
Reasoning About Code Mobility with Mobile Unity

GIAN PIETRO PICCO

Politecnico di Milano

and

GRUIA-CATALIN ROMAN

Washington University in Saint Louis

and

PETER J. MCCANN

Lucent Technologies

Advancements in network technology have led to the emergence of new computing paradigms that
challenge established programming practices by employing weak forms of consistency and dynamic

forms of binding. Code mobility, for instance, allows for invocation-time binding between a code

fragment and the location where it executes. Similarly, mobile computing allows hosts (and the

software they execute) to alter their physical location. Despite apparent similarities, the two
paradigms are distinct in their treatment of location and movement. This paper seeks to uncover
a common foundation for the two paradigms by exploring the manner in which stereotypical forms
of code mobility can be expressed in a programming notation developed for mobile computing.
Several solutions to a distributed simulation problem are used to illustrate the modeling strategy
and the ability to construct assertional-style proofs for programs that employ code mobility.

Categories and Subject Descriptors: C.2.1 [Distributed Systems]: Distributed Applications;
D.2.4 [Software/Program Verification]: Correctness Proofs; D.2.10 [Specifying and Veri-
fying and Reasoning about Programs]; D.2.11 [Software Architectures]: Patterns; F.1.2
[Modes of Computation]: Parallelism and Concurrency

General Terms: Design, Theory, Verification, Languages

Additional Key Words and Phrases: Code mobility, mobile agent, UNITY

1. INTRODUCTION

Code mobility is defined informally as the capability, in a distributed application, to
dynamically reconfigure the binding between code fragments and the location where

Authors’ addresses: G.P. Picco, Dip. di Elettronica e Informazione, Politecnico di Milano, P.za

Leonardo da Vinci 32, 20133 Milano, Italy, e-mail: picco@elet.polimi.it; G.-C. Roman, Dept.
of Computer Science, Washington University, Campus Box 1045, One Brookings Drive, Saint

Louis, MO 63130-4899, USA. E-mail: roman@cs.wustl.edu; P.J. McCann, Lucent Technologies,

263 Shuman Blvd, Naperville, IL 60566-7050. E-mail: mccap@research.bell-labs.com

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must

be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, to redistribute to lists, or to use any component of this work in other works, requires prior

specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM

Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 · G.P. Picco and G.-C. Roman and P.J. McCann

they are executed [Carzaniga et al. 1997]. This simple definition, however, raises a
lot of questions. What is the unit of mobility? What are the effects of the move
on the computations executing at the point of origin and at destination? What
aspects of the run-time state move along with the code? What are the boundaries
of a location? These questions have received partial answers in a new genera-
tion of programming languages called mobile code languages [Vitek and Tschudin
1997]. These languages provide specialized abstractions and run-time support ca-
pabilities designed to support various forms of code mobility. The impetus for the
development of mobile code languages stems from the need to overcome some of
the technological problems facing the Internet today. The conventional paradigms
used for the development of Internet applications, like client-server, do not seem
to scale up. New technologies and design paradigms are being considered. Some
of them assume that hosts and communication links are part of a highly dynamic
global computing platform, where the application code can move freely among the
computing nodes. This network centric style of computing is at the center of the
emerging mobile code languages.

For a comprehensive survey of mobile code languages, the reader is directed
to [Cugola et al. 1997] which reviews a number of existing languages and attempts
to extract their essential features. The unit of mobility, called executing unit in [Cu-
gola et al. 1997], is implemented differently in different languages, but can be
thought of as a process in an operating system or a thread in a multithreaded
environment. Mobile code may assume two basic forms, strong and weak. Strong
mobility allows executing units to move their code and their execution state to a
different site. The execution state contains control information related to the state
of the executing unit, e.g., the instruction pointer. Upon migration, executing units
are suspended, transmitted to the destination site, and resumed there. Weak mo-
bility allows an executing unit at a site to be bound dynamically to code coming
from a different site.

Current mobile code languages provide different mixtures of the above notions
of code mobility. For instance, Telescript [Magic 1995; White 1996] provides full-
fledged support for strong mobility. In Telescript, a special thread called agent
can migrate to a different site by executing a special go operation, whose effect
is to suspend execution of the thread, to pack it in a format suitable for trans-
mission, and to send it to the destination site, where it is unpacked and can re-
sume execution starting from the instruction immediately following the go in the
source code of the agent. Agent Tcl [Gray et al. 1997; Gray 1995], an extension
of Tcl [Ousterhout 1995], provides support for strong mobility as well, but upon
execution of a migration instruction jump the whole UNIX process containing the
interpreter is migrated, instead of a single thread within it. On the other hand,
in Java [Sun Microsystems 1995] the class loader can be programmed to enable a
Java program to link dynamically code downloaded from the network, hence pro-
viding support for weak mobility. Java derivatives like Aglets [Lange and Oshima
1998], Voyager [Kiniry and Zimmerman 1997], or Mole [Straßer et al. 1996], as
well as languages like TACOMA [Johansen et al. 1995], Facile [Knabe 1995], and
M0 [Tschudin 1994] support weak mobility by allowing a procedure or function to
be sent to another node for remote execution, with the portion of the global envi-
ronment that is needed to proceed with execution—but with no execution state.

Reasoning About Code Mobility with Mobile Unity · 3

By and large, these developments fall outside the traditional concerns of dis-
tributed computing since much of the existing work on models, algorithms, proof
systems, methodologies, and impossibility has been carried out assuming networks
with a fixed topology and static binding between the application code and the hosts
where it is being executed. In contrast, mobile code languages enable more dynamic
solutions to distributed computing problems, such as design paradigms that encom-
pass new forms of interaction among the components of a distributed application.
Relating these new paradigms to previous research on distributed computing is the
main theme of this paper. The focus is on the modeling of programs that exhibit
code mobility and on the construction of assertional proofs for them. The approach
we pursue is that of expressing various forms of code mobility in a model that was
originally designed for the specification and verification of mobile computing sys-
tems, i.e., systems which involve software components bound to hosts that move
in space and interact opportunistically when communication becomes possible. We
believe this to be an important first step towards constructing formal models spe-
cific to code mobility as it highlights the differences and similarities between the
two kinds of mobility. Furthermore, these kinds of studies may eventually lead to
the development of a unified model of mobility.

The model we use in our study is called Mobile Unity [Roman et al. 1997;
McCann and Roman 1998], an extension of work by Chandy and Misra [Chandy
and Misra 1988] on Unity. Mobile Unity provides a programming notation that
captures the notion of mobility and transient interactions among mobile nodes
and includes an assertional-style proof logic. The model adheres to the minimalist
philosophy of the original Unity, supports text-based reasoning about programs,
and focuses only on essential abstractions needed to cope with the presence of
mobility. As we use this model to examine mobile code paradigms, the fundamental
goal is to determine whether Mobile Unity by itself is adequate to this modeling
task.

In Mobile Unity, the unit of mobility is a program. Migration is captured by
augmenting the program state with a location attribute whose change in value is
used to represent motion. In this manner, Unity is augmented with an explicit
representation of space and its properties—we contend that modeling the space
explicitly is desirable when one hopes to take into account the physical reality
of moving hosts and its implications on the behavior of the software they carry.
While Mobile Unity is usually concerned with movement in physical space, there
is nothing in the model that precludes a more abstract view of space. Nodes of
a network or even distinct memory partitions on a single node can be viewed as
locations in a domain whose properties are distinct from those of the physical space,
e.g., one in which all points are equidistant—a reasonable assumption for a model
which ignores variations in communication delays. In the remainder of the paper we
will show how one can treat mobile code fragments as Mobile Unity programs, how
one can specify code movement from one location to another by manipulating the
location variable, and how one can capture dynamic binding of variables among the
mobile and stationary code by means of transient interactions, a concept specific
to Mobile Unity, following the lines of [Picco et al. 1997]. Having accomplished
this, we will also show how the Mobile Unity proof logic enables us to verify the
correctness of programs using mobile code.

4 · G.P. Picco and G.-C. Roman and P.J. McCann

The remainder of this paper is structured as follows. Section 2 describes a sim-
plified version of a distributed simulation problem. Several solutions to this prob-
lem are discussed in this paper to illustrate modeling and verification techniques
enabled by Mobile Unity. The problem is used first in Section 3 to introduce
standard Unity via a centralized solution. A distributed, client-server solution is
then presented in Section 4; it illustrates also how Mobile Unity extends Unity to
model naturally the interactions taking place among distributed components. This
theme is refined further in Section 6, where the Mobile Unity constructs enabling
transient interactions are used to model the coordination taking place among mobile
components in three different solutions to the distributed simulation problem. The
verification of the corresponding programs is discussed in Section 7, that presents
an overview of the Mobile Unity proof logic and sketches the proofs for the mobile
code programs. Further details about the proofs are provided in the Appendix.
Section 8 explores some of the issues raised by our investigation and discusses the
kinds of features that are needed in a richer model of mobility. Brief concluding
remarks appear in Section 9.

2. A DISTRIBUTED SIMULATION PROBLEM

In this section we present an example that will be used for illustration purposes
throughout the remainder of the paper. The example is inspired by the work
of Chandy and Misra who provided a formal characterization and solution for a
distributed simulation problem [Chandy and Misra 1979]. The basic idea is to
simulate the behavior of a physical system such as an electronic circuit on a network
of computing nodes which communicate asynchronously and in the absence of global
shared memory. Physical entities are allocated to nodes across the network and
simulated according to their expected behavior. The nodes must communicate
among themselves in order to simulate the interactions normally occuring among
the physical components (e.g., passing a signal from one gate to the next) and also
in order to preserve the correct temporal relationships among the actions associated
with the various simulated entities. It is the latter aspect of the problem which is
central to its solution. For this reason, in our simplified version we focus strictly
on the temporal aspects of the problem and ignore any other interactions among
the components. In other words, we assume that each simulated entity executes
at most one action at a time in a deterministic manner and does not interact with
any other entities being simulated at other nodes. However, because the simulation
may be monitored by some external agent while in progress, the ordering of actions
in time must be consistent with those occuring in the simulated system. These
simplifying assumptions would be realistic, for instance, when particle movement
is simulated in the absence of collisions.

The behavior of each node is very simple. A local timer holds the time value
at which the next local action is to be executed. The action can be executed only
when all nodes participating in the simulation reach that particular time, i.e., all
actions scheduled for earlier times have been executed. The notion of global virtual
time (GVT), whose value is defined as the minimum among the values of all local
timers, formalizes the intuitive idea that the simulation reached a particular point
in time. In a centralized solution to the problem, such as the Unity solution in the
next section, the value of the GVT can be stored in a variable and can be updated

Reasoning About Code Mobility with Mobile Unity · 5

P(1)

P(2)

T T’

P(0)

time

Fig. 1. A snapshot of the distributed simulation.

by examining the value of each local timer. In a distributed solution, each node
has to discover the GVT value by communicating with other participating nodes.
Once GVT catches up with the local timer, the corresponding action is executed
and the local timer is incremented to reflect the time when the subsequent action
is scheduled to take place.

In Figure 1 we show three processes P indexed by i which participate in a
distributed simulation. Solid lines depict values of the corresponding local timers.
The current GVT is shown below the horizontal axis and marked by the symbol T .
The only process allowed to execute an action is P (1). After the execution of its
action, P (1) is allowed to update the value of its local timer to a new value referring
to some time in the future. As a result, in this example, a new GVT value T ′ is
established and P (0) and P (1) are now allowed to execute their respective actions,
independently of each other.

The distributed simulation problem can be characterized formally as follows. A
system is modeled by a set of N processes, indexed from 0 to (N−1). Each process
P (i) has an associated local timer, t(i). The GVT T is defined as the minimum
of all the local timers, i.e. T = 〈min i : 0 ≤ i ≤ N − 1 :: t(i)〉1. The scheduling
criterion used by a process to update its timer is embodied in the definitions for
functions f and g, both indexed by a specific process identifier:

fi(t(i), T, z) =

t(i) if t(i) > T,

gi(t(i), z) if t(i) = T ,

⊥ if t(i) < T.

gi(t(i), z) > t(i)

where t(i) denotes the value for a local timer, T denotes the GVT value, and
z identifies the simulation mode. This additional parameter accounts for some
entity other than time that takes part in determining the behavior of the simulated
component. These definitions capture the following requirements:

(1) The local timer cannot change if it is ahead of the GVT.

1The three-part notation 〈op quantified variables : range :: expression〉 is borrowed from

Unity and will be used throughout the paper. It is defined as follows: The variables from

quantified variables take on all possible values permitted by range. If range is missing, the first
colon is omitted and the domain of the variables is restricted by context. Each such instantiation
of the variables is substituted in expression producing a multiset of values in which op is applied.

In the case above, it is equivalent to computing the minimum across the N values.

6 · G.P. Picco and G.-C. Roman and P.J. McCann

(2) The local timer, if permitted, can only increase, i.e., actions are always sched-
uled in the future (see the constraint on g).

(3) The value of a local timer can never be behind the GVT. For such cases the
function f is undefined.

The distributed simulation problem will be used in the sections to come as a
reference example to present solutions that exploit different degrees of distribution
and mobility, and discuss their modeling using Mobile Unity. A centralized so-
lution will be described in the next section, together with an introduction to the
original Unity notation. The drawbacks of this solution are analyzed and then
removed in Section 4, that shows how the constructs introduced by Mobile Unity
can be used to model distributed components interacting through the common
client-server paradigm. Mobile code variants of this scenario are then discussed in
Section 6, where the ability of Mobile Unity to express concisely transient interac-
tion and autonomous migration are employed to model the dynamic reconfiguration
of code and state. Finally, in Section 7 the properties of the distributed simulation
problem are expressed formally using the Unity logic, and the correctness of the
mobile code solutions is demonstrated using the Mobile Unity proof logic.

3. A CENTRALIZED SOLUTION IN Unity

Figure 2 shows a program that provides a solution for the distributed simulation
problem. The program uses the Unity notation described in [Chandy and Misra
1988]. All variable declarations appear in the declare section. The array t contains
the values of the local timers for each process i. T stores the current value for the
GVT and z represents the simulation mode. The initially section contains a set of
predicates, separated by the symbol [], which define the allowed set of initial states.
Uninitialized variables assume arbitrary values belonging to their declared type.
All local timers t(i) are initialized to zero and T is initialized consistently. The
simulation mode z is initialized to some default initial value. The assign section is
the core of the program. It consists of a set of assignment statements that specify the
program behavior. Program execution starts in the state described in the initially

section and evolves as a non-deterministic, fair interleaving of statements—in an
infinite execution of the program each statement is executed infinitely often. The
first statement computes the current GVT as the minimum among the values of
the local timers, and stores it in T . The second statement is a set of asynchronous
assignments each updating the local timer for a corresponding process P (i). Due
to the definition of f , the update is performed only when the timer value is equal
to the value of T , and has no effect on T . The statement is defined using the
three-part notation with [] as a quantifier, hence it is equivalent to N assignments
separated by [] and executed non-deterministically and independently. If we wanted
to specify synchronous execution instead, we could have used || in place of []. Note
also that, because of fair execution, each of the assignments separated by [] is
non-deterministically interleaved with the one computing the GVT. In some fair
execution, it could happen for each t(i) to be updated before the new GVT is
computed. In this case, T actually represents a lower bound for the GVT value, and
the T parameter used as an argument for function f is actually an approximation
of the GVT. The details about the behavior of processes are irrelevant. Finally, the

Reasoning About Code Mobility with Mobile Unity · 7

Program DistributedSimulation

declare

t : array of integer [] T, z : integer

initially

〈[] i :: t(i) = 0〉 [] T = 0

assign

T := 〈min i :: t(i)〉

[] 〈[] i :: t(i) := fi(t(i), T, z)〉

[] z := d(T)
end

Fig. 2. A simple Unity solution for the distributed simulation problem.

value of the simulation mode is updated dynamically according to the definition of
a function d(T) whose details are left out.

Although the solution presented in Figure 2 is formally correct, it is not accept-
able from a design point of view because every variable appears to be shared and,
in particular, the GVT is shared among all processes—which has been explicitly
forbidden by the statement of the problem. In addition, it is not apparent that
the local timers are associated with processes, and the program text does not even
capture explicitly the notion of independent processes. In the following section
we show a client-server solution that does not employ shared variables and makes
explicit the location and encapsulation embodied in each process.

4. A CLIENT-SERVER SOLUTION IN Mobile Unity

In a later section of the paper we will give three alternative solutions to the dis-
tributed simulation problem, each modeled after a different mobile code design
paradigm. Each will be expressed in Mobile Unity [McCann and Roman 1998], a
modification of the standard Unity notation presented in Section 3. In this sec-
tion we focus our attention on the opportunities for a highly decoupled style of
computing promoted by Mobile Unity. We introduce the Mobile Unity notation
by means of an example that involves a client-server solution to the distributed
simulation problem. By distributing the computation among multiple clients and
a single server we take a first step towards mobility, i.e., by introducing the notions
of location and coordination among independently written components. At this
point in our presentation, the emphasis is on understanding the basic differences
between Unity and Mobile Unity with regard to modular specification of com-
posite systems. The former views a system as a static collection of programs that
communicate among themselves by referencing identically named global variables.
The latter seeks to maximize decoupling among programs by assuming all variables
to be local and by providing a coordination mechanism which is external to the
individual programs. A given program exhibits different behaviors as a result of
changes in the coordination rules. This section describes only the simplest form of
coordination available in Mobile Unity, i.e., asynchronous data transfer.

