evident in Fig. 11, where the system with DBP loses
fewer messages than without DBP. The figure shows only
the results for TUNNEL; the testbed case is very similar
to INDOOR. In all cases the delivery is very good, above
97%, but DBP actually always achieves 100%, except for
the maximum sleep interval of 3000 ms in the testbed. In
this case, a single model message was lost; however, as
the absolute number of model changes is small, the total
delivery ratio drops by almost 3%. Although this loss rate
may be acceptable without DBP, losing a single DBP model
has the potential to introduce large errors at the sink, as the
latter will continue to predict sensor values with an out-of-
date model until the next one is received. This suggests that,
based on the target environment, dedicated mechanisms
may be required to ensure reliability of model transmissions.

5.2 Lifetime

As the radio is one of the most power-hungry components,
we use its duty cycle as a measure of system lifetime.
Fig. 12 clearly shows that DBP enables significant savings at
any sleep interval. Without DBP, the optimal sleep interval
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Fig. 13. TUNNEL, in-field: Duty cycle vs. sink distance, no DBP.

yielding the lowest duty cycle is 500 ms for INDOOR, and
1500 ms for both TUNNEL cases. The shorter optimal sleep
interval of INDOOR is due to the extra data traffic from its
additional 10 nodes; with more nodes, larger sleep intervals
cause more collisions, resulting in a higher duty cycle.

In both cases, increasing the sleep interval beyond the
optimal one decreases the idle listening cost, but corre-
spondingly increases the transmission cost as the average
transmission duration is half the sleep interval. This phe-
nomenon instead bears a negligible effect in DBP where
transmissions are greatly reduced. In this case, longer sleep
intervals can be used to increase lifetime without affecting
data delivery.

Focusing first on TUNNEL, Fig. 12(b) shows that in the
testbed, with a sleep interval of 1500 ms (i.e., the best
without DBP), DBP yields more than twice the lifetime
of the no-DBP baseline—i.e., the WSN running DBP lasts
twice as long, with the same MAC settings. Using the
best sleep interval in both cases (i.e., 1500 and 3000 ms,
respectively) yields a three-fold lifetime improvement. The
energy savings for the in-field case, in Fig. 12(c), are less
remarkable but still significant. The network diameter of
the real tunnel is much smaller than the testbed due to the
waveguide effect [15]; many direct, 1-hop links to the sink
exist, leaving less room for improvement.

This impact of direct links to the sink is notable. As the
sink is always on, it quickly receives and acknowledges
packets, making transmissions from its children fast and
low-energy. Fig. 13 shows this by separately plotting the
(lower) duty cycle for nodes that were always 1-hop away
from the sink. The plot shows only the no-DBP case, as
with DBP all nodes reporting model changes were in direct
range of the sink. Interestingly, by placing the gateway
near the nodes with model changes, we further reduced
communication costs. While this was not intentional in our
case, it hints at a strategy for gateway placement to exploit
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a priori knowledge of data patterns.
Finally, when applied to INDOOR, DBP achieves a five-

fold lifetime improvement, larger than in TUNNEL. The
reason can be grasped by noting that the duty cycle with
DBP is ∼ 1.2 in both datasets; DBP is effective in pushing
both systems to their limit. Nevertheless, as noted earlier,
INDOOR without DBP generates more traffic; this results in
a smaller sleep interval for the optimal duty cycle, which
is however higher than in TUNNEL (5.55 vs. 3.99). This
difference without DBP, along with the similar duty cycle
with DBP, determines the larger improvement in INDOOR.

5.3 Routing Costs
A natural question arises at this point: if DBP suppresses
over 99% of the messages, why does the network lifetime
increase “only” 3-fold for TUNNEL and 5-fold for INDOOR?
This is due to the costs of the network stack: the idle
listening and average transmission times of the MAC pro-
tocol, and the overhead of the routing protocol to build
and maintain the data collection tree. As we already have
evaluated the impact of the MAC, we now turn to routing.

To isolate the inherent costs (e.g., tree maintenance) of
CTP, we ran experiments with no application traffic. The
corresponding duty cycle is shown as Only CTP in Fig. 12;
interestingly, the DBP cost is very close to the cost of CTP
tree maintenance, regardless of the sleep interval. A finer-
grained view is provided by Fig. 14, where we analyze
the different components of traffic in the network, for both
INDOOR testbed and TUNNEL in-field experiments, which
have quite different topologies and durations. Without DBP,
the dominating component is message transmission and for-
warding; some nodes show several re-transmissions, while
the component ascribed to CTP (i.e., the beacons probing for
link quality) is negligible. When DBP is used, the number
of CTP beacons remains basically unchanged. However, be-
cause application-level traffic is dramatically reduced, CTP
beacons dominate the network traffic.

