
Content-Based Dispatching in a Mobile Environment

Gianpaolo Cugola, Elisabetta Di Nitto, Gian Pietro Picco
Politecnico di Milano, Dipartimento di Elettronica e Informazione

 Piazza Leonardo da Vinci 32, 20133 Milano, Italy
{cugola, dinitto, picco}@elet.polimi.it

1. INTRODUCTION
The advances in the area of wireless networks and the

availability of powerful mobile computing devices like
laptops and personal digital assistants (PDAs) at a
reasonable price have fostered the diffusion of mobile
computing [7]. This term generically refers to a scenario
where the hosts taking part in the computation are mobile.
This leads to very different interpretations. At one
extreme, mobility takes into account the needs of nomadic
users, i.e., users who connect to the network from arbitrary
and changing locations, and who are not permanently
connected. Instead, mobile users retain connectivity during
movement, typically by exploiting wireless communication
links. These forms of mobile computing already found
their way in the market, which offers services to read their
e-mail or browse the Web while on the road.

At the other extreme, however, research in mobile
computing is investigating even more radical scenarios
where communication takes place completely through a
wireless network, without any contact to a fixed network.
Network functions (e.g., routing) are then provided
completely by the mobile devices themselves, which
operate both as intermediate and end nodes in the network,
composing what is known as an ad-hoc network [7]. This
allows people to communicate and collaborate even in
environments where a conventional fixed network is not
available, either because it has been destroyed (e.g., due to
a natural disaster) or because it has never been developed
(e.g., because economically or practically unfeasible).

In general, mobile computing fosters a new style of
computation that is context-aware. The resources and
services available to mobile users are not fixed, rather they
change according to the availability of connectivity and to
the current location. Thus, for instance, a mobile user
moving through a building with a PDA could take
advantage of services such as printing through the nearest
printer available or browsing the list of internal phone
numbers starting from the people that work in the
department the user is walking through.

Despite the technological advances in wireless
networking, the research community is still investigating
how to support and exploit context-aware computing. In
particular, context-aware computing is likely to have an
impact on middleware technology. Middleware will
provide the programmer with proper mechanisms to

manage changes in connectivity and location-dependent
access to resources and services. Based on our experience,
we argue that publish/subscribe middleware is a good
candidate for context-aware computing [2],[1][4]. The
communication enabled by this middleware is inherently
asynchronous, and thus better suited than synchronous
communication to cope with the unannounced
disconnection characterizing mobile networks. Moreover,
the routing of a message is performed on the basis of its
content and on a declaration of interest that is explicitly
expressed by potential recipients, as opposed to
conventional approaches where routing is determined by
the address of the receiver as established by the publisher
of the message. The aforementioned characteristics make
this kind of middleware suitable for situations where the
communicating components need to be decoupled and
dynamic reconfiguration is a critical problem. For
instance, a PDA could easily exploit a publish/subscribe
approach to advertise its presence in a room and retrieve
the services available in it.

Unfortunately, although several publish/subscribe
middleware have been developed thus far, both in industry
and in academia, they happen to be designed for fixed
network environments. Thus, they do not take into account
the problems introduced by wireless networks, related to
the dynamic reconfiguration of the network topology.

The current goal of our research is to evaluate the
impact of mobile computing on the design and
implementation of a publish/subscribe message-oriented
middleware. In the remainder of this paper we introduce
publish/subscribe middleware, provide a preliminary
discussion about how mobility affects this kind of
middleware, and present our research agenda on the topic.

2. Publish/Subscribe Middleware
In a publish/subscribe middleware components

communicate by generating and receiving messages. A
component usually generates a message when it wants to
let the “external world” know that some relevant event
occurred either in its internal state or in the state of other
components with which it interacts. The relevant aspect of
this process is that the message does not contain the list of
its recipients. The message is propagated to any
component that has declared interest in receiving it by
issuing a subscription, which is a predicate on the content
of the event. A connector called dispatcher or bus is in

charge of receiving messages, evaluating the subscription,
and propagating the messages to their listeners. The
propagation of messages is completely hidden to the
component that generated the message. Thus, the
dispatcher implements a multicasting mechanism that
fully decouples message generators from receivers. This
provides two important effects. First, a component can
operate in the system without being aware of the existence
of other components. The only knowledge necessary is the
one about the structure of the messages that are of interest,
in order for the component to issue the related
subscriptions. Second, it is always possible to plug a
component in and out of the architecture without affecting
the other components directly. These two effects guarantee
a high compositionality and reconfigurability of the
resulting software architecture.