4.1 Solution Overview

In the Client-Server (CS) paradigm, a server component exports a set of services.
The client component, on the other hand, at some point in its execution lacks
some of the resources needed to proceed with its computation. The resources are

8 · G.P. Picco and G.-C. Roman and P.J. McCann

System DSClientServer

Program P(i) at λ

declare

t, z : integer [] T : integer ∪ {⊥} [] RQ : request ∪ {⊥}

initially

t = 0 [] T = ⊥ [] λ = Location(i) [] RQ = ⊥

assign
t, T := fi(t, T, z),⊥ if def(T)

[] RQ := 〈server,cs,minServ, t〉 if ¬def(RQ) ∧ ¬def(T)

[] T,RQ := RQ ↑ 4,⊥ if RQ ↑ 1 = i

end

Program Server at λ

declare

T : integer ∪ {⊥} [] τ : array of integer [] q : array of (request ∪ {⊥})

initially

T = ⊥ [] 〈‖ j :: τ(j) = 0〉 [] 〈‖ j :: q(j) = ⊥〉 [] λ = Location(server)

assign
〈[] j :: τ(j), q(j) ↑ 2 := q(j) ↑ 4,wait if q(j) ↑ 1 = server ∧ q(j) ↑ 2 6= wait〉

[] T := 〈min k :: τ(k)〉 if 〈∃ j :: q(j) ↑ 2 = wait〉 ∧ ¬def(T)
[] 〈‖ j :: q(j), T := 〈j,⊥,⊥, T 〉,⊥ if def(T) ∧ q(j) ↑ 2 = wait〉

end
Components

〈[] i :: P (i)〉 [] Server

Interactions
Server .q(i) := P (i).RQ when ¬def(Server .q(i)) ∧

serviceRequest(cs,minServ, i)

[] P (i).RQ,Server .q(i) := Server .q(i),⊥ when serviceReady(i)
end

Fig. 3. Client-Server solution for the distributed simulation problem.

located on the server host and they are accessed by the client by interacting with
the server through some form of message passing. The interaction specifies what
kind of service needs to be invoked on the server in order to access the resources.
Consequently, in the CS paradigm the resources are co-located with the know-how
needed to access them, and no relocation of components takes place.

As in our earlier centralized solution, we will ignore the internal simulation steps
except for their effect on the advancement of the local timers. Each process must
calculate an estimate T of the GVT to determine whether the next step in its local
simulation is allowed. For correctness, this estimate should never exceed the real
GVT, otherwise a process might take a step when its timer value is in the future
with respect to some other component. The distributed solutions presented in this
and the following sections must compute a lower bound on the GVT without using
statements like T := 〈min i :: t(i)〉 which imply centralized access to the local timers
of each component. The client-server solution of Figure 3, graphically represented
in Figure 4, provides for such distribution by breaking up the system into a single
server and a set of clients. The server contains an array τ which attempts to
maintain the global state of all the local timer values from each of the clients. This
array is updated via asynchronous message passing, and therefore may sometimes
contain old values of the local timers. A new estimate for the GVT is calculated at
the server and returned to waiting clients again via asynchronous message passing.

Reasoning About Code Mobility with Mobile Unity · 9

t P(i)

q

τ
Server

T

λ

λ λ

T

RQ

Fig. 4. In the Client-Server solution, communication between the server and the clients takes

place via asynchronous message passing.

4.2 System Structure

Figure 3 is illustrative of the new structuring conventions provided by Mobile
Unity. The first line provides the system name, DSClientServer. It is followed
by a set of program definitions, the first of which, P(i), serves as the code exe-
cuted by each client and is parameterized by a single index representing the client
number. The second, Server, has no such parameter. The program definitions are
treated as types that are instantiated in the Components section. The program
instances listed there are considered to be the running components of a distributed
computation. In this example, the Components section instantiates one client for
every value of i in the appropriate range, and a singleton Server instance. Each
component has a distinct name: the clients, because they are indexed, and the
server, because it is instantiated only once.

4.3 Location as a Distinguished Variable

Note that each program definition begins with a line like Program name at λ.
This denotes a program that exists at a specific physical or logical location stored
in the distinguished program variable λ. Each program contains a predicate in its
initially section that gives the initial position of the component. We assume the
existence of a function Location() that returns the initial position of each component
based on an address which is either a client number or the constant server. Each
program may also contain in its assign section code that reads or modifies the
position of the component. An assignment to λ models actual migration of the
component through some physical or logical address space. Throughout this paper,
we will leave the type of λ unspecified. For many problems, a simple discrete domain
that reflects the connectivity among components will suffice, for example, a single
bit that denotes whether a mobile host is within broadcast range of a fixed router.
For other problems, the location type may be more complex and may exhibit much
more structure. The type may be determined by the characteristics of a particular
problem domain or may be implied by the way λ is used, e.g., how and whether
it is incremented or checked for equality, but it is not necessary to completely

10 · G.P. Picco and G.-C. Roman and P.J. McCann

specify this type in order to carry out useful reasoning about a system of mobile
components. We will make much more use of λ in later examples that, in contrast to
DSClientServer, actually contain mobile components, with the connectivity among
components depending on their dynamically changing locations.

In standard Unity, there is no notion of changing connectivity among the pro-
grams making up a composed system, and two variables with the same name in
different programs are considered shared throughout execution of the system. All
variables of a Mobile Unity component are considered local to that component.
When dealing with a collection of instantiated components, a specific instance vari-
able is referenced by prepending the name of the variable with the name of the
program in which it appears. For example, the variables t and z of the program
P (1) have the fully qualified names P (1).t, and P (1).z. These fully qualified names
should be used when carrying out formal reasoning about the behavior of the sys-
tem.

4.4 Component Coordination

Because variables are local, no communication can take place among components
without the presence of interaction clauses spanning the scope of the components.
They appear in the Interactions section and serve to provide implicit communi-
cation and coordination among the components. The two interaction clauses given
in Figure 3 allow for communication between each client and the server. We as-
sume that the index i is instantiated over the appropriate range. Note that these
clauses look like ordinary Unity assignment statements, except that they use the
keyword when in place of the keyword if. Also, because they are not internal to
some component, they may reference variables of any component, using the naming
conventions given above. For example, the first interaction clause provides asyn-
chronous message transfer from the client message buffer P (i).RQ to the server
message buffer Server .q(i), when the server buffer is empty and there is a valid
request message waiting in the client buffer:

Server .q(i) := P (i).RQ when ¬def(Server .q(i)) ∧ serviceRequest(cs,minServ, i)

The second interaction transfers a reply back to the client and empties the server
buffer, when the reply is ready:

P (i).RQ,Server .q(i) := Server .q(i),⊥ when serviceReady(i)

Semantically, these two statements are treated like ordinary assignment statements,
and we assume that execution consists of a fair interleaving of all assignment state-
ments of each component as well as these “extra statements” in the Interactions

section. As an aside, in the second interaction the symbol ⊥ is used to denote that
the buffer is empty, and consequently the value of P (i).RQ undefined.

4.5 Auxiliary Macro Definitions

The meaning of the macros used in the guards of the interactions is shown in
Figure 5. These macros will be used throughout the remaining examples and serve
only to improve readability. A request is a tuple consisting of four elements. We
denote the tuple by enclosing it in angle brackets and separating its four elements
by commas. We use the projection operator ↑ to access individual fields of a tuple,

Reasoning About Code Mobility with Mobile Unity · 11

clientAddress = 〈set n : 0 ≤ n ≤ N − 1 :: n〉

address = {server} ∪ clientAddress

opName = {cs,rev,cod}

opStatus = {wait}

request = 〈address, opName ∪ opStatus ∪ {⊥}, serviceName ∪ {⊥}, integer〉

serviceRequest(x : opName, y : serviceName, i : clientAddress) ≡

P (i).RQ ↑ 1 = server ∧ P (i).RQ ↑ 2 = x ∧ P (i).RQ ↑ 3 = y

serviceReady(i : clientAddress) ≡ Server .q(i) ↑ 1 = i

Fig. 5. Macro definitions used in the example systems. Allowed values for each data element are
represented as sets.

e.g., P (i).RQ ↑ 1 represents the address field of the request variable P (i).RQ. This
field is used to denote the destination of the message, and must be either a client
index or the constant server. The second field is used to denote the paradigm
used to deliver the service, and must be an opName, which is one of cs for client-
server, rev for remote evaluation, or cod for code on demand. This field may also
represent the status of the request with an opStatus, if the server is in the process
of constructing a reply. The third field denotes the specific service requested, which
in the case of the client-server solution is specified by the client to be minServ,
which indicates that the client wants an estimate of the minimum local time held
by any client. This field is always minServ in the client-server example, but we
provide it because a server, in general, may provide multiple services. This field
takes on a different value for the code on demand example presented later. The
fourth and final field of a request must be an integer data item, which the client uses
to transmit its current value of t to the server. With this in mind, the reader can
see that the predicate serviceRequest checks if the message buffer of client i contains
a message destined for the server, with the opName and serviceName given. The
predicate serviceReady checks the Server .q(i) buffer for a message destined for client
i.

4.6 Component Behavior

Now we examine the inner workings of each component, as given by the assign sec-
tion of each program definition. The assignment statements in the client program
P(i) look very much like the ones in the centralized solution DistributedSimulation
presented in Section 3, except that now the variables t occurs once in each com-
ponent instead of appearing as global arrays of values: we now use P (i).t in place
of t(i). Also, T appears once in each program instead of being globally declared.
Note that the simulation mode P (i).z, in contrast to the centralized solution, is
initialized statically for each component and does not change during simulation
execution. This is done for the sake of simplicity. In the code on demand solution
presented later, we will compute this value dynamically. The statement to update
the local simulation time P (i).t is the same as before, except that the estimated
GVT variable P (i).T is simultaneously set to ⊥ when an update to the local time is
made. Throughout the example, the notation def(v) denotes the predicate v 6= ⊥,
i.e., the variable v is defined. This is used in the guard of the update to the local
timer, and signals the fact that the client needs a new value of T before it can pro-
ceed with another simulation step. The new estimate of GVT is computed in the

12 · G.P. Picco and G.-C. Roman and P.J. McCann

server at the request of the client, and the request is made by the second statement
in the program P(i), which writes a request record to the message buffer P (i).RQ.

Once the assignment to P (i).RQ has taken place, the first interaction clause
is enabled. Its guard makes use of the macro serviceRequest, which detects the
presence of a valid request. After the interaction is enabled it is eventually executed,
which asynchronously transmits the request to the server.

The Server program consists of three groups of assignments. The first processes
input requests by updating the array Server .τ with the local time sent by the
client. The second computes a new estimate of the GVT based on the current
values in Server .τ , if some client request is waiting in a buffer. The third takes
the estimate and constructs a reply message to all waiting clients, clearing the
estimate. Once the reply has been written to Server .q(i), the second interaction
clause is enabled. Its guard makes use of the macro serviceReady, which detects the
presence of a valid reply. After the interaction is enabled it is eventually executed,
which asynchronously transfers the reply back to the client. The third assignment
statement of the program P(i) processes the reply by updating the local GVT
estimate P (i).T and clearing the request buffer.

5. MOBILE CODE DESIGN PARADIGMS

The idea behind code mobility is not new, as witnessed by the work by Stamos et
al. [Stamos and Gifford 1990] and by Black et al. [Jul et al. 1988]. Nevertheless,
these technologies were conceived mostly to provide operating system support on a
LAN, while mobile code languages explicitly target large scale distributed systems—
like the Internet. On the Internet, client-server is the most used paradigm for the
development of applications. In this paradigm, the application code is statically
bound to the client and server hosts and the binding cannot be changed during
the execution of the distributed application. Notably, each interaction between
the client and the server must exploit the communication infrastructure through
message passing. Higher-level mechanisms that by and large hide the location of
components from the application programmer, e.g., remote procedure call (RPC)
or CORBA [Object Management Group 1995], are also often employed.

By contrast, in mobile code languages component locations are not hidden.
Location is explicitly handled by the programmer who is able to specify where the
computation of a given code fragment must take place. This capability leads to new
paradigms for the design of distributed applications where the interaction between
client and server is no longer constrained to exchanging simple, non-executable
data via the network. For example, a portion of the client may move in order to
bypass the communication infrastructure and thus achieve local interaction with
the server. This may improve performance by reducing latency and may increase
dependability by avoiding problems inherent in partial failures.

Actually, many researchers see the main advantage of code mobility as an op-
timization of communication resources. This does not hold in general [Carzaniga
et al. 1997; Fuggetta et al. 1998], and applications can benefit from this kind of
optimization in other ways as well [Gray et al. 1997; Harrison et al. 1997; Baldi
et al. 1997]. We believe that an important benefit of code mobility is the ability to
customize dynamically the server according to the user’s needs. In client-server ap-
plications, the server offers a fixed set of services, defined a priori by the application

Reasoning About Code Mobility with Mobile Unity · 13

designer and accessible through a statically defined interface. The services provided
or the particular interface may not be suitable for unforeseen user needs. Code mo-
bility can be exploited in order to send on the server active code, as opposed to
passive data, that specifies how a given service has to be delivered.

The essential features of the interaction patterns found in mobile code languages
can be characterized by considering the kinds of pairwise interactions that are
possible between two software design components located on different hosts. As
shown in [Carzaniga et al. 1997], we can accomplish this without having to appeal
to the details of any particular language. In the remainder of this section, we will
summarize the taxonomy presented in [Carzaniga et al. 1997] (subject to minor
changes in terminology) in order to introduce the reader to the mobile code design
paradigms we will express using Mobile Unity. The interested reader can find an
in-depth discussion of mobile code technologies, paradigms, applications, and their
inter-relationship in [Fuggetta et al. 1998].

We consider a design component as the atomic design element, i.e., the smallest
software entity that can be given an identity and can be distinguished from the
other entities in an architectural schema. Each design component consists of code
and its runtime state. The code of a component can be regarded as the specification
of the know-how placed in it by the system designer, and determines the run-time
behavior of the component. The state of a component is further decomposed into:

—Data State. Local, private data representing features intrinsic to the component
are encapsulated within the data state. Retrieval by a component of data con-
tained in its own data state does not involve interactions with other components.

—Control State. If a component is being executed, the control state holds the
information concerning the status of the execution.

—Bindings. A component may contain names that reference other components,
that possibly reside on different hosts. If a component C needs access to other
bound components in order to be executed successfully, we say that the bound
components are resources for C. Hence, to retrieve data belonging to its re-
sources, C must have access to and interact with them.

Mobile code design paradigms are characterized by the possibility to relocate
either a whole component or some of its constituents, in order to bypass the com-
munication infrastructure. In this scenario, the designer of a distributed application
is no longer constrained to the limitations of the client-server paradigm, where the
know-how and the resources involved in a computation are statically placed on
the network hosts. With a mobile code design, the know-how about a component
and the resources needed for the associated computation can be located in dif-
ferent places on the network and can be relocated dynamically according to the
user’s needs. Hence, the space of design choices involved in a mobile code design is
extended to include the following:

—Determine which components of the distributed application are bound statically
to a network host and which ones are allowed to be relocated at some point in
the execution of the application.

—Determine, for each component of the distributed application, where the know-
how and resources needed for its associated computation must be placed initially.

14 · G.P. Picco and G.-C. Roman and P.J. McCann

Code On Demand

Mobile AgentClient-Server

Remote Evaluation

ServerClient

Fig. 6. Mobile code design paradigms. Components are identified by circles, and bindings be-

tween components are identified by black rectangles connecting circles. Grayed components par-

ticipate in migration. Half-grayed dashed circles represent migration of a portion of a component,
i.e. the code, or code plus the data state. Such portions can be used to create a new component,

like in REV, or to augment an already existing component, like in COD. Arrows indicate message

traffic, i.e., calls, return values, and code movement.

—Determine which interaction patterns may be exploited and what relocation of
components is necessary.

Of primary interest for this paper are the interaction patterns for relocation of
components. Nevertheless, even if our definition of a design component in principle
allows sophisticated forms of relocation where different combinations of the con-
stituents are moved, an exhaustive analysis about this issue is outside the scope of
this work. We limit our discussion to the design paradigms proposed in [Carzaniga
et al. 1997] because they reflect the characteristics of currently available mobile
code languages. In order to provide a basis for comparison, we include the client-
server paradigm in our discussion. A schematic view of all the paradigms discussed
here appears in Figure 6. In the next section, we present mobile code solutions
developed using the aforementioned design paradigms and specified using Mobile
Unity.

6. MOBILE CODE SOLUTIONS IN Mobile Unity

In this section we present three mobile code solutions to the distributed simula-
tion problem introduced in Section 2. Each solution is written in the distinct style
associated with the currently dominant design paradigms for mobile code: mobile
agent, remote evaluation, and code on demand [Carzaniga et al. 1997]. All three
cases entail the movement of a component. Its structure is determined by the gran-
ularity of the mobile code language, typically a procedure, process, or object that
has associated code, data state, control state, and references to various (typically
local) resources. The latter will be referred to as bindings. Given these assump-
tions about the unit of mobility2—henceforth said to be a program—one can easily
see that movement may entail not only a change of location but also a transfer

2The reader interested in a more detailed discussion of the issues concerned with code mobility is

directed to [Fuggetta et al. 1998].