5.4 Cross-layer Routing Optimizations
The routing cost analysis above reveals that beacons, not
application traffic, dominate the network traffic and there-
fore are the limiting factor for system lifetime. In CTP, the
number of beacons, and therefore the cost of beaconing, is
determined by an application of the Trickle algorithm [4],
which sends one beacon at a random moment in a given
time interval. This interval is initially small (0.125 s by de-
fault) to allow CTP to obtain and rapidly propagate accurate
link cost estimates. However, to limit beaconing cost, if no
link variations are detected the interval doubles, eventually
reaching a large maximum value, 500 s by default. When
beacons are triggered due to link cost variations, the interval
shrinks back to the minimum, then gradually increases back
to the maximum. In mainstream application environments,
CTP spends most of the time at the maximum beacon
interval. Here, we investigate how to reduce the beaconing
cost, while still allowing CTP to function properly in the
presence of link variations. To this end, we maintain the
core Trickle mechanism but we experiment with larger
maximum beacon intervals of 1000 s, 2000 s, and 4000 s.
We hereafter refer to these values as 1x, 2x, 4x, and 8x.

The experiments we report are performed in our testbed
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(c) TUNNEL, in-field, without DBP.
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(d) TUNNEL, in-field, with DBP.

Fig. 14. Link-level transmissions with and without DBP for INDOOR,
testbed (2 h) and TUNNEL, in-field (23 h). Note the varying y-axis scale.
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Fig. 15. TUNNEL, testbed (4 h): beacon transmissions, delivery ratio,
and duty cycle for different combinations of sleep intervals and beacon
intervals. Note the different scale in the bottom charts for duty cycle.
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for our main TUNNEL application, as results with the IN-
DOOR data set are similar. Notably, these tests are longer
than those reported earlier in this section, as CTP requires
more time to reach a larger maximum beacon interval,
specifically 2 hours at 8x. The 4-hour experiment duration
is determined by restrictions on the testbed usage, and the
need to keep the total experiment time manageable under
the many combinations of parameters under consideration.
Further, this set of experiments was also run at a later
time w.r.t. those we presented earlier, and originally in [2].
Since then, the environment where the testbed is deployed
underwent changes (e.g., a few walls were moved) that,
albeit minor, affected connectivity.

The experiments we present here, therefore, are also the
opportunity to validate our earlier results on a slightly dif-
ferent WSN setup and longer experiment duration. Fig. 15
shows our results, with different combinations of maximum
beacon intervals and MAC-level sleep intervals. A compar-
ison with Fig. 11–12 can be easily seen by focusing on 1x,
the default maximum beacon interval. The trends are very
similar to those observed earlier, with two major differ-
ences. First, the optimal sleep intervals without and with
DBP are now 1000 ms and 2500 ms, respectively. Second,
a comparison of the duty cycle for these optimal values
shows a 4-fold improvement. The new setting is therefore
more advantageous for DBP than in Section 5.2, where we
obtained “only” a 3-fold improvement. Interestingly, our
new setting is therefore a more challenging scenario for
our goal of exploiting cross-layer routing optimizations to
improve further over what DBP can achieve alone.

Looking at the rest of Fig. 15 we note that, as expected,
the total number of beacons decreases as we increase the
maximum beacon interval, yielding up to 70% fewer bea-
cons at 8x. The number of beacons remains essentially the
same with and without DBP, as shown in Fig. 15(a)–15(b).
This is an expected consequence of this metric being tied
to the stability of the network rather than the data traffic.
Moreover, the impact of data delivery is dominated more by
the MAC sleep interval than the maximum beacon interval,
as shown in Fig. 15(c)–15(d). The trends are similar to those
in Fig. 11(a), where the DBP system remains at 100% except
for two cases, each with a single packet loss, while delivery
without DBP degrades as the sleep interval increases.

On the other hand, increasing the maximum beacon
interval bears a dramatic effect on lifetime. Without DBP,
beacons are a small percentage of the overall network traffic.
Therefore, as Fig. 15(e) shows, the effect of increasing the
beacon interval does not bear a definite effect on duty
cycle. Instead, with DBP this always provides a benefit. In
particular, the duty cycle at the optimal sleep interval of
2500 ms is reduced by 40% when moving from 1x to 8x. If
we compare this optimal DBP configuration (2500 ms, 8x)
to the optimal configuration without DBP (1000 ms, 1x), the
lifetime of the former is seven times higher than the latter.
These results confirm that cross-layer tuning of the MAC-
layer sleep interval and the routing layer beacon interval
can lead to significant improvements.

Finally, we note that even with 4-hour experiments, the
time for CTP to ramp up to the longest beacon interval
is a significant fraction of the total experiment time, from
17 minutes at 1x to 135 minutes at 8x. Therefore, we expect

the positive results shown here to be a conservative measure
of the gains that can be attained in real deployments, where
the effect of infrequent beacons dominate in the long term.

6 RELATED WORK

The limited resources, variable connectivity, and spatio-
temporal correlation among sensed values make efficiently
collecting, processing and analyzing WSN data challenging.
Early approaches use in-network aggregation to reduce the
transmitted data, with later approaches addressing missing
values, outliers, and intermittent connections [16]–[18].

