
STBenchmark: Towards a Benchmark for Mapping Systems

Bogdan Alexe
UC Santa Cruz

abogdan@cs.ucsc.edu

Wang-Chiew Tan
UC Santa Cruz

wctan@cs.ucsc.edu

Yannis Velegrakis∗

University of Trento

velgias@disi.unitn.eu

ABSTRACT
A fundamental problem in information integration is to precisely
specify the relationships, called mappings, between schemas. De-
signing mappings is a time-consuming process. To alleviate this
problem, many mapping systems have been developed to assist the
design of mappings. However, a benchmark for comparing and eval-
uating these systems has not yet been developed.

We present STBenchmark, a solution towards a much needed
benchmark for mapping systems. We first describe the challenges
that are unique to the development of benchmarks for mapping sys-
tems. After this, we describe the three components of STBench-
mark: (1) a basic suite of mapping scenarios that we believe repre-
sents a minimum set of transformations that should be readily sup-
ported by any mapping system, (2) a mapping scenario generator
as well as an instance generator that can produce complex map-
ping scenarios and, respectively, instances of varying sizes of a given
schema, (3) a simple usability model that can be used as a first-cut
measure on the ease of use of a mapping system. We use STBench-
mark to evaluate four mapping systems and report our results, as
well as describe some interesting observations.

1. INTRODUCTION
A fundamental problem in information integration is to precisely

specify the relationships, called mappings, between schemas. A
mapping is a precise specification of how data stored under differ-
ent representations are related. Mappings are fundamental building
blocks in many applications such as data integration, data exchange
and peer data management systems [21, 24, 26]. However, speci-
fying mappings (also referred to as the data programmability prob-
lem in [3]) is a time-consuming and laborious process [19] because
schemas are typically heterogeneous, designed independently, in dif-
ferent formats and with different applications in mind. In fact, one of
the goals of model management [3] is to make the task of designing
mappings between different representations easier.

In this paper, a mapping system is a visual programming sys-
tem with the goal of assisting a mapping designer towards the gen-
eration of a precise specification of the relationships between two
schemas with less effort. The precise specification is typically de-

∗Work partly done while visiting UC Santa Cruz

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

scribed in some programming language (e.g., XSLT or XQuery) and
it spells out the data exchange process, i.e., how an instance over
one schema, called the source schema, is to be translated into an in-
stance over the other schema, called the target schema. Today, many
mapping systems such as Altova Mapforce [29], IBM Rational Data
Architect [23], Microsoft BizTalk Mapper which is embedded in Mi-
crosoft Visual Studio [45], Stylus Studio [41], BEA AquaLogic [13],
and the research prototypes Clio [20] and HePToX [9] have been de-
veloped to alleviate the task of designing mappings. Despite the
availability of many mapping systems, there has been no benchmark
developed for comparing and evaluating them. Similar to the moti-
vation of benchmarking relational database management systems, a
benchmark for mapping systems is important for assessing their rel-
ative merits, which is in turn important to customers for making the
right investment decisions. In fact, a recent workshop on informa-
tion integration [6] has also raised the need for developing a bench-
mark for data exchange systems. However, unlike benchmarks for
relational database management systems [42] or XML query engines
such as [8, 12, 37, 39, 46], it is considerably more challenging to de-
sign a benchmark for mapping systems. One major difficulty arises
from the fact that there does not exist a standard input language or in-
put methodology for mapping systems. In contrast, benchmarks for
RDBMSs and XML query processing systems could leverage their
respective standard query languages, SQL and XQuery respectively,
to specify their benchmark test cases. We shall elaborate more on
the challenges in the design of a benchmark for mapping systems,
our solutions and the goals of STBenchmark in Sec. 2.