Reasoning About Code Mobility with Mobile Unity · 15

of state information and changes in the bindings. Furthermore, since movement
may be initiated at any time, relations which in a traditional scenario are seen as
permanent assume a transient form. This requires us to employ a model capable
of handling transient interactions among components. Fortunately, the design of
Mobile Unity allows us to express a broad range of transient interactions associ-
ated with the movement of components. Before turning our attention back to the
distributed simulation problem we will take a brief detour to explain how Mobile
Unity expresses location-dependent transient interactions.

6.1 Transient Interactions

The coordination mechanisms of Mobile Unity were only partially explained in the
previous section—they were limited to the asynchronous transfer of data among
components. In the case of mobile components, however, such transfers of data
may be conditional upon the relative locations of components, e.g., constrained by
co-location on a single host for mobile agents, or by transmission range in the case
of mobile hosts with wireless communication. Mobile Unity provides several other
high level coordination constructs such as transient variable sharing, which will
be shown to be helpful in capturing the resource binding policies of mobile code.
Transiently shared variables and other powerful constructs, such as synchronized
clocks with and without drift, are all built on top of a small set of coordination
primitives described in [McCann and Roman 1998]. We prefer to focus our Mobile
Unity review on the high level constructs we actually needed to build the mobile
code solutions discussed in this section.

Transiently shared variables are variables of one component that are dynamically
bound to variables of another component in a location-dependent manner. Any
assignments to one of the variables are considered to propagate atomically to the
other, while the two variables are bound. This allows the designer to express
location-dependent consistency, i.e., when components are “near” each other, a high
degree of consistency is maintained due to the availability of a high bandwidth, low
latency communication channel. When components move apart, only a low degree
of consistency would be possible for good performance in the face of decreased
or non-existent bandwidth. For example, assume for a moment that the clients
P(i) are allowed to migrate around a network of workstations for the purpose of
load balancing. The server resides on one of the workstations, and some clients
may also be located there. Due to the availability of operating system support
for inter-process shared memory, the designers decide that the clients which are
co-located with the server may share the message buffers directly with the server
rather than using asynchronous message passing. The Mobile Unity specification
of this sharing could be written as:

Server .q(i) ≈ P (i).RQ when Server .λ = P (i).λ

which states that the request buffer of client i should be shared with Server .q(i)
when the two components are at the same place. In the case of a network of
workstations, location would be the IP address of the machine, for instance.

While a pair of transiently shared variables are disconnected, they may take on
different values, because assignments to one are not immediately propagated to the
other. This may present a problem when the variables are later reconnected. If they

16 · G.P. Picco and G.-C. Roman and P.J. McCann

are to be treated intuitively as one variable, they should immediately take on the
same value when they become shared. Mobile Unity allows for the specification of
an engage value, which is assigned atomically to both variables immediately upon
a transition of the when predicate from false to true. We may want to specify that
the message buffer takes on the value present at the server when a new process
arrives—e.g., because implementation details of inter-process shared memory make
it more efficient for the buffers to be allocated in a single block, and thus placed on
the server. We would write this as

Server .q(i) ≈ P (i).RQ when Server .λ = P (i).λ
engage Server .q(i)

Similarly, a pair of disengage values may be specified that are assigned atomically
to the variables when they become disconnected. If, for instance, it is too expensive
to copy the contents of the message buffer into the client when it moves to a new
workstation, but the contents should be retained at the server, we would specify

Server .q(i) ≈ P (i).RQ when Server .λ = P (i).λ
engage Server .q(i)
disengage Server .q(i), ⊥

Note that if no engage value is specified, the variables remain in an inconsistent
state after sharing takes effect until the first assignment is propagated. If no disen-

gage value is specified, the variables retain the values they had before the variables
are disconnected. Later examples will make extensive use of transient sharing, in-
cluding one-way sharing, where updates are propagated in one direction but not
the reverse. This is expressed as above except with an ← in place of ≈, pointing
in the same direction as updates are to be propagated.

To accommodate shared variables, as well as other forms of component inter-
action, Mobile Unity makes certain adjustments to the standard Unity opera-
tional model as well as to the proof logic. Because the updates to shared variables
must happen in the same atomic step as an assignment, but sharing is specified
separately from the (possibly many) assignments that may change the value of a
variable, Mobile Unity has a two-phased operational model where the first phase
is an ordinary assignment statement and the second is responsible for propagating
changes to shared variables. We call the statements that execute in the second
phase reactive statements, and they are denoted in the text of a Mobile Unity
program by the use of reacts-to in place of if. Logically, all reactive statements
are executed to fixed point right after each non-reactive statement and one reactive
statement may possibly trigger execution of other reactive statements. The reader
should keep in mind that transient sharing is really a shorthand notation for a set of
reactive statements which define a communication protocol. Particular care must
be exercised in the case when transitive transient sharing takes place, due to the
possibility of circular reactions which may lead the system to non-termination.

In general, the Mobile Unity proof logic copes with these problems by consid-
ering the set of reactive statements as a separate program, whose termination has
to be proven in order to guarantee correct sharing. However, for the purposes of
this work this issue does not arise. Due to the characteristics of mobile code, tran-
sient sharing is always pairwise and never leads to a situation when two or more

Reasoning About Code Mobility with Mobile Unity · 17

variables which are shared being assigned values explicitly in the same non reactive
statement. As indicated earlier, in this paper we will always use only the high
level abstraction provided by transient shared variables without appealing directly
to reactive statements. The reactive statements that code this kind of sharing are
well-formed and guarantee termination. Mobile Unity also allows for global con-
straints on the scheduling of statements, called inhibit clauses. Logically, these
kinds of statements serve to strengthen guards and express scheduling constraints
that may not be stated using local state information alone. A third construct, the
transaction, is used for specifying a sequence of statements that are executed as
a unit with respect to other, non-reactive statements. Together, these primitives
provide a powerful notation for expressing inter-component interaction in a highly
decoupled and dynamic way.

We are ready now to return to the distributed simulation problem. In the
following solutions the GVT estimate is always computed by a single component,
like in the CS solution, and its value is communicated back to the processes P(i).
Thus, we continue to refer to components P(i) as clients of the process computing
the GVT, whether they are mobile or not. Furthermore, as in the CS solution
we assume that the value for the simulation mode z is computed statically at
initialization time. We will relax this assumption in Section 6.4, where we describe
a solution based on the code on demand paradigm that involves the computation
of a dynamically changing simulation mode.

6.2 Mobile Agent

In theMobile Agent (MA) paradigm, the client needs to access some of the resources
that are located on the server and it owns the necessary know-how to use such
resources. The client sends a whole component that is already being executed on
the client host, together with its data and control state. Bindings to resources on
the client host are voided and replaced by the new bindings to resources on the
server host. The component, once arriving on the server host, resumes execution
as if no migration took place. Typically, this step is repeated many times by the
same component, which consequently is able to visit a number of hosts on behalf
of the client without requiring interaction with it. The MA paradigm is supported
natively by languages exploiting strong mobility, like Telescript and Agent Tcl.

Figure 7 shows a Mobile Unity system designed using the MA paradigm. As in
the CS solution, the client processes P(i) can increment the timer value, consuming
the local estimate for GVT—which prevents further timer increments until a new
estimate becomes available. In contrast with the CS solution, no handling of mes-
sage requests is needed. The location of each client is initialized to a given value,
which cannot be changed. The Server component, in turn, is initially co-located
with an arbitrarily chosen client and changes explicitly its location during execution
in order to visit all clients in a round-robin fashion, as shown in Figure 8.

The Server carries with it the global state of all local timers, which is updated
with the timer value of a client P(i) while the two components are co-located. The
Server is also responsible for computing a new GVT estimate. However, the up-
date of the global state and the computation of the GVT can happen in any order,
because the Server cannot depart until both the values are up-to-date. The actions
performed by the components above are coordinated by the transient variable shar-

18 · G.P. Picco and G.-C. Roman and P.J. McCann

System DSMobileAgent

Program P(i) at λ

declare

t, z : integer [] T : integer ∪ {⊥}

initially

t = 0 [] T = ⊥ [] λ = Location(i)

assign

t, T := fi(t, T, z),⊥ if def(T)

end
Program Server at λ

declare

t, T : integer ∪ {⊥} [] τ : array of integer [] pos : clientAddress

initially

t, T = 0, 0 [] 〈‖ j :: τ(j) = 0〉 [] λ = Location(pos)

assign
τ(pos) := t

[] T := 〈min k :: τ(k)〉

[] λ, pos := Location(pos+ 1 mod N), pos+ 1 mod N if t = τ(pos) ∧

T = 〈min k :: τ(k)〉
end

Components
〈[] i :: P (i)〉 [] Server

Interactions
P (i).T ← Server .T when P (i).λ = Server .λ

engage Server .T
[] Server .t← P (i).t when P (i).λ = Server .λ

engage P (i).t
end

Fig. 7. Mobile Agent solution for the distributed simulation problem.

ing defined in the Interactions section. The GVT estimate and the local timer
belonging to the client P(i) are shared with their analogues within the Server, as
long as the two components are co-located:

P (i).T ← Server .T when P (i).λ = Server .λ
engage Server .T

Server .t← P (i).t when P (i).λ = Server .λ
engage P (i).t

The last statement in Server, which modifies explicitly the location λ of the com-
ponent, exercises the engage clause of the second interaction. Upon departure,
absence of a disengage clause guarantees that both the client and the Server re-
tain their value for the timer and the GVT estimate. Upon arrival at the next
location, the engage clause specified in the second read-only shared variable def-
inition guarantees that as soon as the two components become co-located, they
share the same value for the local timer. The engage clause in the first interaction
guarantees that the GVT value computed by Server on the previous client is com-
municated to P(i). In general, this value is to be changed by the recomputation of
the minimum of all timers, which takes into account the current value of the local
timer in P(i). Nevertheless, if this timer has not changed since the last visit, the
corresponding value in τ remains unchanged and the GVT computed on the pre-
vious client—and already communicated to P(i)—is still valid and does not need

Reasoning About Code Mobility with Mobile Unity · 19

λ

Server

P(i)

Tt

τ

Fig. 8. In the Mobile Agent solution, the Server is able to change its location in order to visit

each client in a round-robin fashion.

to be recomputed. Hence, in this case the third statement in Server is enabled,
which allows Server to depart immediately without waiting for execution of the
two other statements. As an aside, note that disengagement of values, movement,
and subsequent re-engagement form a single, atomic action. This captures the fact
that the agent cannot perform any action while travelling across a communication
link.

6.3 Remote Evaluation

The Remote EValuation (REV) paradigm can be regarded as a variation of the CS
paradigm where the server component offers its computational power and resources,
like the server in a CS paradigm, but does not provide any application specific ser-
vice. Again, the client component lacks some of the resources needed to proceed
with computation and these resources are located on the server host. Nevertheless,
in the REV paradigm the know-how needed to access the resources is not predeter-
mined and co-located statically with the resources, rather it must be provided by
the client that needs access to the resources. No control state is provided for the
component, while some initial data state can be provided in order to set an initial
environment for component execution. In other words, in the REV paradigm the
client provides the code constituent for a component that will be instantiated on
the server and bound there to the resources it needs to access. Eventually, a result
will be sent back to the client component via a message, like in a CS paradigm.
Hence, the REV paradigm leverages off the flexibility provided by the server, in-
stead of relying on a fixed functionality. The REV paradigm is inspired by work on
the REV [Stamos and Gifford 1990] system, which extends the remote procedure
call with one additional parameter containing the code to execute on the server.
Among recent mobile code languages, the paradigm is supported directly by most
of the weakly mobile languages, with the notable exception of Java.

In the solution shown in Figure 9, the client components P(i) behave similarly
to the ones in the DSClientServer system. Besides computing a new local timer,
clients can also request the execution of a service that computes the new GVT
estimate, provided that the old GVT estimate has been already consumed during
an earlier timer update and that a message request has not yet been sent. The

20 · G.P. Picco and G.-C. Roman and P.J. McCann

System DSRemoteEvaluation

Program P(i) at λ

declare

t, z : integer [] T : integer ∪ {⊥} [] RQ : request ∪ {⊥}

initially

t = 0 [] T = ⊥ [] λ = Location(i) [] RQ = ⊥

assign
[] t, T := fi(t, T, z),⊥ if def(T)

[] RQ := 〈server,rev,minServ,⊥〉 if ¬def(RQ) ∧ ¬def(T)

[] T,RQ := RQ ↑ 4,⊥ if RQ ↑ 1 = i

end

Program Min(i) at λ

declare

t : integer [] T : integer [] τ : (array of integer) ∪ {⊥} [] q : request ∪ {⊥}

initially

t, T = 0, 0 [] τ = ⊥ [] q = ⊥ [] λ = Location(i)

assign
τ(i) := t if def(τ)

[] T := 〈min k :: τ(k)〉 if def(τ)
[] q := 〈i,⊥,⊥, T 〉 if τ(i) = t ∧ T = 〈min k :: τ(k)〉

end
Program Server at λ

declare

τ : array of integer [] q : array of (request ∪ {⊥}) []
initially
〈‖ j :: τ(j) = 0〉 [] 〈‖ j :: q(j) = ⊥〉 [] λ = Location(server)

end
Components

〈[] i :: P (i)〉 [] Server [] 〈[] i :: Min(i)〉
Interactions

Min(i).t← P (i).t when Min(i).λ = P (i).λ
engage P (i).t

[] Min(i).λ := Server .λ when Min(i).λ = P (i).λ ∧
serviceRequest(rev,minServ, i)

[] Min(i).τ ≈ Server .τ when Min(i).λ = Server .λ
engage Server .τ
disengage ⊥, Server .τ

[] Min(i).q ≈ Server .q(i) when Min(i).λ = Server .λ
engage ⊥

[] P (i).RQ,Server .q(i)[,Min(i).λ] := Server .q(i),⊥[, P (i).λ] when serviceReady(i)
end

Fig. 9. Remote Evaluation solution for the distributed simulation problem.

corresponding reply message is eventually collected and its fields are checked to
verify that the recipient’s and receiver’s addresses match. In this case, the new
estimate becomes defined and available for the assignment that updates the timer,
while the message buffer is reset to enable further requests—just like in the CS
solution. The key difference between the two solutions is the second parameter in
the message request

RQ := 〈server,rev,minServ,⊥〉 if ¬def(RQ) ∧ ¬def(T),

specifying that the code for the service named minServ must be sent to the Server’s
location, where its execution exploits bindings with Server’s resources. In contrast

Reasoning About Code Mobility with Mobile Unity · 21

Min(i)

Server

λ t

RQ

τ
λ

t

q

P(i)

τ

q Min(i)

Server

λ t

RQ

τ
λ

q

P(i)

Fig. 10. A graphical representation of the REV solution.

with the CS solution, the request message is not delivered to the message buffer of
the Server. Its presence within the client buffer enables subsequent code migration.
The code for service minServ is described by the program Min(i) and is structured
in three steps: update of the global state maintaned in Server .τ with the timer value
of the corresponding client P(i), computation of the new GVT, and communication
of the results to the client. All these steps can take place only when Min(i) and
Server are co-located. In this situation, the statement

Min(i).τ ≈ Server .τ when Min(i).λ = Server .λ
engage Server .τ
disengage ⊥, Server .τ

in the Interactions section specifies a transient sharing between the representation
of the global state τ owned by Min(i) and Server. Upon departure, the disengage

clause voids the value of τ in Min(i), thus preventing execution of any statement
within this component while it is not at the Server’s location. Upon a subsequent
arrival, the τ values owned by the two components are reconciled by the engage

clause, which assigns to Min(i).τ the up-to-date τ value kept on Server. Updating
a client’s timer value stored in τ is made possible by the interaction

Min(i).t← P (i).t when Min(i).λ = P (i).λ
engage P (i).t

which specifies that the timer value in a client P(i) is shared with the one in the
corresponding Min(i)—as long as they are co-located. Upon departure of Min(i)
from P(i)’s location, Min(i) retains the current value3 of t, which is used at the
Server location to update of the global state. The actual code migration happens

3Mobile code languages implement parameter passing either explicitly by referring to input pa-

rameters and code using RPC-like primitives or implicitly by attaching to the procedure to be

executed remotely the portion of data space needed for remote computation [Cugola et al. 1997].
We chose the second alternative, in order to illustrate how to dynamically establish and remove

bindings among variables in Mobile Unity.

22 · G.P. Picco and G.-C. Roman and P.J. McCann

when

Min(i).λ := Server .λ

when serviceRequest(rev,minServ, i) ∧Min(i).λ = P (i).λ

is eventually executed after a client has sent a message request.
At this point, it is worth noting how, in contrast with the CS solution, the

REV request does not contain information that needs to be passed to the Server.
However, in both solutions the action of putting a message in the request buffer RQ

can be regarded as modeling the invocation of a communication primitive, which
enables actions in the underlying run-time support. In the CS solution, these
actions are represented by the transfer of the message to the Server; in the REV
solution, the actions encompass migration of the Min(i) component to the Server’s
location. Hence, in both solutions the client component is given a uniform interface
(the request buffer) to the rest of the system, whose details are handled within the
Interactions sections—thus modeling the run-time support for communication
provided by, say, implementations of RPC and of the REV [Stamos and Gifford
1990] system. Analogous considerations hold for the output buffer of Server. In the
REV solution,

Min(i).q ≈ Server .q(i) when Min(i).λ = Server .λ
engage ⊥

models the fact that Min(i) is given access to the communication facilities co-located
on the Server; the last interaction, in turn, models the actual transfer of information
provided by the underlying run-time support. Note that in our REV solution the
Server does not provide any service, except for offering a name space in which each
Min(i) can have access to the global state by sharing τ and to the communication
facilities by sharing the message buffer q.