Data prediction has been extensively studied, resulting
in different techniques based on constant, linear [2], [9],
[19], [20], non-linear [7] and correlation models [21]. Hung
et al. [22] compare representative techniques from each
category according to data reduction and prediction accu-
racy. The study concludes that constant and linear models
outperform the others in the presence of small variations in
the data. In line with these results, DBP uses a linear model.
The other techniques based on probabilistic models [23],
[24] approximate data with a user-specified confidence, but
special data characteristics, such as periodic drifts, must be
explicitly encoded by domain experts. In a similar paramet-
ric approximation technique [25], nodes collaborate to fit
a global function to local measurements, but this requires
an assumption about the number of estimators required to
fit the data. In contrast, DBP requires neither expert domain
knowledge nor lengthy training, but provides hard accuracy
guarantees on the collected data. PAQ [20], SAF [7], and
DKF [26] employ linear regression, autoregressive models,
and Kalman filters respectively for modeling sensor mea-
surements, with SAF performing best.

As an alternative to data modeling, some solutions seek
to suppress reporting at the source by using spatio-temporal
knowledge of data [27] or by identifying a set of represen-
tative nodes and restricting data collection to it [28]–[32].
Others take the remaining energy of individual nodes [33]
into account. These approaches further reduce communi-
cation costs and can be applied in combination with DBP.
Work on continuous queries for data streams studies the
tradeoff between precision and performance when querying
replicated, cached data [34]. Finally, several studies focus
on summarizing streaming time series, showing that the
choice of the summarization method does not greatly affect
the accuracy of the summary [9]. In our experiments, we
compared against PLA, as it can be efficiently computed.

Another technique that has recently become popular in
WSN is compressive sensing (CS), e.g., [35], [36]. CS aims to
compress a data sequence, regardless of the nature of the data,
while DBP and existing data prediction techniques suppress
data transmissions based on the nature of the data. However,
the applications we target require hard error bounds (value
and time tolerance). CS can only provide these guarantees
for signals that are sparse in some space [37]; an a-priori
analysis of the data traces is required to verify this pre-
condition for applying CS, and can be difficult to achieve
for streaming data. DBP has no such assumption; further,
as shown in Section 4.4, even a non-optimal configuration
of m and l bears little effect on efficiency, while always
guaranteeing accuracy within the required error tolerance.
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Finally, CS typically requires computation over a long data
window (e.g., 200 samples) introducing a significant la-
tency, problematic for several applications (e.g., including
the control loop in our real-world TUNNEL application). Re-
ducing the sample size is possible; this, however, increases
packet transmissions and therefore reduces the attainable
gains. DBP has no such limitations. Further, CS computation
consists of multiplication/summation with a matrix (e.g.,
10 × 10) whose storage induces a memory consumption
higher than DBP.

The above data driven approaches have been evaluated
theoretically, but no prior work explores the real effect of
the network stack on energy savings. Network-level energy
savings approaches can be classified into MAC level, cross-
layer, or traffic-aware.

Low power MAC protocols [38] reduce overhead by
limiting idle listening, overhearing, collisions and proto-
col overhead. Low-power listening protocols, e.g., BoX-
MAC [5], dominate real deployments due to their avail-
ability, simplicity and effectiveness. However, as we have
shown, the sleep interval must be carefully tuned.

Vertical solutions crossing network layers achieve ex-
tremely low duty cycles. Dozer [39] achieves permille (0.1%)
duty cycle by taking a TDMA-like approach with scheduled
transmissions. Unfortunately, Dozer does not scale well and
is prone to choose poor quality parents. Koala [40] achieves
similar low duty cycles, but by explicitly accepting delays
between data generation and delivery. Koala is character-
ized by long periods of very low-power local data sampling
followed by brief, high-consumption data collection inter-
vals. While the energy savings are significant, the delays are
not acceptable for closed-loop systems like our tunnel.

Other techniques [41], [42] adapt sleep schedules accord-
ing to traffic statistics. Unfortunately, the data modeling
approaches outlined above, of which DBP is an example, are
difficult to predict due to the variability of the application
data itself and the interaction with the modeling technique.

7 CONCLUSIONS

Data prediction exploits the fact that many applications can
operate with approximate data, as long as it is ensured to
be within certain limits of the actual data. This allows huge
reductions in communication.

We applied our novel technique, DBP, to over 13 million
data points from 4 real-world applications, showing that it
suppresses up to 99% of the application data, a performance
often better than other approaches despite that DBP is sim-
pler and places minimal demands on resource-scarce WSN
devices. The practical usefulness of DBP is reinforced by
our system-wide evaluation, showing that with a properly
tuned network stack, DBP can improve system lifetime
seven-fold w.r.t. mainstream periodic reporting.

Our results suggest that further reductions in data traffic
would have little impact on lifetime, as network costs are
dominated by control operations. Therefore, improvements
must directly address the extremely low data rates of DBP,
e.g., by considering radically different network stacks. Fur-
ther, data loss in prediction-based systems has the poten-
tial to significantly increase application errors. Therefore,
reliable transport mechanisms must be revisited to ensure
application-level quality.
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