In this paper we present STBenchmark12, a first attempt towards
a benchmark for comparing and evaluating mapping systems. Our
evaluation criteria are based on the effort needed to implement a
mapping through the visual interface of a mapping system, the de-
gree of support offered by a mapping system for the implementation
of various scenarios, and the scalability of the generated transfor-
mation code in terms of schema and instance sizes. Our specific
contributions are the following:

(1) We identify the not obvious challenges that are unique to the
development of benchmarks for mappings systems, and explain how
STBenchmark deals with these challenges. (see Sec. 2)

(2) We decribe a suite of basic mapping scenarios we believe rep-
resents a minimum set of transformations that should be supported
through the visual interface of any mapping system. This means
that for every basic mapping scenario, the designer should be able to
obtain the desired executable code through the visual interface of a
mapping system without having to understand and manually modify
the executable code. These mapping scenarios are the result of a a
careful analysis of constructs commonly needed across different in-
1standing for Source-to-Target mapping Benchmark
2http://www.stbenchmark.org

S T
Visual

specification

XSLT XQuery…

Generation of
intermediate code

Generation of executable code

Source
Emp [0…*]

ssn
name

Target
Emp [0…*]

SSN
Name

(a) (b)

<Source>
<Emp>

<ssn>111</ssn>
<name>John</name>

</Emp>
<Emp>

<ssn>222</ssn>
<name>Ann</name>

</Emp>
</Source>

<Target>
<Emp>

<SSN>111</SSN>
<SSN>222</SSN>
<Name>John</Name>
<Name>Ann</Name>

</Emp>
</Target>

<Target>
<Emp>

<SSN>111</SSN>
<Name>John</Name>

</Emp>
</Target>

<Target>
<Emp>

<ssn>111</ssn>
<name>John</name>

</Emp>
<Emp>

<ssn>222</ssn>
<name>Ann</name>

</Emp>
</Target>

(c) (d) (e)

Figure 1: (a) Architecture of mapping systems. (b) An example visual specification and source instance. (c,d,e) Target instances.

formation integration applications, such as data exchange, data ware-
houses, XML publishing, schema evolution, as well as real-world
mapping specifications. (see Sec. 3)

(3) We present a mapping scenario generator and an instance gener-
ator we have designed and implemented. (see Sec. 4.) The mapping
scenario generator is able to produce complex mapping scenarios
between two schemas and the instance generator is able to construct
instances of varying sizes that conform to these schemas. As one can
extract schemas from the generated mapping scenarios the mapping
scenario generator can also be used as a schema generator. We also
describe how our generators can be applied to stress test algorithms
that were developed for a wide variety of information integration
projects such as schema integration, evolution, as well as composi-
tion and debugging of mappings.

(4) We describe a simple usability model, for assessing the ease of
use of the visual interface of a mapping system. While it is not meant
to replace a much needed comprehensive human-computer interac-
tion study (which is not the subject of this paper) on the usability of
mapping systems, it could be used for providing a first-cut measure
on the ease of use of a mapping system. (see Sec. 5)

(5) We evaluate four mapping systems with STBenchmark, report
our findings and describe some interesting observations (see Sec. 6).

2. CHALLENGES AND SOLUTIONS
State-Of-The-Art in Mapping Systems. Recall that a mapping sys-
tem is a visual programming system that is typically built with the
goal of assisting a mapping designer towards the generation of map-
pings between two schemas with less effort. The typical approach
taken by mapping systems to achieve this goal is to use a graphical
user interface and a graphical representation that abstracts the under-
lying specification between two schemas.

Our benchmark is targeted at relationship-based mapping systems
[36], which adopt the following methodology towards the design of
a mapping (see Fig. 1(a)): In the visual interface, one schema (the
source schema S) is displayed on the left panel of the screen while
the other schema (the target schema T) is displayed on the right of
the screen. After this, the mapping designer is allowed to relate el-
ements of the two schemas by creating lines between them. Some
mapping systems [5, 20, 29] can also suggest element correspon-
dences automatically between the two schemas. It is also possible to
visually specify complex relationships between elements of the two
schemas through a library of supported functions. In some mapping
systems, the functions in the library are direct correspondences to
functions native to the language in which the transformation is ex-
pressed. A function is typically depicted as a box with incoming and
outgoing lines that connect to schema elements or other functions.
Hence, the visual specification that illustrates the source and target
schemas, as well as the lines and boxes across elements of the two
schemas, provide an intuitive description of the underlying precise
specification. An example of a visual specification is shown on top
of Fig. 1(b). The visual specification can usually be compiled into

different executable languages, such as XSLT, XQuery, Java or C.
In tools such as [9, 20], this visual specification is first compiled
into an intermediate code from which executable code is generated.
Most mapping systems are also able to save the visual specification,
either in some proprietary format or directly as executable code, so
that the visual specification can be reloaded into the mapping sys-
tem at a later time. Hence, the input to these mapping systems could
either be a visual specification or a file in some proprietary format.
It is also worth noting that different mapping systems have different
levels of language support. For example, Stylus Studio supports the
use of many XSLT functions through its graphical user interface but
Clio does not.