In order to guarantee scalability of publish/subscribe
middleware, some approaches for distributing the
dispatcher have been proposed. In the middleware we
developed, JEDI [2], the dispatcher is actually represented
by a number of dispatching servers organized in a
hierarchy. The distribution of dispatching servers is
transparent to the other components. The system, in fact,
guarantees that subscribers receive all matching messages
regardless of the position of the corresponding publishers
in the dispatching hierarchy. Dispatching servers
coordinate among each other to minimize the network
traffic. In particular, they implement a coordination
protocol that is used to manage propagation of messages
outside the boundaries of a single dispatching server.

A JEDI feature relevant to mobile computing is the
possibility of supporting the disconnection and
reconnection of components to the system. Components
can invoke the moveOut operation to disconnect from the
dispatcher, change location, and then invoke the moveIn
operation to reconnect again through a different
dispatching server. Dispatching servers manage temporary
storage of messages for the duration of the disconnection
and coordinate during the execution of moveIn to
guarantee that messages are not duplicated and are
received in a sequence that respects causal ordering. As we
discuss in the next section, although this feature enables
logical mobility of components, it must be extended to
cope with the requirements posed by physical mobility.

3. Publish/Subscribe for Mobility:
 A Preliminary Analysis

As mentioned in the introduction, mobile computing
actually encompasses a broad range of scenarios, which
are likely to pose very different requirements to the
middleware. A first, rough categorization distinguishes
among two scenarios:

Base station. This scenario is characterized by the
presence of a wired network, that is exploited to carry out
all network functions. Routers on such a network

constitute the access points for the mobile hosts, that
communicate one with the other by exploiting the fixed
infrastructure. The Mobile IP protocol [6] is based on this
scenario. Other examples are the cellular phone network
(GSM and the new UMTS) and the satellite network.

Ad-hoc network. In this case only wireless connectivity
exists, and there are no predefined hosts on the fixed
network acting as routers. In a typical configuration, each
mobile host operates as a router, thus acting as
intermediary between two or more hosts that otherwise
could not be reciprocally visible in the wireless network.
Whenever hosts loose contact, the topology of the network
is dynamically changed accordingly. An example of
network protocol developed to support this scenario is
Bluetooth [3].

Within this scenarios, however, different elements can
vary, bringing very different requirements on the
middleware. Typically, the following elements are
considered relevant in the literature:
• Number of mobile nodes. It may range between few

units in the case of “impromptu” collaborative work
meetings, to thousands of units in the case of an
automotive navigation system.

• Range of movement. Imprompty meetings typically
need a short range. Disaster recovery and military
applications typically involve a medium range of
operations. Finally, automotive navigation is typically
wide range.

• Frequency of movement. Scenarios span from
continuous mobility (e.g., automotive navigation) to
burst mobility (e.g., meetings or some cases of
ubiquitous computing).

All the aforementioned dimensions influence the
design choices for a middleware and in some cases could
even lead to conflicting solutions. In general, we can argue
that to operate in a mobile environment, a
publish/subscribe middleware (and in general any
middleware for mobility) must offer mechanisms that cope
with the unannounced disconnection of its clients. The
trivial approach could be of managing unannounced
disconnections as network faults that are not under the
responsibility of the middleware. This approach, however,
overlooks the fact that, in mobile environments,
unannounced disconnection is more the rule than the
exception.

Other main problems to be considered concern the
deployment and reconfiguration of the dispatching system.
Intuitively, these depend mostly on the networking
scenarios being considered. In the case of a base station
scenario, it is reasonable to assume that dispatching
servers are installed on the wired network. Mobile hosts
connect to the dispatching server that is installed closest to
the router they are currently connected to. By moving from
a location to another, mobile hosts could loose connection
with the router. From the point of view of the

publish/subscribe middleware, this means that they
disconnect from the system in an unannounced way. On
the side of the dispatcher the disconnection could be
simply detected the first time it needs to contact the mobile
host to deliver a message. In this case, the dispatcher could
simply execute the move-out procedure on behalf of the
mobile host. On the side of the mobile host, proper
buffering mechanisms should also be provided for
outgoing messages. The publish/subscribe infrastructure
should also manage special cases such as the mobile host
connects to another dispatcher before its origin dispatcher
has realized that it has disconnected.