Finally, in the last statement of the system the message replies pending in the
output queue are sent to the corresponding client. This is accomplished as in the
CS solution, except for the assignment

[Min(i).λ := P (i).λ] when serviceReady(i).

This statement is enclosed in square brackets to highlight the fact that it is not a
direct consequence of the REV paradigm, yet is needed because of the way Mobile
Unity is currently defined. The REV paradigm involves migration of a copy of a
component’s code. After that, a message containing the result of the computation
on the server is sent back to the client, and what happens to the code remaining on
the server is left to the implementation. On the other hand, in the Component

section of the solution presented we create statically N components which are ini-
tialized with their own data and control state. These components are unique in the
system, consequently they must return to the client’s location in order to become
available for another message request—dynamic instantiation of components is not
available in Mobile Unity. This issue will be revisited in Section 8.

6.4 Code On Demand

The Code On Demand (COD) paradigm is gaining in popularity mainly due to the
success of the Java language. In this paradigm, a component on a host performs

Reasoning About Code Mobility with Mobile Unity · 23

some kind of computation on its local resources. When it recognizes that a portion
of the know-how needed to perform the computation is lacking, the know-how is
retrieved from some host on the network. The retrieved code augments the one
already present in the client component and new bindings may be established on
the client host. After this, the client component can resume execution. Hence, in
the COD paradigm, in contrast with the paradigms above, the resources are co-
located with the client component that can access them freely, and the know-how
needed to perform computation on the resources is sent to the client. The COD
paradigm is natively supported in Java through the class loader feature, as discussed
before. Tcl derivatives provide a similar feature, through an unknown function that
is automatically invoked when a procedure is not found by the Tcl interpreter and
whose code is under the control of the programmer. In both cases, the programmer
can determine the actions to be performed by the runtime support whenever a name
cannot be resolved locally. In particular, these actions may encompass retrieval of
the corresponding code from a remote site.

We present the solution exploiting the COD paradigm by enhancing the CS
solution shown earlier. In the system shown in Figure 11, clients P(i) are aug-
mented with some statements that enable them to request the code needed to
compute dynamically the simulation mode. The requests are issued when a given
condition is established, e.g., the simulated electronic component has reached the
point of breakdown, and is modeled by the assignment setting the variable static
to false. This variable is true initially, thus the clients initially behave like the ones
in DSClientServer, which use the initial value z̄ for the simulation mode. When
static becomes false, the client is enabled to issue a request

RQ := 〈server,cod,dynMode,⊥〉 if ¬def(RQ) ∧ static = false

in order to make the code for the service dynMode available to P(i). This code is
contained in program Dyn(i), which simply contains an assignment to update the
simulation mode by evaluating the function d(T)—provided that the GVT estimate
is currently defined in P(i). We assume that, once the simulation mode is computed
dynamically, it can no longer be reverted to a statically determined value. Although
the latter situation can be modeled, we choose this assumption for the sake of
simplicity. The Server component is left unmodified with respect to the CS solution,
while N components Dyn(i) are instantiated in the Components section—for
reasons similar to those explained for the REV solution. Within the Interactions

section, the last two statements are unchanged and manage the message exchanges
needed to compute the GVT estimate as in the CS paradigm. In turn, the statement

Dyn.λ, P (i).static := P (i).λ,⊥ when Dyn(i).λ = Server .λ ∧

serviceRequest(cod,dynMode, i)

satisfies a code request issued by a client P(i) by changing the location of the
corresponding component Dyn(i). Furthermore, it prevents further changes in the
way z is computed by setting static to undefined—which permanently disables the

24 · G.P. Picco and G.-C. Roman and P.J. McCann

System DSCodeOnDemand

Program P(i) at λ

declare

t, z : integer [] T : integer ∪ {⊥} [] static : boolean ∪ {⊥} [] RQ : request ∪ {⊥}

initially

t = 0 [] T = ⊥ [] λ = Location(i) [] static = true [] RQ = ⊥

assign
[] static := false if def(static)

[] t, T := fi(t, T, z),⊥ if def(T)

[] RQ := 〈server,cs,minServ, t〉 if ¬def(RQ) ∧ ¬def(T)

[] T,RQ := RQ ↑ 4,⊥ if RQ ↑ 1 = i

[] RQ := 〈server,cod,dynMode,⊥〉 if ¬def(RQ) ∧ static = false
end

Program Dyn(i) at λ

declare

z : integer [] T : integer ∪ {⊥}

initially

λ = Location(server)

assign

z := d(T) if def(T)

end
Program Server at λ

declare
T : integer ∪ {⊥} [] τ : array of integer [] q : array of (request ∪ {⊥})

initially
T = ⊥ [] 〈‖ j :: τ(j) = 0〉 [] 〈‖ j :: q(j) = ⊥〉 [] λ = Location(server)

assign
〈[] j :: τ(j), q(j) ↑ 2 := q(j) ↑ 4,wait〉 if q(j) ↑ 1 = server ∧ q(j) ↑ 2 6= wait

[] T := 〈min k :: τ(k)〉 if 〈∃ j :: q(j) ↑ 2 = wait〉 ∧ ¬def(T)
[] 〈‖ j :: q(j), T := 〈j,⊥,⊥, T 〉,⊥ if def(T) ∧ q(j) ↑ 2 = wait〉

end

Components

〈[] i :: P (i)〉 [] Server [] 〈[] i :: Dyn(i)〉
Interactions

Dyn.λ, P (i).static := P (i).λ,⊥ when Dyn(i).λ = Server .λ ∧
serviceRequest(cod,dynMode, i)

[] P (i).z ← Dyn(i).z when P (i).λ = Dyn(i).λ

engage P (i).z
[] Dyn(i).T ← P (i).T when P (i).λ = Dyn(i).λ

engage P (i).T
[] Server .q(i) := P (i).RQ when ¬def(Server .q(i)) ∧

serviceRequest(cs,minServ, i)
[] P (i).RQ,Server .q(i) := Server .q(i),⊥ when serviceReady(i)

end

Fig. 11. Code On Demand solution for the distributed simulation problem.

statement issuing the request. Finally,

P (i).z ← Dyn(i).z when P (i).λ = Dyn(i).λ
engage P (i).z

Dyn(i).T ← P (i).T when P (i).λ = Dyn(i).λ
engage P (i).T

specify the bindings established between P(i) and Dyn(i) when they are co-located.
The engage clauses initialize the values of z and T in Dyn(i) with the corresponding

Reasoning About Code Mobility with Mobile Unity · 25

736 6875 25324 4

q

τ T

Server

RQ

P(i)

λ

Dyn(i) T

zλ

Dyn(i)

P(i)z
λ

λ
q

τ

T

RQ

Server

T

Fig. 12. A graphical representation of the Code On Demand solution.

values in P(i). A graphical representation of this system is shown in Figure 12. As
in the REV solution, we are forced to instantiate statically multiple components
from the same program, instead of migrating the code and instantiate components
only when and if needed. This and other issues raised by the solutions presented
so far will discussed further in Section 8.

7. VERIFICATION

One of the advantages of expressing mobile code solutions in Mobile Unity is
the availability of its proof logic. This section provides an introduction to the
verification of mobile code programs. The goal is not so much to carry out precise
formal verification of the solutions put forth in this paper, but to expose the basic
strategy one would have to follow whether the verification is carried out informally
(i.e., at the proof outline level as in this section) or in more detail (i.e., as shown
in the Appendix).

Our presentation will attempt to explore the verification process in a manner
that will be accessible even to the casual reader having only a limited background in
verification. We will start by first exploring the Unity proof system in the context
of the earlier centralized solution. After that we move on to Mobile Unity. The
client-server solution will be used as an illustration and the point will be made
that, ultimately, the Mobile Unity notation allows one to reduce proofs to the
basic Unity verification style. The manner in which the verification of the mobile
code solutions is performed is expanded upon in the remainder.

7.1 Unity Proof Logic

A specialization of temporal logic, the Unity proof logic allows one to verify the
correctness of a program directly from its text in the tradition of sequential pro-
gramming. Progress properties are captured by a predicate relation called leads-to

(written 7→). At this point we rely on the earlier centralized solution for illustration
purposes (Figure 2). In this context, for instance,

t(i) = 〈min j :: t(j)〉 = α 7→ t(i) > α

states that from a state in which the local timer of a process is the minimum of
all the local timers, the program eventually enters a state where that local timer is

26 · G.P. Picco and G.-C. Roman and P.J. McCann

advanced. (By convention, all free variables are assumed to be universally quanti-
fied.)

A leads-to property is most often derived by relying on the transitivity of this
relation or on a primitive form of leads-to called ensures (T1). In the Unity
program, for instance, one can show that

t(i) = 〈min j :: t(j)〉 = α ensures T = α ∧ t(i) = α

This can be verified directly from the program text by observing that, for as long
as the right hand side (rhs) of the ensures relation is false:

(1) All program statements either leave the left hand side (lhs) of the ensures

unchanged because they do not update T or they actually update T with the
correct value (T3). (Technically this expresses a safety property called unless

in Unity.)

(2) There is a statement which, if selected, updates T to the correct value in a
single atomic step (T2). Fairness guarantees that this statement is eventually
selected for execution.

To summarize, the three Unity inference rules we introduced so far are:

p ensures q

p 7→ q
, (T1)

p unless q, 〈∃ s :: {p} s {q}〉

p ensures q
, (T2)

and

〈∀ s :: {p ∧ ¬q} s {p ∨ q}〉

p unless q
, (T3)

where {p} s {q} is the Hoare triple which can be proven using the standard assign-
ment axiom and pure logic. The unless and leads-to relations can be combined
in an until relation,

p until q ≡ (p unless q) ∧ (p 7→ q), (T4)

meaning that p holds as long as q does not, and that q holds eventually4. The cor-
rectness criteria for the distributed simulation problem are conveniently expressed
as two until properties:

Property 1 t(i) = 〈min j :: t(j)〉 = α until t(i) > α.
A local timer increases only at the point when its value equals the GVT.

Property 2 t(i) = α until t(i) = 〈min j :: t(j)〉 = α.
The GVT eventually catches up with with the local timer, i.e., the simulation makes
continuous progress.

4It can be noted how ensures and until look alike, but while ensures requires a specific statement

to establish the rhs in one step, until allows for multiple steps, each proven by leads-to.

Reasoning About Code Mobility with Mobile Unity · 27

The Unity logic includes many other useful predicate relations and inference
rules. We prefer to introduce them only when they are really needed. Some of them
are needed immediately in verifying Property 2. First, is the fact that implication
is a special case of a leads-to:

p⇒ q

p 7→ q
(T5)

Second is the definition of an invariant property. A predicate p is called an invariant
(written inv.) if it holds in the initial state and forever throughout the execution
of the program:

INIT ⇒ p, p unless false

inv. p
(T6)

where INIT is a predicate which characterizes the set of acceptable initial states.
As an example, we can show that

inv. t(i) ≥ T

for every i. This is true initially, since both t(i) and T are initialized to zero.
Moreover, the execution of any statement in a state in which this property holds
preserves the property—local timers can only advance past T and any updates to
T guarantee that it acquires a value that is the minimum across all local timers.
In addition, we apply the following induction principle for leads-to. If W is a set
well-founded under some relation ≺, and M is a metric function mapping program
states to W , then

〈∀ m : m ∈W :: p ∧M = m 7→ (p ∧M ≺ m) ∨ q〉

p 7→ q
(T7)

holds. The hypothesis states that from any state where p holds, program execution
eventually reaches a state where either q holds or the metric M is decreased and
p holds. From the well-foundedness of W , M cannot decrease indefinitely, which
allows us to conclude that eventually a state is reached where q holds. Finally, we
will use the disjunction rule of leads-to

for any set W,
〈∀ m : m ∈W :: p(m) 7→ q〉

〈∃ m : m ∈W :: p(m)〉 7→ q
(T8)

which has the simpler consequence

p 7→ q, p′ 7→ q

p ∨ p′ 7→ q

and allows to prove leads-to properties by case analysis.
Armed with this knowledge, we can prove the properties stated above. Proof of

each until relation involves proving its unless and leads-to parts.

Proof of Property 1. We prove separately:

(1) t(i) = 〈min j :: t(j)〉 = α unless t(i) > α can be proven by observing that,
due to the definition of f and g, the asynchronous statements updating t(i)
always increase the timer value, while the other statements always leave t(i)
and the minimum unchanged. Hence, it is proven by application of (T3).

28 · G.P. Picco and G.-C. Roman and P.J. McCann

(2) t(i) = 〈min j :: t(j)〉 = α 7→ t(i) > α can be split by (T1) and transitivity
of leads-to into

t(i) = 〈min j :: t(j)〉 = α ensures T = α ∧ t(i) = α, and

T = α ∧ t(i) = α ensures t(i) > α.

The first obligation was proven earlier. The second one is proven by argu-
ments similar to the ones used to prove the unless above and observing
that there exists one statement that increases t(i), while fairness guarantees
that eventually it is selected.

Proof of Property 2. Again, we prove separately:

(1) t(i) = α unless t(i) = 〈min j :: t(j)〉 = α is proven observing that, after
the execution of each statement in the program, t(i) can either be the
minimum or not, in which case its value is not modified.

(2) t(i) = α 7→ t(i) = 〈min j :: t(j)〉 = α is proven by considering two cases,
according to the value of t(i):
(a) t(i) = α ∧ t(i) = 〈min j :: t(j)〉 7→ t(i) = 〈min j :: t(j)〉 = α, which

holds by virtue of the fact that

t(i) = α ∧ t(i) = 〈min j :: t(j)〉 ⇒ t(i) = 〈min j :: t(j)〉 = α,

followed by application of (T5).
(b) t(i) = α ∧ t(i) 6= 〈min j :: t(j)〉 7→ t(i) = 〈min j :: t(j)〉 = α. We

use the induction principle of leads-to stated in (T7), where W is the
set of natural numbers N, ≺ is the < relation, and M is the number
of local timers that are behind t(i), i.e., M = 〈] j :: t(j) < α〉 with
M ≥ 0 by construction5. Thus, we prove that

t(i) = α ∧ t(i) 6= 〈min j :: t(j)〉 ∧M = m

7→ (t(i) = α ∧ t(i) 6= 〈min j :: t(j)〉 ∧M < m) ∨

t(i) = 〈min j :: t(j)〉 = α.

We observe that, since t(i) is not the minimum, some other timer must
be the minimum and, because of Property 1 and of the fact that local
timers range over natural numbers, it eventually increases, thus even-
tually decreasing the value of M in one or more steps. Furthermore,
t(i) cannot increase unless it is the minimum, as proven earlier. Even-
tually no timer is behind t(i), i.e., t(i) holds the minimum value of all
timers.

Application of the disjunction rule (T8) completes the proof.

7.2 Mobile Unity Proof Logic

In this section we introduce the Mobile Unity proof logic. In doing this, we also
shift the context to the Mobile Unity solutions presented in Section 6. The dis-
tributed solutions must continue to maintain Property 1 and 2 stated for the cen-
tralized one. The proof can make use of the standard Unity proof logic as long as

5The operator] used in the three part notation is used to count the number of elements in the

domain of j for which the provided expression holds.

Reasoning About Code Mobility with Mobile Unity · 29

we use the fully qualified names at every step; we simply have a larger number of
statements that must be considered. We first rewrite Property 1 and 2 stated in
Section 2 with the appropriate naming conventions observed:

Property 1 P (i).t = 〈min j :: P (j).t〉 = α until P (i).t > α

A client P(i) increases its timer only when its value equals the GVT.

Property 2 P (i).t = α until P (i).t = 〈min j :: P (j).t〉 = α

The GVT will catch up eventually with the timer in P(i).

The properties and the structure of their proof outline are the same across all
the distributed solutions presented in this paper. Nevertheless, each proof makes
use of lemmas and invariants which are proven differently in each solution. Next,
we present the general proof structure. In following subsections, we discuss only
the proof specifics for each distributed solution, starting with the client-server and
continuing with the mobile code solutions. We will not provide any verification of
the COD solution, since the computation of z does not affect the correctness of the
properties stated in Section 7.2.

7.2.1 General Proof Structure. The properties stated earlier can be proven for
all the distributed solutions presented in this paper by using the following proof
structure.

Proof of Property 1. We prove separately the two parts of the until relation:
(1) P (i).t = 〈min j :: P (j).t〉 = α unless P (i).t > α can be proven from the

program text by observing that, for any of the solutions, every statement
in the system leaves unchanged the lhs except possibly for the first state-
ment of P(i). This statement, according to the definition of f and strict
monotonicity of g, may either leave unchanged the lhs or establish the
rhs.

(2) P (i).t = 〈min j :: P (j).t〉 = α 7→ P (i).t > α can be split by transitivity of
leads-to into two separate proof obligations. First, we prove that whenever
a client’s6 timer corresponds to the GVT, the GVT estimate eventually
catches up with the timer within the client, i.e.,

P (i).t = 〈min j :: P (i).t〉 = α 7→ P (i).t = P (i).T = α

This is proven by applying transitivity to the following two lemmas:

P (k).t = 〈min l :: P (l).t〉 = β 7→ P (k).t = 〈min l :: Server .τ(l)〉 = β

(L1)

which asserts that if a given GVT value is reached, the timers whose values
match the GVT are eventually mirrored on the Server, and lemma

P (k).t = 〈min l :: Server .τ(l)〉 = β 7→ P (k).t = P (k).T = β (L2)

6In the following, we use the term “client” to encompass both the client in the client-server or

remote evaluation paradigm and the agent in the mobile agent paradigm.