Mapping systems are not to be confused with schema matching
systems. The latter is concerned with obtaining a set of mapping
elements, where each mapping element indicates how elements of
one schema relate to elements of the other schema [35]. The rela-
tionship specified between sets of elements could be as simple as
stating that the two sets are related, or it could involve a mapping
expression such as the concatenation of firstname and lastname of
one schema being equal to the name element of the other schema.
The set of mapping elements is required as input to the code gen-
eration process. Some mapping systems have a matching module
that (semi-)automatically derives these mapping elements, while in
many others, the set of mapping elements are manually specified
through the visual interface. We emphasize that STBenchmark is
not a benchmark for schema matching systems. There are already
proposals for schema matching benchmarks [17, 47]. However, it
would be interesting to consider incorporating a schema matching
benchmark into STBenchmark in future.

Challenges and Solutions of STBenchmark. A benchmark is “a
standardized problem or test that serves as a basis for evaluation
or comparison (as of computer system performance)” [30]. Hence,
one goal of STBenchmark is to provide a standard set of test cases
that could be used to evaluate and compare different mapping sys-
tems. However, there are many factors unique to mapping systems
that make the design of a benchmark for such systems considerably
more challenging than benchmarks for other types of systems such
as query engines.

One major difficulty is that currently, there does not exist a stan-
dard approach for designing a mapping between two schemas across
different mapping systems. Although lines and boxes are visual
metaphors commonly used as input across different mapping sys-
tems, they are interpreted in distinct ways by different systems. For
example, the simple visual specification depicted on top of Fig. 1(b)
which consists of a source and target schema with two lines that con-
nect the ssn elements and the name elements, respectively, is com-
piled into inequivalent XSLT scripts by different mapping systems.
The XSLT script that is generated by Altova Mapforce [29] groups
all ssns of employees in the source, followed by all names of em-
ployees in the source, under a single 〈Emp〉 tag. (see Fig. 1(c) which
is the result of applying Mapforce’s XSLT script on the source in-
stance shown at the bottom of Fig. 1(b).) Thus, in the case when

the source instance consists of more than one employee, the target
instance generated by the XSLT script does not even conform to the
target schema. (In fact, to specify a transformation that copies the
source instance, Mapforce requires an additional line between the
Emp elements in Fig. 1(b).) The XSLT script that is generated by
Stylus Studio [41] creates a single 〈Emp〉 tag within which there is
a single 〈SSN〉 and 〈Name〉 tag. Only the first ssn and name of em-
ployees in the source are listed under the 〈SSN〉 and 〈Name〉 tag
respectively. (see Fig. 1(d).) Microsoft’s BizTalk Mapper [45], IBM
Rational Data Architect [23] and Clio [20] generate XSLT scripts
that return a copy of the source instance. (see Fig. 1(e).)

Since mapping systems interpret the same visual specification in
different ways, it is therefore impossible to specify our benchmark
test cases as visual specifications to mapping systems. In contrast,
observe that benchmarks such as TPC-H [42] are able to leverage
the industry-wide standard query language SQL for specifying the
input test cases to different database vendors. Our solution to this
challenge is to specify each test case as a mapping scenario instead.

DEFINITION 2.1. A mapping scenario is a triple (S,T,P),
where S is a source schema, T is a target schema, and P is a precise
transformation function on how an instance of S is to be transformed
into an instance of T.

Since mapping systems do not take mapping scenarios as input,
each mapping scenario needs to be implemented by the benchmark
user by using the visual interface of each mapping system.