In the ad-hoc network case the architecture of the
dispatching system has to be radically modified in order to
adapt to the new characteristics of the network. We can
envisage two possible approaches:
• Dispatchers are installed on a set of mobile hosts (e.g.,

the ones that have more computational resources can
be selected) according to a certain topology. As in the
base station scenario they properly manage
unannounced disconnection of publishers/subscribers.
Differently from the previous case, now they need to
implement some mechanisms that enable dynamic
reconfiguration of the dispatching system whenever a
dispatcher is not anymore reachable through the
wireless communication. While the problem of
dynamic reconfiguration is currently being studied for
wired networks [5], the results obtained in this context
could not be directly applicable in the ad-hoc network
case given the potential high frequency of such
reconfiguration events.

• The middleware does not rely on a dispatching system
having a specific topology. Each component acts both
as a publisher/subscriber and as a dispatcher. In
particular, it just acts as a repeater of all the messages
it receives by exploiting the broadcast nature of the
wireless communication. All components being in a
certain range can be reached by a message and repeat
it again. In this case, of course the same component
could receive a message twice. Therefore, proper
filtering mechanisms should be defined so that the
component avoids reconsidering and repeating this
message again.

All approaches we have mentioned appear to have
important effects on the semantics of services offered by
the middleware to the applications. For instance, providing
guaranteed delivery of messages in the ad-hoc scenarios
could be even impossible, given the unpredictability of
system reconfigurations. Therefore, the behavior of a
middleware suitable for mobility has to be carefully
identified and defined.

In addition, new requirements are imposed on the
underlying network protocols. Our current experiments
with TCP/IP have shown several weaknesses of such
protocol when applied to ad-hoc scenarios:

• While TCP declares to guarantee delivery, it does not
manage the cases where the two parties involved in a
communication loose connectivity and never regain it.

• There is insufficient information to determine when
and why a disconnection has occurred.

4. Conclusions and future work
In this paper we argued that publish/subscribe

middleware is particularly suited for mobile computing.
However, several problems must be tackled before
currently available publish/subscribe middleware can be
used in the mobile environment. Here, we gave a very
preliminary analysis of some of the main issues to be
considered. These range from the need for redesigning the
internal structure of the dispatching mechanism to the
opportunity of defining a new semantics for
publish/subscribe services, to the need for clearly
identifying the requirements for the underlying
communication infrastructure. We plan to go further in
this analysis. To reduce the complexity of the work, we
will start considering the base station scenario identified in
Section 3. After analyzing it in details we will move to the
other, most complex, scenarios. For each scenario, we will
analyze the problems introduced by mobility; then we will
formalize the semantics of a possible publish/subscribe
middleware to support the given scenario (in particular
with respect to the semantics of dispatching); finally we
will design and implement a prototype.

References
[1] G. Cugola, “Tolerating Deviations in Process Support

Systems Via Flexible Enactment of Process Models”. IEEE
Trans. on Software Engineering, vol. 24, num. 11,
November 1998.

[2] G. Cugola, E. Di Nitto, A. Fuggetta “The JEDI Event-Based
Infrastructure and its Application to the Development of the
OPSS WFMS”. To appear in IEEE Trans. on Software
Engineering.

[3] R. Mettala. “Bluetooth Protocol Architecture”, white paper,
August 1999.
http://www.bluetooth.com/developer/whitepaper/whitepaper
.asp.

[4] G.P. Picco, A.L. Murphy, and G.-C. Roman. “Lime: Linda
Meets Mobility”, In Proceedings of the 21st International
Conference on Software Engineering (ICSE'99), Los
Angeles (USA), D. Garlan and J. Kramer, eds., May 1999.

[5] P. Oreizy et al. "An Architecture-Based Approach to Self-
Adaptive Software," IEEE Intelligent Systems, vol. 14, no.
3, pages 54-62. May/June 1999.

[6] C. Perkins. IP Mobility Support. RFC 2002.

[7] G.-C. Roman, G.P. Picco, and A.L. Murphy. "Software
Engineering for Mobility: A Roadmap". Invited contribution
to the book Future of Software Engineering. ACM Press
2000.