30 · G.P. Picco and G.-C. Roman and P.J. McCann

which asserts that the minimum of all the values mirrored on the Server
eventually corresponds to the GVT estimate communicated back to the
client.
Then, we prove that, in the situation when the GVT estimate is equal to
the timer within a client, the client eventually makes progress by increasing
its timer, which is formally captured by the following lemma:

P (k).t = P (k).T = β ensures P (k).t > β (L3)

Lemma (L1) is proven the same way across all the solutions, so it is proven
in the remainder of this section. Lemmas (L2) and (L3) will be proven for
each solution in Section 7.2.2-7.2.4, and Appendix A-C, respectively.

Proof of Property 2. We prove separately the two parts of the until relation:
(1) P (i).t = α unless P (i).t = 〈min j :: P (j).t〉 = α. We observe that

P (i).t = α unless P (i).t = P (i).T = α

holds because, in all the solutions, the only statement affecting P (i).t is
the first statement in P(i). After execution of such a statement it might be
the case that the rhs holds, according to the invariant

inv. def(P (k).T)⇒ P (k).T ≤ P (k).t, (I1)

which asserts that whenever the GVT estimate is defined within a client,
its value is always at most equal to the corresponding local timer value.
Furthermore, the invariant

inv. P (k).t = P (k).T = β ⇒ 〈min l :: P (l).t〉 = β, (I2)

states that whenever the values of the local timer and the GVT estimate
are equal in a client, their values equal the GVT value as well. Hence,
according to the consequence weakening theorem [Chandy and Misra 1988]

p unless q, q ⇒ r

p unless r
(T9)

the conclusion holds. Invariant (I1) is proven in the remainder of this
section. Invariant (I2), as well as others introduced in this section, are
proven differently in each solution. The corresponding proof outlines can
be found in the Appendix.

(2) P (i).t = α 7→ P (i).t = 〈min j :: P (j).t〉 = α. To demonstrate that
the system eventually reaches a state where the GVT is equal to the timer
value α we need to demonstrate that the difference between α and the GVT
decreases continuously. To this end, we need to show that the number of
clients whose timer is greater than a given GVT but less than α eventually
decreases to zero. This is a consequence of the continuous increase of
the GVT and of the fact that the local timer holds its value up to the
point where the GVT catches up with it. Formally, this proof requires the
application of the induction principle of leads-to. The decrease in the
distance δ between α and the current GVT is captured by

P (i).t = α ∧ 0 < (α− 〈min j :: P (j).t〉) = δ

7→ (P (i).t = α ∧ 0 < (α− 〈min j :: P (j).t〉) < δ) ∨ α = 〈min j :: P (j).t〉.

Reasoning About Code Mobility with Mobile Unity · 31

The equation above is proven by demonstrating that the number ν of clients
at a given current GVT ᾱ is decreasing, and that the GVT eventually
increases, that is

〈min j :: P (j).t〉 = ᾱ ∧ 0 < 〈] j :: P (j).t = ᾱ〉 = ν

7→ (〈min j :: P (j).t〉 = ᾱ ∧ 0 < 〈] j :: P (j).t = ᾱ〉 < ν) ∨

〈min j :: P (j).t〉 > ᾱ,

which follows from Property 1 proven earlier.

Proof of (L1). We do not consider further the case when P (k).t = 〈min l ::
Server .τ(l)〉 = β because it can be demonstrated trivially by application of the
implication theorem (T5). Then, we introduce the invariant

inv. Server .τ(k) ≤ P (k).t, (I3)

which asserts that the timer value mirrored on the server is always at most equal
to the original value within the client. This invariant enables us to consider
only the case 〈min l :: Server .τ(l)〉 < β. Hence, we prove

oldServerState(k, β) 7→ P (k).t = 〈min l :: Server .τ(l)〉 = β,

where oldServerState(k, β) ≡ P (k).t = 〈min l :: P (l).t〉 = β ∧ 〈min l ::
Server .τ(l)〉 < β. We observe that this obligation can be proven by show-
ing that the number of clients at GVT for which the timer value mirrored
on the Server is not up-to-date is decreasing. Formally, this corresponds to
application of the induction principle of leads-to:

oldServerState(k, β) ∧ 0 < 〈] l :: Server .τ(l) < β〉 = ν

7→ (oldServerState(k, β) ∧ 0 < 〈] l :: Server .τ(l) < β〉 < ν) ∨

P (k).t = 〈min l :: Server .τ(l)〉 = β

which follows from the lemma

P (k).t = β ∧ Server .τ(k) < β until P (k).t = Server .τ(k) = β. (L4)

This lemma, whose proof will be given case by case in the following sections,
states that the value of a local timer is eventually copied on the Server, which
guarantees continuous decrease of the metric used for induction.

Proof of (I1). The invariant holds from (I3) and invariant

inv. def(P (k).T)⇒ P (k).T ≤ 〈min l :: Server .τ(l)〉, (I4)

which asserts that whenever the GVT estimate is defined within a client, it is
at most equal to the minimum among the timer values mirrored on the server.

7.2.2 Proof of Client-Server Solution. The proof obligations associated with the
client-server solution appear in Table 1. All the properties, and other supportive
assertions, are proven in the Appendix. The only exception is Lemma (L2) and one
of the two properties on which it relays. They are considered below.

Proof of (L2). We do not consider further the case P (k).T = β after application
of (T5). We introduce the following definitions in order to improve readability:

32 · G.P. Picco and G.-C. Roman and P.J. McCann

P (k).t = 〈min l :: Server .τ(l)〉 = β 7→ P (k).t = P (k).T = β (L2)

P (k).t = P (k).T = β ensures P (k).t > β (L3)

P (k).t = β ∧ Server .τ(k) < β until P (k).t = Server .τ(k) = β (L4)

inv. def(Server .T)⇒ Server .T ≤ 〈min l :: Server .τ(l)〉 (cs1)

inv. def(Server .q(k))⇒ Server .q(k) ↑ 2 = cs ∨ (cs2)

Server .q(k) ↑ 2 = wait ∨ ¬def(Server .q(k) ↑ 2)

inv. P (k).t = P (k).T = β ⇒ 〈min l :: P (l).t〉 = β (I2)

inv. Server .τ(k) ≤ P (k).t (I3)

inv. def(P (k).T)⇒ P (k).T ≤ 〈min l :: Server .τ(l)〉 (I4)

inv. def(P (k).T)⇒ ¬def(P (k).RQ) (cs3)

inv. Server .q(k) ↑ 1 = server⇒ Server .q(k) ↑ 4 = P (k).t (cs4)

〈min l :: Server .τ(l)〉 = β unless 〈min l :: Server .τ(l)〉 > β (cs5)

Table 1. Lemmas and invariants needed for verification of the Client-Server solution.

minTimer(k, β) ≡ P (k).t = 〈min l :: Server .τ(l)〉 = β

oldClientT(k, β) ≡ P (k).T < β ∨ ¬def(P (k).T)

¬oldServerT(β) ≡ Server .T = β ∨ ¬def(Server .T)

that is, respectively, P(k) owns the minimum among the timers in Server, the
GVT is out-of-date in client P(k), and the GVT is not out-of-date in Server.

Then, invariant (I1) allows us to reformulate the goal of our proof as

minTimer(k, β) ∧ oldClientT(k, β) 7→ P (k).t = P (k).T = β. (cs6)

i.e., if a client P(k) owns the timer corresponding to the minimum timer value
stored on Server but the corresponding GVT estimate P (k).T is behind the
timer, the GVT estimate eventually catches up with the timer in P(k). In
order for minTimer(k, β) to hold, the minimum β over Server .τ must have been
established by a request message from P(k), or from some other client with
the same timer value, which updates the value mirrored on Server. Due to the
interleaving semantics, however, it could happen that, at the moment when
this minimum is established in Server .τ , a value referring to a previous value
β̄ = 〈min l :: Server .τ(l)〉 6= β has been already assigned to the GVT estimate
Server .T . However, invariant (cs1) guarantees that Server .T can never be
assigned a value greater than β. Thus, we can split (cs6) into the following
two cases

minTimer(k, β) ∧ oldClientT(k, β) ∧ ¬oldServerT(β) (cs7)

7→ P (k).t = P (k).T = β, and

minTimer(k, β) ∧ oldClientT(k, β) ∧ Server .T < β (cs8)

7→ P (k).t = P (k).T = β,

which, by application of disjunction, prove (cs6) and then (L2). Next, we turn
our attention to the proof of (cs7).

Reasoning About Code Mobility with Mobile Unity · 33

Proof of (cs7). We must show that if the Server has already established the
correct GVT estimate or it is about to (i.e., its GVT estimate is currently
void), while the client still holds an out-of-date GVT estimate, the new one is
eventually communicated to the client. We accomplish this by reasoning about
the communication taking place between P(k) and the Server. The only way
the client can learn about the new GVT estimate is by receiving a reply to a
formerly sent message request. In the worst case, such a request has not been
issued yet, i.e., the Server does not have a message from P(k) in its queue. We
show that all the other intermediate states are encompassed in the analysis of
communication taking place in this worst case. Thus, we prove that, in the
worst case above, a message request containing the timer value is eventually
generated by the client, that is,

minTimer(k, β) ∧ oldClientT(k, β) ∧ ¬oldServerT(β) ∧ ¬def(Server .q(k))

7→ minTimer(k, β) ∧ ¬oldServerT(β) ∧ ¬def(Server .q(k)) ∧

P (k).RQ = 〈server,cs,minServ, β〉.

(cs9)

It can be proven directly from the text that

minTimer(k, β) ∧ ¬oldServerT(β) ∧ ¬def(Server .q(k)) ∧

P (k).RQ = 〈server,cs,minServ, β〉

ensures minTimer(k, β) ∧ ¬oldServerT(β)∧

Server .q(k) = 〈server,cs,minServ, β〉

(cs10)

that is, such a request is eventually delivered to the Server. As a consequence,
Server eventually accepts the request by forcing it into the wait state,

minTimer(k, β) ∧ ¬oldServerT(β) ∧

Server .q(k) = 〈server,cs,minServ, β〉

ensures minTimer(k, β) ∧ ¬oldServerT(β) ∧ Server .q(k) ↑ 2 = wait.

(cs11)

which, again, can be proven directly from the program text. Finally, we prove
that the pending request is eventually satisfied and a reply containing the up-
dated value for the GVT is delivered back to P(k), that is,

minTimer(k, β) ∧ ¬oldServerT(β) ∧ Server .q(k) ↑ 2 = wait

7→ P (k).t = P (k).T = β.
(cs12)

Application of disjunction and transitivity of leads-to to (cs9), (cs10), (cs11),
and (cs12) prove (cs7). Equation (cs9) is proven by expanding oldClientT(k, β)
into the possible values of P (k).T according to (I1), and applying disjunction
and transitivity to the following chain of ensures:

minTimer(k, β) ∧ ¬oldServerT(β) ∧ ¬def(Server .q(k)) ∧ P (k).T < β

ensures minTimer(k, β) ∧ ¬oldServerT(β) ∧ ¬def(Server .q(k)) ∧ ¬def(P (k).T)

ensures minTimer(k, β) ∧ ¬oldServerT(β) ∧ ¬def(Server .q(k)) ∧

P (k).RQ = 〈server,cs,minServ, β〉,

(cs13)

34 · G.P. Picco and G.-C. Roman and P.J. McCann

where the initial state implies that P(k) has not issued a request yet, in ac-
cordance with invariant (cs3). Similarly, (cs11) can be proven by considering
the two values of the GVT estimate Server .T as defined by ¬oldServerT(β).
Finally, disjunction and transitivity applied to the following chain of ensures

minTimer(k, β) ∧ ¬def(Server .T) ∧ Server .q(k) ↑ 2 = wait

ensures minTimer(k, β) ∧ Server .T = β ∧ Server .q(k) ↑ 2 = wait

ensures minTimer(k, β) ∧ Server .q(k) = 〈k,⊥,⊥, β〉

ensures minTimer(k, β) ∧ P (k).RQ = 〈k,⊥,⊥, β〉

ensures P (k).t = P (k).T = β,

which can be derived from the program text, proves (cs12) and completes the
proof, together with invariant (cs2) which constrains the value of Server .q(k)
and thus guarantees coverage of all the possible cases in the above obligations.

The reader may notice at this point that the proof of property (cs7) has the
look and feel of a standard Unity proof. This is not in the least accidental. First,
throughout this paper (and in other related work) we seek to align the verifica-
tion process with the Unity style to the greatest possible extent. Second, even
though the Interactions section plays a critical role in the verification of the prop-
erty (cs7), the manner in which it affects the proofs is in no way distinguishable
from that of the programs themselves. The Interactions section contains state-
ments that transfer data from one location to another asynchronously. Aside from
the location of the data, the Interactions statements are treated as if they were
standard Unity statements: they are always included in the verification of safety
properties and, on occasion, are used to prove some of the ensures properties. The
latter deal with the data transfer guarantees between the clients and the server.

7.2.3 Proof of Mobile Agent Solution. The general proof structure provided in
Section 7.2.1 is still valid for the MA solution. However, verification must encom-
pass reasoning about the read-only sharing specified in the Interactions section.
Table 2 summarizes the lemmas and invariants needed to prove the MA solution. In
this section, we provide the proof outlines for the lemmas used in Section 7.2.1, to-
gether with some obligations specific of the MA solution. The remaining obligations
are proven in Appendix B. Besides the properties described in Section 7.2.1, two
additional properties capture the round-robin migration of Server. Invariant (ma1)
states that Server is always co-located with some client, while lemma (ma2) guar-
antees that Server is forced to visit the next node.

Proof of (L2). Our proof will exploit the progress-safety-progress theorem (PSP)
[Chandy and Misra 1988]

p 7→ q, r unless b

p ∧ r 7→ (q ∧ r) ∨ b
, (T10)

which allows for combination of a progress and a safety property in proving a
progress property. In our case, the progress property is

true 7→ Server .T = P (k).T = 〈min l :: Server .τ(l)〉, (ma8)

Reasoning About Code Mobility with Mobile Unity · 35

P (k).t = 〈min l :: Server .τ(l)〉 = β 7→ P (k).t = P (k).T = β (L2)

P (k).t = P (k).T = β ensures P (k).t > β (L3)

P (k).t = β ∧ Server .τ(k) < β until P (k).t = Server .τ(k) = β (L4)

inv. 〈∃ k : 0 ≤ k ≤ N − 1 :: Server .λ = P (k).λ〉 (ma1)

Server .λ = P (k).λ until Server .λ = P (k + 1 mod N).λ (ma2)

inv. Server .T ≤ 〈min l :: Server .τ(l)〉 (ma3)

〈min l :: Server .τ(l)〉 = β unless 〈min l :: Server .τ(l)〉 > β (ma4)

inv. P (k).t = P (k).T = β ⇒ 〈min l :: P (l).t〉 = β (I2)

inv. Server .τ(k) ≤ P (k).t (I3)

inv. def(P (k).T)⇒ P (k).T ≤ 〈min l :: Server .τ(l)〉 (I4)

inv. Server .λ = P (k).λ⇒ Server .t = P (k).t (ma5)

inv. Server .λ = P (k).λ⇒ Server .T = P (k).T ∨ ¬def(P (k).T) (ma6)

inv. Server .λ = P (k).λ⇒ Server .pos = k (ma7)

Table 2. Lemmas and invariants needed for verification of the Mobile Agent solution.

which states that a client always knows eventually the value of a GVT estimate,
and the safety property is

P (k).t = 〈min l :: Server .τ(l)〉 = β unless P (k).t = P (k).T = β, (ma9)

which actually would allow us to reformulate (L2) in terms of until rather
than leads-to. Application of the PSP theorem to (ma8) and (ma9) yields

P (k).t = 〈min l :: Server .τ(l)〉 = β

7→ (Server .T = P (k).t = P (k).T = 〈min l :: Server .τ(l)〉 = β) ∨

P (k).t = P (k).T = β

⇒ P (k).t = P (k).T = β

which proves (L2) by application of the implication theorem.

Proof of (ma8). This obligation can be regarded as a consequence of transitivity
and the induction principle of leads-to applied to (ma2) and

Server .λ = P (k).λ 7→ Server .T = P (k).T = 〈min l :: Server .τ(l)〉,

which states that co-location of Server with a client eventually leads to com-
munication of the GVT estimate. We do not consider further the case when
the rhs already holds, as it follows trivially from implication. It is then worth
considering two cases, according to the value of the GVT at Server.
If such value is out-of-date, then the obligation

Server .λ = P (k).λ ∧ Server .T < 〈min l :: Server .τ(l)〉

ensures Server .T = P (k).T = 〈min l :: Server .τ(l)〉

guarantees that it becomes up-to-date, and can be proven by reasoning about
Server alone. When the lhs holds, the only statements enabled are the first two
in Server, the guard of the third statement being false. Thus, Server movement
is prevented and no other statement can modify the value of Server .T except

36 · G.P. Picco and G.-C. Roman and P.J. McCann

for the second one in Server. This is eventually executed because of the fairness
assumption and establishes the rhs.
If, on the other hand, the GVT at Server is up-to-date, it may still be the case
that the GVT at the client is undefined, because the client advanced its local
timer. In this case, we prove that

Server .λ = P (k).λ ∧ Server .T < 〈min l :: Server .τ(l)〉 ∧ ¬def(P (k).T)

7→ Server .T = P (k).T = 〈min l :: Server .τ(l)〉

Again, two cases are possible depending on whether the new value of the local
timer has been already recorded by the Server:
(1) if Server .τ(k) = t, the local timer has been recorded. If this timer is

actually the new minimum among the values contained in τ , then movement
of Server is prevented and the proof follows from the previous case where
the GVT at Server is out-of-date. Otherwise, it means that both the local
timer has been recorded and the new GVT has been computed, thus the
third statement can cause migration of Server. The mobile component,
however, will eventually complete a full round, thanks to (ma2), and return
to P(k). There, the value of the GVT will be communicated to the client
because of the transient variable sharing taking place at engagement, as
specified by the first statement in the Interactions section.