An important measure of the quality of a mapping system is its
performance. There are two natural aspects of performance: The
first is the time the mapping system takes to compile a visual spec-
ification into executable code. The second is the performance of
the generated executable code. Since all the mapping systems that
we encountered do not provide methods by which we can record
the time they take to generate executable code, we omit the first
performance aspect in STBenchmark. For the second aspect, our
solution is to measure the performance of the executable code on
a common execution engine. In this paper, we measure the qual-
ity of XSLT scripts that are generated by different mapping systems
on various mapping scenarios by executing the XSLT scripts on a
common XSLT execution engine. We measure how well the gener-
ated scripts scale with the size of the mapping scenario and source
instance through the use of STBenchmark’s mapping scenario and
instance generator (see Sec. 4). We focus on XSLT because all
mapping systems that we encountered support the generation of exe-
cutable code in XSLT. Similar tests could be carried out in the future
for other executable code generated in other languages.

As described earlier, a mapping system compiles a visual speci-
fication into executable languages, such as XSLT, XQuery, Java or
C. Since visual interfaces are very much part of mapping systems,
it is also important to assess the degree and ease by which one can
implement the mapping scenarios with the visual interface of the
mapping system. While it is sometimes easy to determine whether a
mapping system is able to implement a mapping scenario through its
visual interface, the ease by which the mapping scenario can be im-
plemented with the visual interface of the mapping system is signif-
icantly harder to quantify. Our solution to this challenge is a simple
usability model for assessing the ease of use of a mapping system
(see Sec. 5). We believe that our simple usability model is useful for
providing a first-cut measure on the ease of use of a mapping system.
However, we emphasize that the simple usability model is not meant
to replace a much needed comprehensive human-computer interac-
tion study (which is not the subject of this paper) on the usability of
mapping systems.

3. BASIC MAPPING SCENARIOS AND
REAL SOURCE INSTANCES

In this section, we describe the first component of STBenchmark
which consists of a set of basic mapping scenarios that we believe
represents a minimum set of transformation functions that should be
supported through the visual interface of any mapping system. This
means that each basic mapping scenario should be readily imple-
mentable through the visual interface of any mapping system with-
out having the mapping designer understand and modify the under-
lying executable code in order to achieve the desired effect. Thus,
valuable designer effort and time could be saved. The basic scenarios
are similar in spirit to benchmarks like TPC-H [42] and XMark [39],
which consist of a set of queries that is expected to be executable
by any database system or XML query engine. Our basic mapping
scenarios capture some transformations typical of information in-
tegration applications and they are derived by a careful analysis of
elementary constructs needed for applications such as data exchange
or data warehouses, XML publishing, schema evolution, real-world
mapping specifications, as well as the authors’ experience in these
areas. We emphasize that our basic mapping scenarios are not meant
to be an exhaustive representation of all possible transformations.
Rather, they are intended to capture common transformation cases
that occur in practice and have wide industry relevance. However,
they cover all the cases presented in [27].

Every basic mapping scenario is accompanied by a source in-
stance which has been extracted from a real data source such as
the BioWarehouse [7] or the DBLP Server [16]. Thus, the trans-
formation scripts generated by a mapping system can be evaluated
against these “real” source instances. In what follows, we describe
and justify each basic mapping scenario. The XQueries describing
the transformation functions can be found in Appendix A.
Copying In many data transformation applications it is frequently
the case that an instance or subinstance of a source schema is simply
copied to the target.

The source and target schema are shown in Fig. 2(a). The source
schema consists of a set of Source/Protein records3 which consist of
three subelements. This set of records is copied to the set of Tar-
get/Protein records.
Constant Value Generation This mapping scenario represents the
situation when some constants need to be created in the target. Such
scenario occurs frequently in practice according to our experience as
well as [7, 14, 27], where constant values that are independent of the
source instance need to be added to the target instance.

The target schema is shown in Fig. 2(b). The source schema can
be any schema and is therefore omitted. Here, a Target/DataSet ele-
ment is created to record the name of the database and the date when
the database was created. In this case, the constants “SwissProt” and
“July 4th” are the Name and LoadingDate respectively.
Horizontal Partitioning This mapping scenario represents the situ-
ation where the contents of a source are partitioned into two or more
fragments in the target. This scenario occurs frequently in schema
evolution [27]. It may happen that a set of elements grows so large
over time that it affects the performance of a database management
system. Hence, the database needs to be partitioned. As described
below, horizontal partitioning typically requires data filtering sup-
port (e.g., selection conditions) in mapping systems.