(2) if Server .τ(k) < t, the local timer has not yet been recorded by Server,
and thus movement of Server is prevented. However, it is straightforward
to prove that

Server .λ = P (k).λ ∧ Server .T < 〈min l :: Server .τ(l)〉 ∧

¬def(P (k).T) ∧ Server.τ(k) < t

ensures Server .λ = P (k).λ ∧ Server .T < 〈min l :: Server .τ(l)〉 ∧

¬def(P (k).T) ∧ Server .τ(k) = t

because the first statement in Server will establish the rhs due to the
fairness assumption. At this point, the proof follows from the previous
point.

7.2.4 Proof of Remote Evaluation Solution. Figure 3 shows the lemmas and in-
variants needed to prove the REV solution. In this section, we provide the proof
outlines for one of them, building upon what we already demonstrated in the pre-
vious sections. The proof outlines for the remaining obligations are provided in
Appendix C.

Proof of (L2). The proof of this lemma is similar to the one derived for the
CS solution, hence we provide only an informal description for it. We do not
consider further the case P (k).T = β, after applying the implication theorem.
Then, we are left with two cases, according to (rev1). With the definitions
provided in Section 7.2.2, it can be proven that

minTimer(k, β) ∧ oldClientT(k, β) ∧Min(k).λ = P (k).λ

7→ minTimer(k, β) ∧ ¬oldServerT(β) ∧Min(k).λ = P (k).λ ∧

P (k).RQ = 〈server,rev,minServ,⊥〉

Reasoning About Code Mobility with Mobile Unity · 37

P (k).t = 〈min l :: Server .τ(l)〉 = β 7→ P (k).t = P (k).T = β (L2)

P (k).t = P (k).T = β ensures P (k).t > β (L3)

P (k).t = β ∧ Server .τ(k) < β until P (k).t = Server .τ(k) = β (L4)

inv. Min(k).λ = P (k).λ ∨Min(k).λ = Server .λ (rev1)

inv. Min(k).λ = P (k).λ⇒ ¬def(Min(k).q) (rev2)

inv. def(Min(k).τ)⇔ Min(k).τ = Server .τ (rev3)

inv. Min(k).t = P (k).t (rev4)

inv. Min(k).λ = Server .λ⇔ Min(k).τ = Server .τ (rev5)

inv. true ⇒ def(Server .τ) (rev6)

inv. P (k).t = P (k).T = β ⇒ 〈min l :: P (l).t〉 = β (I2)

inv. Server .τ(k) ≤ P (k).t (I3)

inv. def(P (k).T)⇒ P (k).T ≤ 〈min l :: Server .τ(l)〉 (I4)

inv. ¬def(Min(k).τ)⇒ ¬def(Min(k).q) (rev7)

inv. Min(k).λ = Server .λ⇒ ¬def(P (k).T) (rev8)

inv. Min(k).λ = Server .λ⇔ def(Min(k).τ) (rev9)

inv. true ⇒ def(Min(k).t) (rev10)

inv. ¬def(Server .q(k))⇔ ¬def(Min(k).q) (rev11)

inv. P (k).RQ ↑ 1 = k ⇒ Min(k).λ = P (k).λ (rev12)

Table 3. Lemmas and invariants needed for verification of the Remote Evaluation solution.

with arguments similar to those used in proving (cs9), together with invari-
ant (rev2). The presence of a client request triggers execution of the second
statement in the Interactions section, which causes migration of the corre-
sponding Min(k) process to get co-located with the Server, because of the
fairness assumption. Once co-located, invariant (rev3) guarantees that the
first two statements are enabled, thus enabling update of the GVT estimate. If
the lhs of the lemma holds, actually no one else can execute actions and thus
changing the GVT estimate, because P (k).t is the minimum timer. Min(k) re-
mains co-located with Server, thus sharing the values in τ and in the message
buffer q(i), until the last statement in Min(k) is executed. It can be proven,
analogously to (cs11), that such statement stores a value in the Server mes-
sage queue, which is eventually communicated to Min(k) and there assigned to
client’s GVT estimate, thus satisfying the goal.

8. DISCUSSION

Mobile Unity is a new model of distributed computing specialized for mobile com-
putations, i.e., for systems in which components travel through space, compute in
a decoupled fashion, and communicate opportunistically when co-located. Mobile
Unity provides a notation system for capturing mobility and an assertional proof
logic. Research on Mobile Unity has shown that a small number of constructs
suffices to express transitive forms of transient data sharing and transient synchro-
nization. Restricted forms of these proposed interaction constructs appear to have
efficient implementations and more abstract and powerful interaction constructs
can be built from the basic forms. In addition, the proof logic has been tentatively

38 · G.P. Picco and G.-C. Roman and P.J. McCann

evaluated in the verification of the Mobile IP protocol [McCann and Roman 1997].
Against this background of promising technical developments, this paper raised

a simple question: Can Mobile Unity model in straightforward manner the kinds
of interactions that take place in applications involving mobile code? The question
is reasonable in light of the fact that Mobile Unity makes no explicit distinction
between physical and logical movement of components. A positive answer would
allow the immediate application of its proof logic to mobile code and may also define
a more abstract and objective basis for a different kind of taxonomy of mobile code
paradigms. A negative answer would lead to a clarification of possible fundamental
differences between the domains of mobile code and mobile components or could
reveal possible shortcomings in the way Mobile Unity was conceived.

The investigative style of this paper is empirical. We started with established
mobile code paradigms and sought out corresponding Mobile Unity solutions. The
decoupled style of computation promoted by Mobile Unity appears to be a good
match for the realities of mobile code. The Interactions section was able to
encapsulate appropriately the communication taking place between components.
Asynchronous data transfer had a direct counterpart in Mobile Unity and code
movement was easily expressed by the same mechanisms by which components
change location. Because the only notion of blocking in Mobile Unity is busy
waiting, blocking for responses to requests was naturally captured by tagging rel-
evant variables as not being available (undefined) and strengthening the guards of
related statements to check for availability of the data. In several cases we used the
fact that the variable was no longer available as the trigger for generating a request
in the first place—this led to an elegant separation between the actions embedded
in the application program and those supplied by the run-time support. Finally,
the transient sharing constructs offered a good solution for the data binding process
that needs to take place when a mobile code fragment arrives at a new location.
Since the mobile code is treated as a program having its own internal state, the
movement of code can be accompanied by data movement. The engage feature
of transient variable sharing encapsulates the binding process while the disengage

plays a role in implementing policies that define how much state information may
be carried along by a departing code fragment. When a piece of code carries no
data state, for instance, the disengagement reinitializes all its shared variables.

In addition to precise modeling of the characteristics of mobile code, we were
also able to reason about such models and prove properties of their expected be-
havior. This has been accomplished by using the Unity proof logic, whose corpus
of theorems and techniques is still available for use with Mobile Unity.

The only possible mismatch identified by this case study has to do with dynamic
instantiation of code segments. In the REV solution, for instance, there is no need
to “return” the code being evaluated as we do in our example. New fresh copies can
be sent each time and several copies may co-exist on different servers. In Mobile
Unity, however, the set of components making up a system is fixed. Further
research is needed to evaluate this issue. One solution that requires no change
to the Mobile Unity notation is to create an unbounded set of clones (uniquely
indexed) that are placed in a stand-by state until needed. This could have some
negative implications on verification and, if not considered carefully, could interfere
with the fairness assumptions which are at the foundation of the proof logic. The

Reasoning About Code Mobility with Mobile Unity · 39

prospect of making changes to Mobile Unity may also force us to re-examine the
issue of what is an appropriate unit of mobility. So far we selected the program to
play this role but a finer grained solution at the statement level, for instance, may
also be appropriate to consider.

Mobile Unity constructs are also likely to find applicability in describing how
to deal with security issues in mobile code. For instance, the policies that rule
acceptance or rejection of incoming code and the corresponding countermeasures
could be specified in the Interactions section as a set of reactive statements, thus
effectively separating the description of the system behavior from the policies that
keep it in a safe state. Nevertheless, despite its relevance in code mobility, security
is outside of the scope of this work. Here, we focused our investigation on the
capability to model precisely the notion of migrating code. In our view, this is a
precondition for defining a corresponding security model.

Other models of mobility have been proposed, and it is interesting to note
that until very recently the only formal model of concurrency to refer to mobility
explicitly was π-calculus [Milner et al. 1992], a process algebra proposed by Milner
and his colleagues. In π-calculus there is no formal concept of space. Mobility is
equated to the ability to “express processes which have changing structure”. Under
this definition, any model able to pass processes as values, e.g., the Actor model,
or link names as values (π-calculus) qualifies. The approach pursued by π-calculus
has inspired many researchers [Fournet et al. 1996; De Nicola et al. 1998; Amadio
1997], who today are building variants and extensions of process algebras in order to
provide a better notion of location. The work by Cardelli and Gordon [Cardelli and
Gordon 2000], for instance, appears to be directly inspired by the domain of mobile
code. The concept of nested localities whose access is regulated by capabilities
associated to mobile processes closely recalls the Telescript [Magic 1995; White
1996] model. Although a precise evaluation of π-calculus and its derivatives against
Mobile Unity is outside the scope of this paper, we recognize that the approach
pursued by researchers in process algebras is clearly distinct from the modeling
strategy we adopted. Mobile Unity is essentially state-based, and we believe that
this aspect, combined with a notation which is closer to the one of a conventional
programming language, arguably makes Mobile Unity easier for people that are
more confident with programming than with formal modeling. Furthermore, we
believe that approaching mobility from a different angle is likely to unveil insights
that are complementary to those elicited with process algebras, thus contributing
to building a better understanding of mobility.

9. CONCLUSIONS

Mobile Unity has been the product of two distinct mindsets. First, it was the
notion of developing transient and transitive forms of the two Unity modes of
composition, union and superposition. Second, it was the fascination with ad hoc
networks of components moving freely through space, computing in a highly decou-
pled style, and interacting opportunistically. Neither of the two motivations had
anything to do with code mobility. Yet, our evaluation of the model against several
established paradigms in mobile code languages shows that the essential features
of code mobility have immediate counterparts in Mobile Unity thus allowing di-
rect applicability of its proof logic to programs involving mobile code. While more

40 · G.P. Picco and G.-C. Roman and P.J. McCann

work is needed to refine the relation between code and (physical) component move-
ment, this exercise in modeling and formal reasoning provides a strong incentive to
seek out solutions and models which are insensitive to the nature of the movement
process, be it logical or physical.

ACKNOWLEDGMENTS

This paper is based upon work supported in part by the National Science Founda-
tion (NSF) under grants No. CCR-9217751 and CCR-9624815. Gian Pietro Picco
was partially supported by Centro Studi e Laboratori Telecomunicazioni (CSELT)
S.p.A., Italy. Any opinions, findings, and conclusions or recommendations ex-
pressed in this paper are those of the authors and do not necessarily reflect the
views of NSF or CSELT.

APPENDIX

We provide here the proof outlines for the obligations used but not proven in the
previous sections.

A. CLIENT-SERVER

Invariant (cs2) can be proven directly from the program text.

Proof of (cs8). If Server holds an out-of-date value for the GVT, this is eventu-
ally cleared and subsequently replaced by a new, up-to-date value corresponding
to the minimum timer in Server .τ . At this point, we fall back in the state on the
lhs of (cs7), for which we have already shown that such a value is eventually
communicated to the client. The GVT estimate on the Server is cleared when-
ever a reply is sent back to the client, hence we prove that a message request
is eventually sent to the Server, with the macro definitions of Section 7.2.2:

minTimer(k, β) ∧ oldClientT(k, β) ∧ Server .T < β ∧ ¬def(Server .q(k))

7→ minTimer(k, β) ∧ oldClientT(k, β) ∧ ¬def(Server .q(k)) ∧

P (k).RQ = 〈server,cs,minServ, β〉

The above can be proven with arguments similar to those used for (cs9). In-
variant (cs1) lets us rewrite the obligation as

minTimer(k, β) ∧ oldClientT(k, β) ∧ Server .T < β ∧ ¬def(Server .q(k))

7→ (minTimer(k, β) ∧ oldClientT(k, β) ∧ Server .T < β ∧ ¬def(Server .q(k)) ∧

P (k).RQ = 〈server,cs,minServ, β〉) ∨

(minTimer(k, β) ∧ oldClientT(k, β) ∧ ¬oldServerT(β) ∧ ¬def(Server .q(k)) ∧

P (k).RQ = 〈server,cs,minServ, β〉),

(cs14)

thus splitting the obligation in two cases. Due to the concurrency in the system,
the statements of the clients P(k) are interleaved with those of the Server.
Hence, while client P(k) is preparing a request, Server .T :

(1) may still contain an out-of-date value;

Reasoning About Code Mobility with Mobile Unity · 41

(2) may be either undefined or up-to-date, because in the meanwhile the Server
has sent a reply to some of the other clients or it has established the new
GVT estimate as the minimum in Server .τ .

The second disjunct implies the lhs of (cs10), then we can apply transitivity
thanks to the implication theorem and thus show that it eventually leads to
the goal, that is

minTimer(k, β) ∧ oldClientT(k, β) ∧ ¬oldServerT(β) ∧ ¬def(Server .q(k))∧

P (k).RQ = 〈server,cs,minServ, β〉

7→ P (k).t = P (k).T = β

(cs15)

We can exploit this fact through application of the following cancellation theo-
rem of leads-to [Chandy and Misra 1988]

p 7→ q ∨ b, b 7→ r

p 7→ q ∨ r
. (T11)

In our case, application of the cancellation theorem to (cs14) and (cs15) yields

minTimer(k, β) ∧ oldClientT(k, β) ∧ Server .T < β ∧ ¬def(Server .q(k))

7→ (minTimer(k, β) ∧ oldClientT(k, β) ∧ Server .T < β ∧ ¬def(Server .q(k)) ∧

P (k).RQ = 〈server,cs,minServ, β〉) ∨ P (k).t = P (k).T = β

Our proof strategy uses the cancellation theorem to perform the verification
of the communication steps by ruling out the case where the GVT estimate
becomes up-to-date on the Server, thus examining always the worst case. In
doing this, we proceed along the lines of the proof developed for (cs7), thus
reusing the results already achieved. Our next goal is to prove that for the first
disjunct the following holds:

minTimer(k, β) ∧ oldClientT(k, β) ∧ Server .T < β ∧ ¬def(Server .q(k)) ∧

P (k).RQ = 〈server,cs,minServ, β〉

7→ P (k).t = P (k).T = β.

Similarly to (cs10), it can be proven from the program text that

minTimer(k, β) ∧ oldClientT(k, β) ∧ Server .T < β ∧

¬def(Server .q(k)) ∧ P (k).RQ = 〈server,cs,minServ, β〉

ensures minTimer(k, β) ∧ oldClientT(k, β) ∧

Server .q(k) = 〈server,cs,minServ, β〉

which, thanks to invariant (cs1), can be rewritten as

minTimer(k, β) ∧ oldClientT(k, β) ∧ Server .T < β ∧

¬def(Server .q(k)) ∧

P (k).RQ = 〈server,cs,minServ, β〉

ensures (minTimer(k, β) ∧ oldClientT(k, β) ∧ Server .T < β) ∨

(minTimer(k, β) ∧ oldClientT(k, β) ∧ ¬oldServerT(β) ∧

Server .q(k) = 〈server,cs,minServ, β〉

42 · G.P. Picco and G.-C. Roman and P.J. McCann

Repeated application of the cancellation theorem and of the proof obligations
developed for (cs7), whose details are here omitted, yields to the final goal of
proving that

minTimer(k, β) ∧ Server .T < β ∧ Server .q(k) ↑ 2 = wait

7→ P (k).t = P (k).T = β,

that is, even in the case when the Server accepts a request while still owning an
out-of-date value for the GVT estimate, this eventually leads to communication
of an up-to-date value to P(k). We demonstrate this by proving that

minTimer(k, β) ∧ Server .T < β ∧ Server .q(k) ↑ 2 = wait

7→ minTimer(k, β) ∧ ¬oldServerT(β) ∧ ¬def(Server .q(k)) ∧ P (k).T < β

(cs16)

holds, by observing that the rhs corresponds to the lhs of (cs13), for which
we have already proven that it leads to the goal. This completes the proof
together with invariant (cs2), and disjunction and transitivity of leads-to.
Property (cs16) is proven by the following chain of ensures:

minTimer(k, β) ∧ Server .T < β ∧ Server .q(k) ↑ 2 = wait

ensures minTimer(k, β) ∧ ¬def(Server .T) ∧ Server .q(k) = 〈k,⊥,⊥, β̄〉 ∧ β̄ < β

ensures minTimer(k, β) ∧ ¬oldServerT(β) ∧ P (k).RQ = 〈k,⊥,⊥, β̄〉 ∧ β̄ < β

ensures minTimer(k, β) ∧ ¬oldServerT(β) ∧ ¬def(Server .q(k)) ∧ P (k).T < β.

If the Server owns an out-of-date value for the GVT estimate and there is a
request waiting, the only step that can be taken by the Server is to clear the
GVT value and transmit the out-of-date GVT estimate. This in turn triggers
message delivery to the client and the subsequent voiding of the corresponding
element of the message queue of Server. However, the important point is that,
because the minimum value on Server .τ is β, whenever the GVT estimate is
eventually established, it is given this value, which is eventually communicated
to the client, as proven by (cs7).

Proof of (L3). Invariant (cs3) guarantees that if the GVT estimate is defined
within a client, the latter has no pending request. Thus, if the lhs of (L3)
holds there is no incoming new value for the GVT estimate which could possibly
change it, and (I1) guarantees that P (k).T can never increase past P (k).t.
Consequently, the lhs of (L3) is preserved. Finally, the first statement in P(k)
together with the fairness assumption guarantee that the rhs is established,
according to the definitions of f and g.

Proof of (L4). We prove separately the two parts of the until. As for the unless

part, invariant (I4) guarantees that the following holds

Server .τ(k) < β ⇒ (def(P (k).T)⇒ P (k).T < β),

then P (k).t cannot increase while Server .τ(k) < β holds. Nevertheless, af-
ter execution of the first statement in Server, the rhs of the unless might
be established. The leads-to is proven with arguments similar to those used
to reason about communication in the previous proofs. Informally, starting

Reasoning About Code Mobility with Mobile Unity · 43

from the state in the lhs, the client eventually generates a request that car-
ries the new value for the local timer. The message containing this value is
subsequently transferred to the message queue of the Server by the statements
in the Interactions section, and then the corresponding value in Server .τ is
updated.

Proof of (I2). The invariant holds initially, because the value of each timer and
GVT estimate is initially zero. To prove the invariant we need to prove that

inv. P (k).t = P (k).RQ ↑ 4 = β ∧ P (k).RQ ↑ 1 = k ⇒ 〈min l :: P (l).t〉 = β

(cs17)

In order to prove this invariant, we observe that P (k).t is not allowed to change
because of invariant (cs3), which can be rewritten as

inv. def(P (k).RQ)⇒ ¬def(P (k).T),

and thus proves that when the lhs of (cs17) holds the first statement is always
disabled. Furthermore, (cs17) is proven by the following invariants

inv. P (k).t = Server .q(k) ↑ 4 = β ∧ Server .q(k) ↑ 1 = k ⇒ 〈min l :: P (l).t〉 = β

inv. P (k).t = Server .T = β ∧ Server .q(k) ↑ 2 = wait⇒ 〈min l :: P (l).t〉 = β

inv. P (k).t = 〈min l :: Server .τ(l)〉 = β ∧ Server .q(k) ↑ 2 = wait ⇒

〈min l :: P (l).t〉 = β

which can be proven directly from the program text, and observing that

inv. P (k).t = β ∧ 〈min l :: Server .τ(l)〉 = β ⇒ 〈min l :: P (l).t〉 = β

holds because of (I3).

Proof of (I3). The invariant holds initially, because the value of each local timer
and each element of Server .τ is initially zero. To prove that (I3) holds, we
observe that the first statement in Server is the only one that modifies Server .τ ,
and that this is done according to invariant (cs4).

Proof of (I4). The invariant holds initially, because each element of Server .τ
and each GVT estimate is initially zero. The first statement in P(k) does not
affect the invariant, as if the lhs is false before execution of the statement this
is disabled, otherwise the lhs becomes false after execution of the statement.
To prove that the invariant holds before and after the execution of the other
statements which might affect the invariant we can use the invariants

inv. P (k).RQ ↑ 1 = k ⇒ P (k).RQ ↑ 4 ≤ 〈min l :: Server .τ(l)〉

inv. Server .q(k) ↑ 1 = k ⇒ Server .q(k) ↑ 4 ≤ 〈min l :: Server .τ(l)〉

inv. def(Server .T)⇒ Server .T ≤ 〈min l :: Server .τ(l)〉,

together with the lemma (cs5), which states that the minimum value in Server .τ ,
if changed, can only increase monotonically.

Proof of (cs1). The invariant holds initially, and is proven from the program
text, taking advantage of lemma (cs5).

Proof of (cs3). The invariant can be rewritten as

inv. def(P (k).RQ)⇒ ¬def(P (k).T)

44 · G.P. Picco and G.-C. Roman and P.J. McCann

In order to prove the invariant above, the last interaction requires us to prove
that

inv. Server .q(k) ↑ 1 = k ⇒ ¬def(P (k).T)

which can be proven directly from the program text by observing that

inv. Server .q(k) ↑ 1 = k ⇒ ¬def(Server .q(k) ↑ 2), and

inv. P (k).RQ ↑ 1 = k ⇒ ¬def(P (k).T)

hold.

Proof of (cs4). The invariant holds initially. Then, we observe that the only
statement that could possibly invalidate the invariant is the first interaction,
which copies the value of P (i).RQ into Server .q(i). However, we demonstrate
that

inv. P (k).RQ ↑ 1 = server⇒ P (k).RQ ↑ 4 = P (k).t

holds, so that the value communicated to Server is still equal to P (i).t. This
is proven observing the statements modifying P (i).RQ, namely, the first state-
ment in P(i) and the second interaction, preserve the invariant, and that no
statement can modify the value of the local timer except for the first one in
P(i). Moreover, it can be demonstrated from the program text that

inv. P (k).RQ ↑ 1 = server⇒ ¬def(P (k).T),

holds, which guarantees that such a statement is disabled when the lhs holds.

Proof of (cs5). We observe that no statement modifies the lhs of the unless,
except for the first one in Server. Under the guard of this statement, invari-
ant (cs4) guarantees that Server .τ(l) is updated to the current value of P (l).t.
Then, the new value for the minimum is

min(P (l).t, 〈min m : m 6= l :: Server .τ(m)〉) ≥ β

because of invariant (I3).

B. MOBILE AGENT

Invariants (I2), (ma1), (ma3), and (ma7) can be proven directly from the program
text.

Proof of (ma9). We do not consider further the case P (k).T = β because, anal-
ogously to (T5), implication is a special case of unless. Thus, we prove

P (k).t = 〈min l :: Server .τ(l)〉 = β ∧ (P (k).T < β ∨ ¬def(P (k).T))

unless P (k).t = P (k).T = β,

(ma10)

by observing that, for the case considered, execution of the first statement in
P(k) can never affect the value of the local timer in P(k), due to the defini-
tion of f and g. Furthermore, if P(k) is not co-located with Server, P (i).T
cannot be changed to a value different from those in the lhs of (ma10), be-
cause sharing is not in place and the first statement in P(k) can only void the

Reasoning About Code Mobility with Mobile Unity · 45

GVT estimate. Finally, according to invariant (ma1), the Server must be co-
located with some other client which might possibly affect the minimum value
in Server .τ . However, invariant (I3) and lemma (ma4), together with the lhs,
ensure that no other client may lower the minimum in Server .τ . Hence, we can
now restrict our analysis to the case where P(k) is co-located with Server. In
this case, the first statement in Server does not affect the lhs of (ma10) because
of invariant (ma5). Execution of the second statement in Server may actually
establish the rhs, through the read-only sharing expressed by the first inter-
action and captured by invariant (ma6). Finally, the migration taking place
upon execution of the last statement triggers both engagement and disengage-
ment. Engagement may either establish the rhs of (ma10), in the case where
P(k) and Server engage and the latter already has an up-to-date value of the
GVT, or leave the lhs unaffected, by assigning an out-of-date value to P (i).T .
Disengagement always leaves the lhs unaffected, because no disengage clause
is specified, and thus both components retain their current values.

Proof of (L3). The only statements which can affect the lhs of (L3) are the
first statement in P(k) and the second statement Server. The former actually
establishes the rhs, due to the definition of f and monotonicity of g. The latter
might in principle affect the value of P (k).T through the sharing expressed by
the first interaction. However, the lhs of (L3), together with invariants (I4)
and (I3), yields

P (k).t = P (k).T = 〈min l :: Server .τ(l)〉 = β

and hence the lhs of (L3) is preserved by execution of this statement. Finally,
fairness guarantees that the first statement in P(k) is executed eventually, thus
proving the ensures.

Proof of (L4). The unless part of the property is proven as in the CS solution.
In order to prove the leads-to part, we proceed analogously to the proof of (L2)
by applying the PSP theorem. The progress property is

true 7→ P (k).t = Server .τ(k), (ma11)

which states that a timer value is always eventually communicated to the Server,
and the safety property is the unless part of (L4). Application of (T10) yields

P (k).t = β ∧ Server .τ(k) < β

7→ (P (k).t = Server .τ(k) ∧ P (k).t = β ∧ Server .τ(k) < β) ∨

P (k).t = Server .τ(k) = β,

from which the goal follows from implication, since the first disjunct in the rhs
of the above never holds. Property (ma11) is proven by transitivity and the
induction principle of leads-to applied to (ma2) and

Server .λ = P (k).λ ensures Server .τ(k) = P (k).t.

This property is proven by observing that, as long as the rhs does not hold,
Server cannot move and hence the lhs remains unchanged. Finally, invari-
ants (ma7) and (ma5) and the first statement in Server, together with the
fairness assumption, guarantee that such a statement is executed, thus estab-
lishing the rhs of the ensures.

46 · G.P. Picco and G.-C. Roman and P.J. McCann

time

P(1)

P(2)

t’(1)

P(0)

T= (1)τ =(0)τ (2)τ

Fig. 13. A situation where Server’s departure is delayed.

Proof of (ma2). The unless part is proven straightforwardly by observing that
no statement affects the lhs except for the last one in Server, which actually
establishes the rhs. As for the leads-to part, inspection of text of the Server
program evidences that Server is allowed to leave only after the local timer
of P(k) has been registered in τ and the GVT estimate has been updated
accordingly. However, Server is not guaranteed to depart right after these
two conditions are established together—i.e., the guard of the third statement
in Server is true. Figure 13 describes a situation where Server departure is
delayed. Here, client P(1) owns the minimum timer, and all the other processes
have scheduled their actions far in the future with respect to it. After τ has been
updated with the value of the local timer and the new GVT estimate has been
computed, T = τ(1) = t(1) holds. Then, Server is allowed to depart. However,
at the same time P(1) is allowed to execute its statement and update its timer
to t′(1), as shown. Since the other processes have scheduled actions in the
distant future, P(1) and Server are the only processes enabled to make progress.
Depending on the fair, non-deterministic scheduling, either statement can be
selected for execution. If the statement of P(1) is selected, its execution changes
the value of the local timer, thus disabling the guard of the last statement in
Server and thus preventing its departure. In the worst case, if P(1) is “faster”
than Server, the last statement in Server might be enabled several times, each
time being subsequently disabled by the timer update in P(1). This situation
is guaranteed to cease eventually when the timer in P(1) is greater than the
values in τ for the other timers. In this state, when Server establishes the
GVT estimate, invariant (ma3) guarantees that the GVT estimate is behind
the local timer of P(1) and thus, due to the definition of f and g, prevents
further update of this timer. Our proof demonstrates that even in the worst
case, as the one depicted in Figure 13, Server eventually departs. The other
cases are encompassed in the formal proof for the worst case. Hence, our goal
is to show that

Server .λ = P (k).λ ∧ P (k).t ≤ β ∧ 〈min l : k 6= l :: Server .τ(l)〉 = β

7→ (Server .λ = P (k).λ ∧ Server .T = 〈min l :: Server .τ(l)〉 = β ∧

Server .τ(k) = P (k).t ∧ P (k).t > β) ∨ Server .λ = P (k + 1 mod N).λ,

(ma12)

holds, where the lhs captures the formal definition for the worst case as de-
scribed earlier. The property above states that a state is reached eventually

Reasoning About Code Mobility with Mobile Unity · 47

where either Server has departed or the guard of the last statement in Server
is true and cannot be falsified by an update to P (k).t—since it can no longer
affect the minimum in Server .τ . From this state, in the rhs of (ma12), appli-
cation of disjunction, transitivity, and the cancellation theoreom of leads-to

to the above and to

Server .λ = P (k).λ ∧ P (k).t > β∧

Server .T = 〈min l :: Server .τ(l)〉 = β ∧ Server .τ(k) = P (k).t

ensures Server .λ = P (k + 1 mod N).λ

(ma13)

proves (ma2). This last property is proven directly from the program text by
observing that its lhs cannot be changed by any statement, and it enables the
guard of the last statement in Server. Then, the fairness assumption guarantees
execution of such a statement, which establishes the goal.

Proof of (ma12). First, we observe that the following holds from invariant (I3):

〈min l : k 6= l :: Server .τ(l)〉 = β ∧ P (k).t ≤ β

⇒P (k).t ≥ 〈min l :: Server .τ(l)〉.
(ma14)

If P (k).t > 〈min l :: Server .τ(l)〉 holds, it can be shown directly from the
program text that, thanks to invariant (ma5), the guard of the last statement
is false, and then the Server is stuck at the client location. The fairness as-
sumption guarantees that P (k).t = Server .τ(k) = 〈min l :: Server .τ(l)〉 is
established eventually, thanks to the first statement in Server. Then, for the
sake of readability, we introduce the predicate

farMin ≡ 〈min l : k 6= l :: Server .τ(l)〉 = β ∧

Server .τ(k) = P (k).t = 〈min l :: Server .τ(l)〉 ≤ β,

that holds when P (k).t is less than or equal to the next minimum value in
Server.τ and its value is already known to Server. We demonstrate (ma12) by
proving that

Server .λ = P (k).λ ∧ farMin ∧ δ = max(β − P (k).t, 0)

7→ (Server .λ = P (k).λ ∧ (farMin ∧ δ < max(β − P (k).t, 0)) ∨

(Server .T = 〈min l :: Server .τ(l)〉 = β ∧ P (k).t > β)) ∨

Server .λ = P (k + 1 mod N).λ.

(ma15)

holds using the induction principle of leads-to, applied over the distance be-
tween the timer P (k).t and the value β of the next smallest element in Server .τ .
The above states that either the distance among the minimum and the next
minimum value in Server .τ is reduced, or the value of the local timer becomes
greater than the current minimum value, or Server departs. The progress prop-

48 · G.P. Picco and G.-C. Roman and P.J. McCann

erty proving induction is provided by the following:

Server .λ = P (k).λ ∧ farMin

ensures Server .λ = P (k).λ ∧ farMin ∧ Server .T = 〈min l :: Server .τ(l)〉 = β

ensures (Server .λ = P (k).λ ∧

(Server .T = 〈min l :: Server .τ(l)〉 = β ∧ P (k).t > β) ∨

Server .λ = P (k + 1 mod N).λ.

The first ensures is proven by ruling out the case where the rhs already holds,
and considering the case when the GVT on Server is out-of-date. In this case,
the last statement in Server is false and hence is keeping the Server co-located
with the client. Fairness and the second statement in Server prove the prop-
erty. As for the second ensures, we observe that when its lhs holds the guard
in the last statement of Server is enabled. Due to the fairness assumption, the
statement executes eventually, thus determining Server departure. However,
due to the sharing expressed by invariant (ma6), the statement in P(k) is en-
abled and executes eventually even if Server is already departed, since the GVT
estimate is retained according to the disengage clause. Since no assumption
can be made on the scheduling of these statements, according to the order in
which they are executed either the first or the second disjunct in the rhs of the
ensures is established. Repeated application of this progress property when
the first disjunct of (ma15) holds leads either to third disjunct, which actually
proves our goal, or to the second one. In this latter case, fairness, the transient
sharing captured by invariant (ma5), and the first statement in Server guaran-
tee that the Server stays at the client location until the timer value mirrored in
Server .τ equals the one owned by the client, thus leading to the rhs of (ma12).

Proof of (ma6). The invariant holds initially. If the Server is initially co-located
with P(k), the GVT estimate owned by the latter is undefined, thus preserving
the invariant. If the two components are not co-located, then the lhs of the
implication does not hold and thus preserves the invariant. As for the state-
ments in the system, the first statement in P(k) preserves the invariant as well,
in that it possibly undefines the GVT estimate in P(k) or leaves it unaffected.
Execution of the second statement when P(k) and Server are co-located actu-
ally guarantees that the GVT estimates in P(k) and Server assume the same
value. Finally, the migration expressed by the last statement in Server does
not affect the invariant, since upon engagement on P(k) the engage clause
of the first interaction guarantees that equality of the two GVT estimates is
established, while disengagement falsifies the lhs of the implication and thus
preserves the invariant.

Proof of (I2). The invariant holds initially. Then, the statements that may affect
the invariant, namely, the one in P(k) and the second and third in Server, either
leave the variables involved unaffected or falsify the lhs, thus preserving the
invariant.

Proof of (I3). The invariant holds initially. Then, the first statement of P(i) sat-
isfies the invariant, since P (i).t can only increase, due to the definition of f and
g. Furthermore, execution of the first statement in Server actually establishes
the invariant. No other statement can affect the invariant.

Reasoning About Code Mobility with Mobile Unity · 49

Proof of (I4). The invariant holds initially. The first statement in P(k) falsifies
the lhs of the invariant, thus preserving it. Then, we observe that the behavior
of Server may affect the invariant only when the Server and P(k) are co-located.
Then, invariants (ma3) and (ma6) guarantee that the invariant is preserved.
The migration statement in Server does not affect the invariant neither on
engagement, for which the aforementioned argument holds, or disengagement,
where values are retained thus preserving the invariant.

Proof of (ma4). We observe that the only statement that could affect the lemma
is the first one in Server. However, invariant (I3) guarantees that either the
lhs of the unless is unaffected or its rhs is established.

Proof of (ma5). This invariant is proven with the same argument used for the
verification of (ma6) in Section 7.2.3.

C. REMOTE EVALUATION

Invariants (rev1), (rev6), (rev10) and (rev12) can be proven directly from the
program text.

Proof of (L3). This lemma is proven with the same arguments used in Section 7.2
for the CS solution. In fact, it needs only reasoning about a single client, whose
behavior is unchanged.

Proof of (L4). The unless part of the property is proven as in the CS solution.
As for the leads-to part, we consider two cases according to invariant (rev1).
Our proof strategy is to show that:
(1) if Min(k) and P(k) are co-located, Min(k) eventually migrates to Server’s

location,

P (k).t = β ∧ Server .τ(k) < β ∧Min(k).λ = P (k).λ

7→ P (k).t = β ∧ Server .τ(k) < β ∧Min(k).λ = Server .λ;
(rev13)

(2) if Min(k) and Server are co-located, then

P (k).t = β ∧ Server .τ(k) < β ∧Min(k).λ = Server .λ

7→ P (k).t = Server .τ(k) = β
(rev14)

holds, expressing the fact that the value of the local timer of P(k) is even-
tually communicated to Server.

Disjunction and transitivity of (rev13) and (rev14) complete the proof.

Proof of (rev14). Invariant (rev4) guarantees that Min(k) holds the proper
value to be communicated to the Server. In addition, invariant (rev5) guaran-
tees that each update made to the copy of the global state belonging to Min(k)
is seen by Server as well. The proofs for invariants (rev4) and (rev5), which
both involve reasoning about transient sharing, are given later in the remainder
of this section. The implication theorem (T5), together with the two invariants
above, yields

P (k).t = β ∧ Server .τ(k) < β ∧Min(k).λ = Server .λ

7→ P (k).t = β ∧ Server .τ(k) < β ∧Min(k).λ = Server .λ ∧

Min(k).τ(k) = Server .τ(k) ∧Min(k).t = P (k).t

50 · G.P. Picco and G.-C. Roman and P.J. McCann

From the program text, it can be argued that

P (k).t = β ∧ Server .τ(k) < β ∧Min(k).λ = Server .λ ∧

Min(k).τ(k) = Server .τ(k) ∧Min(k).t = P (k).t

ensures P (k).t = β ∧Min(k).λ = Server .λ ∧

Min(k).τ(k) = Server .τ(k) ∧Min(k).t = P (k).t ∧

Min(k).t = Min(k).τ(k)

which clearly leads to the goal by application of the implication theorem.

Proof of (rev13). This is proven similarly to (cs13), by application of disjunction
according to invariant (I2) and of transitivity to the following chain of ensures:

P (k).t = β ∧ Server .τ(k) < β ∧Min(k).λ = P (k).λ

ensures P (k).t = β ∧ Server .τ(k) < β ∧Min(k).λ = P (k).λ ∧ ¬def(P (k).T)

ensures P (k).t = β ∧ Server .τ(k) < β ∧Min(k).λ = P (k).λ ∧

P (k).RQ = 〈server,cs,minServ, β〉

ensures P (k).t = β ∧ Server .τ(k) < β ∧Min(k).λ = Server .λ.

Proof of (rev3). The invariant holds initially, from the program text. If the lhs
of the invariant holds before execution of the first statement, invariant (rev9)
guarantees that Min(k) and Server are co-located. Hence, the sharing expressed
by the third interaction is in place, and the invariant is preserved after execu-
tion. On the other hand, if the lhs does not hold, the statement is disabled
and the invariant is preserved. Migration statements preserve the invariant as
well, because engagement and disengagement preserve the invariant either by
establishing its rhs or by falsifying its lhs. No other statement can affect the
invariant.

Proof of (rev4). The only statement that may affect this invariant is the first
one in P(k). However, invariant (rev8) let us conclude that, if (rev4) and
Min(k).λ = Server .λ hold before execution of the statement, (rev4) is pre-
served because the statement is disabled. On the other hand, if (rev4) holds
before execution of the statement while Min(k).λ = P (k).λ, then the first in-
teraction takes place as soon as P (k).t is updated, changing the local timer in
P(k) accordingly. Migration statements do not affect the invariant, although in
principle they could involve the read only shared variable in the first interaction.
However, the engage clause in the first interaction actually establishes (rev4).
Furthermore, no disengage clause is specified, hence the value of the variables
as specified by the invariant before disengagement is retained.

Proof of (rev5). The invariant holds as the conjunction of (rev3) and (rev9).

Proof of (rev9). The invariant holds initially, since Min(k) and P(k) are co-
located and τ is undefined in Min(k)—both sides of (rev9) are false. Looking
at the program text, the only statements which may affect the invariant are
those involving migration of Min(k) and the ones modifying Min(i).τ . Let us
consider the second statement in the Interactions section. If the lhs of (rev9)
holds before execution, the statement is disabled. On the other hand, if the lhs
does not hold, Min(k).τ must be undefined in order to preserve the invariant.

Reasoning About Code Mobility with Mobile Unity · 51

Execution of the statement forces Min(k) to become co-located with Server and
causes engagement of the τ variables belonging to Min(k) and Server. Because
of invariant (rev6), τ becomes defined in Min(k), thus preserving the invariant.
Similar reasoning holds for the last statement of the system. If the lhs and
the rhs of (rev9) are both false, invariant (rev7) prevents execution of the
statement and thus preserves the invariant. On the other hand, if both sides
of (rev9) are true, the migration expressed by the bracketed statement take
place, thus triggering disengagement of the values of τ . As a consequence,
after execution of the statement the lhs of the invariant is false and, according
to disengage clause of the third interaction, τ becomes undefined in Min(k),
thus falsifying the rhs as well and preserving the invariant. Finally, let us
consider the first statement in Min(k). If the lhs of (rev9) does not hold, the
rhs is false as well, thus preventing execution of the statement and preserving
the invariant. On the other hand, if Min(k) and Server are co-located, the
invariant states that before execution of the statement τ is defined in Min(k).
However, execution of the statement must comply with invariant (rev10), and
thus preserves (rev9).

Proof of (I2). The invariant holds initially, because the value of each timer and
GVT estimate is initially zero. As in the corresponding proof in Appendix A,
proving (I2) involves proving

inv. P (k).t = P (k).RQ ↑ 4 = β ∧ P (k).RQ ↑ 1 = k ⇒ 〈min l :: P (l).t〉 = β.

and observing that the first statement in P(k) is disabled when the lhs of the
above holds, as a consequence of invariant (rev5). Then, the above is proven
by observing that

inv. P (k).t = Min(k).q ↑ 4 = β ∧Min(k).q ↑ 1 = k ⇒ 〈min l :: P (l).t〉 = β

can be proven directly from the program text together with invariant (rev2)
and (rev11), and also

inv. Min(k).t = Min(k).T = β ⇒ 〈min l :: P (l).t〉 = β

can be proven from the program text. The above, together with (rev4),
proves (I2).

Proof of (I3). The invariant holds initially, from program text. The are only
two statement that may affect the invariant. If Min(k) and P(k) are co-located,
the first statement in P(k) may execute. However, the invariant is preserved
according to the definition of f and g. If the two components are not co-located,
invariant (rev8) guarantees that such a statement is disabled. In this case, the
first statement in Min(k) is enabled, and it actually establishes the invariant
because of (rev3) and (rev4).

Proof of (I4). The invariant is proven with the same arguments used in Ap-
pendix A, although the lemma

〈min l :: Server .τ(l)〉 = β unless 〈min l :: Server .τ(l)〉 > β

is proven differently. The only statement that may affect the lemma is the first
in Min(k), which is enabled only when Min(k) and Server are co-located, as

52 · G.P. Picco and G.-C. Roman and P.J. McCann

stated by (rev9). Execution of this statement, together with invariant (I3)
and (rev5), establishes

min(P (l).t, 〈min m : m 6= l :: Server .τ(m)〉) ≥ β

as in the CS solution, which satisfies the lemma.

Proof of (rev2). The invariant holds as the conjunction of (rev1), (rev7), and
(rev9).

Proof of (rev7). The invariant holds initially, from the program text. The first
statement and the third statement in Min(k) are enabled only when the lhs of
the invariant does not hold. Execution of the first statement, due to (rev10),
keeps the lhs false, and thus preserves the invariant. Execution of the third
statement does not affect the lhs at all, and thus the invariant is preserved
straightforwardly. Migration statements may affect the invariant. Execution
of the second statement in the Interactions section establishes def(Min(k).τ)
due to the engage clause in the third interaction and to (rev6). Finally, execu-
tion of the last interaction establishes the invariant. The migration statement
is executed synchronously with the statement voiding Server .q(i): disengage-
ment of this variable and Min(k).q causes the latter to remain undefined after
migration. At the same time, the disengage clause in the third interaction
voids the value of Min(k).τ .

Proof of (rev8). The invariant holds initially, since P(k) and Min(k) are initially
co-located and hence the lhs of the implication is false. Then, there are only
two statements which may affect the invariant. If the lhs holds before execution
of the first statement in P(k), then the statement is disabled and the invariant
preserved. If the lhs holds before execution of the third statement in P(k),
invariant (rev12) guarantees that the statement is disabled, preserving the
invariant.

Proof of (rev11). The invariant holds initially, from the program text. The
first statement in Min(k) may affect the invariant. However, if Min(k) is not
co-located with Server, invariant (rev9) guarantees that this statements is
disabled. On the other hand, if the two components are co-located, execution of
the statement assigns a defined value toMin(i).q and then to Server .q(i), being
sharing in place through the fourth interaction. Migration statements may also
affect the invariant. The second statement in the Interactions section actually
establishes the invariant through the engage clause of the fourth interaction.
The last statement in the system establishes the invariant as well, since it
assigns an undefined value to Server .q(i), which is still shared with Min(i).q,
and causes migration of Min(k); since no disengagement clause is specified for
the fourth interaction, the two variables retain an undefined value.

REFERENCES

Amadio, R. 1997. An Asynchronous Model of Locality, Failure, and Process Mobility. In

D. Garlan and D. L. Métayer Eds., Proc. of the 2nd Int. Conf. on Coordination Models
and Languages (COORDINATION ’97), Volume 1282 of LNCS (Berlin, Germany, Sept.
1997), pp. 374–391. Springer.

Baldi, M., Gai, S., and Picco, G. P. 1997. Exploiting Code Mobility in Decentralized

and Flexible Network Management. In K. Rothermel and R. Popescu-Zeletin Eds.,

Reasoning About Code Mobility with Mobile Unity · 53

Mobile Agents: 1st International Workshop MA ’97 , Volume 1219 of LNCS (Apr. 1997),

pp. 13–26. Springer.

Cardelli, L. and Gordon, A. 2000. Mobile Ambients. Theoretical Computer Sci-

ence 240, 1.

Carzaniga, A., Picco, G., and Vigna, G. 1997. Designing Distributed Applications with

Mobile Code Paradigms. In R. Taylor Ed., Proc. of the 19th Int. Conf. on Software

Engineering (ICSE’97) (1997), pp. 22–32. ACM Press.

Chandy, K. and Misra, J. 1979. Distributed Simulation: A Case Study in Design and

Verification of Distributed Programs. IEEE Trans. on Software Engineering 5, 5 (Sept.),

440–452.

Chandy, K. and Misra, J. 1988. Parallel Program Design: A Foundation. Addison-Wesley.

Cugola, G., Ghezzi, C., Picco, G., and Vigna, G. 1997. Analyzing Mobile Code Lan-

guages. In J. Vitek and C. Tschudin Eds., Mobile Object Systems: Towards the Pro-
grammable Internet , Volume 1222 of LNCS, pp. 93–111. Springer.

Fournet, C. et al. 1996. A Calculus of Mobile Agents. In Proc. of the 7th Int. Conf. on

Concurrency Theory (CONCUR’96), Volume 1119 of LNCS (Pisa, Italy, Aug. 1996), pp.

406–421. Springer.

Fuggetta, A., Picco, G., and Vigna, G. 1998. Understanding Code Mobility. IEEE

Transactions on Software Engineering 24, 5.

Garlan, D. and Métayer, D. L. Eds. 1997. Proc. of the 2nd Int. Conf. on Coordination
Models and Languages (COORDINATION ’97), Volume 1282 of LNCS (Berlin, Germany,
Sept. 1997). Springer.

Gray, R. 1995. Agent Tcl: A transportable agent system. In Proc. of the CIKM Workshop
on Intelligent Information Agents (Baltimore, Md., Dec. 1995).

Gray, R. et al. 1997. Mobile agents for mobile computing. In Proc. of the 2nd Aizu Int.
Symp. on Parallel Algorithms/Architectures Synthesis (Fukushima, Japan, Mar. 1997).

Harrison, C., Chess, D., and Kershenbaum, A. 1997. Mobile Agents: Are they a good

idea? In J. Vitek and C. Tschudin Eds., Mobile Object Systems: Towards the Pro-
grammable Internet , Volume 1222 of LNCS, pp. 25–47. Springer. Also available as IBM

Technical Report.

Johansen, D., van Renesse, R., and Schneider, F. 1995. An Introduction to the
TACOMA Distributed System - Version 1.0. Technical Report 95-23 (June), Dept. of Com-

puter Science, University of Tromsø and Cornell University, Tromsø, Norway.

Jul, E., Levy, H., Hutchinson, N., and Black, A. 1988. Fine-grained Mobility in the
Emerald System. ACM Trans. on Computer Systems 6, 2 (Feb.), 109–133.

Kiniry, J. and Zimmerman, D. 1997. A Hands-On Look at Java Mobile Agents. IEEE

Internet Computing 1, 4 (July-Aug.), 21–30.

Knabe, F. 1995. Language Support for Mobile Agents. Ph. D. thesis, Carnegie Mellon

University, Pittsburgh, Pa. Also available as Carnagie Mellon School of Computer Science
Tech. Rep. CMU-CS-95-223 and European Computer Industry Centre Tech. Rep. ECRC-
95-36.

Lange, D. and Oshima, M. 1998. Programming and Deploying Java Mobile Agents with
Aglets. Addison-Wesley.

Magic, G. 1995. Telescript Language Reference. General Magic.

De Nicola, R., Ferrari, G., and Pugliese, R. 1998. KLAIM: A Kernel Language for

Agents Interaction and Mobility. IEEE Transactions on Software Engineering 24, 5.

McCann, P. and Roman, G.-C. 1997. Mobile UNITY Coordination Constructs Applied to

Packet Forwarding for Mobile Hosts. In D. Garlan and D. L. Métayer Eds., Proc. of the

2nd Int. Conf. on Coordination Models and Languages (COORDINATION ’97), Volume
1282 of LNCS (Berlin, Germany, Sept. 1997), pp. 338–354. Springer.

McCann, P. and Roman, G.-C. 1998. Compositional Programming Abstractions for Mo-

bile Computing. IEEE Transactions on Software Engineering 24, 2.

Milner, R., Parrow, J., and Walker, D. 1992. A Calculus for Mobile Processes I. Infor-

mation and Computation 100, 1 (Sept.), 1–40.

54 · G.P. Picco and G.-C. Roman and P.J. McCann

Object Management Group. 1995. CORBA: Architecture and Specification. Object Man-

agement Group.

Ousterhout, J. 1995. Tcl and the Tk Toolkit. Addison-Wesley.

Picco, G., Roman, G.-C., and McCann, P. 1997. Expressing Code Mobility in Mobile

UNITY. In M. Jazayeri and H. Schauer Eds., Proc. of the 6th European Software En-

gineering Conf. held jointly with the 5th ACM SIGSOFT Symp. on the Foundations of

Software Engineering (ESEC/FSE ’97), Volume 1301 of LNCS (Zurich, Switzerland, Sept.

1997), pp. 500–518. Springer.

Roman, G.-C., McCann, P., and Plun, J. 1997. Mobile UNITY: Reasoning and Specifi-

cation in Mobile Computing. ACM Trans. on Software Engineering and Methodology 6, 3

(July), 250–282.

Stamos, J. and Gifford, D. 1990. Remote Evaluation. ACM Trans. on Programming

Languages and Systems 12, 4 (Oct.), 537–565.

Straßer, M., Baumann, J., and Hohl, F. 1996. Mole—A Java Based Mobile Agent

System. InM. Mühlaüser Ed., Special Issues in Object-Oriented Programming: Workshop

Reader of the 10th European Conf. on Object-Oriented Programming ECOOP’96 (July

1996), pp. 327–334. dpunkt.

Sun Microsystems. 1995. The Java Language Specification. Sun Microsystems.

Tschudin, C. 1994. An Introduction to the M0 Messenger Language. Univ. of Geneva,

Switzerland.

Vitek, J. and Tschudin, C. Eds. 1997. Mobile Object Systems: Towards the Programmable
Internet, Volume 1222 of LNCS. Springer.

White, J. 1996. Telescript Technology: Mobile Agents. In J. Bradshaw Ed., Software
Agents. AAAI Press/MIT Press.