The source and target schema are shown in Fig. 2(c). The source
schema consists of a set of Source/Gene records, which consist
of three subelements. The target schema consists of two sets of
Target/Gene and Target/Synonym records respectively. (Ignore the
WID subelement in the target for this scenario.) The source records
3We use the nested relational model to interpret the schemas. Hence,
the order in which Source/Protein records occur does not matter.

Source
Protein [0…*]

name
accession
created

Target
Protein [0…*]

Name
Accession
Created

(a) Copy

Target
Dataset

Name
LoadingDate

“SwissProt”
”July 4th”

(b) Constant Value Generation

Source
Gene [0…*]

name
type
protein

Target
Gene [0…*]

Name
Protein
WID

Synonym [0…*]
Name
Protein
WID

(c) Horizontal partition and (d) Surrogate Key Assignment

Source
Reaction [0…*]

entry
name
comment
orthology
definition
equation

Target
Reaction [0…*]

Entry
Name
Comment
Orthology
CoFactor

ChemicalInfo [0…*]
Definition
Equation
CoFactor

(e) Vertical partition

Source
Reference [0…*]

title
year
publishedIn
Author [1…*]

name

Target
Publication [0…*]

Title
Year
PublishedIn
Name

(f) Unnesting (or Flattening)

Source
Reference [0…*]

title
year
publishedIn
name

Target
Period [0…*]

Year
Author [0…*]

Name
Publication [0…*]

Title
PublishedIn

(g) Nesting

Source
Name [0…*]

id
name
uniqueName
class

Node [0…*]
taxID
parentID
rank
emblCode

Target
Taxon [0…*]

Id
Name
UniqueName
Class
Parent
Rank
EmblCode

(i) Denormalization and Join Path Selection

Source
Experiment [0…*]

contact
date
description
ExperimentalData [0…*]

data
role

FlowCytometrySample [0…*]
contact
date
Probe [0…*]

data
type

Target
Experiment [0…*]

Contact
Date
Description
ExperimentalData [0…*]

Data
Role

(j) Keys and Object Fusion

Source
Contact [0…*]

name
address

street
city
zip

phone

Target
Contact [0…*]

FirstName
LastName
Address
Phone

(k) Manipulation of Atomic Values

f1
f2

f3

f1: getFirstName()
f2: getLastName()
f3: concat(street,city,zip)

Source
Gene [0…*]

name
type
protein

Target
Gene [0…*]

Name
Protein

Synonym [0…*]
Name
WID

(h) Self Joins

Figure 2: Basic Mapping Scenarios of Sec. 3.

are partitioned horizontally into the two target sets based on the
value of the type subelement: Target/Gene consists of Source/Gene
records whose type is “primary” and Target/Synonym consists of
Source/Gene records whose type is not “primary”. It is typically the
case that in horizontal partitioning, the schema of each target parti-
tion is identical to the source schema. However, we have omitted the
“type” subelement in the target partitions in this scenario.
Surrogate Key Assignment In data warehouses, objects are often
given new unique identifiers (or keys) that may be different from the
identifiers in the original data sources. The surrogate key assignment
scenario depicts this situation.

The source and target schema are identical to those of the hori-
zontal partitioning scenario except that now, we consider the WID
subelements in the target schema. See Fig. 2(d). As in the hor-
izontal partitioning scenario, Target/Gene consists of Source/Gene
records whose type is “primary” and Target/Synonym consists of
Source/Gene records whose type is not “primary”. In addition,
a fresh new value is generated for every record in the target
sets. Target/Gene/WID is the key for Target/Gene records and Tar-
get/Synonym/WID is the key for Target/Synonym records.
Vertical Partitioning The vertical partitioning scenario also occurs
frequently when a schema is redesigned or when the schema evolves.
In fact, this scenario is also referred to as the normalization task in
schema evolution [27].

Unlike horizontal partitioning which splits a set of records into
two or more different sets of records in the target based on some
condition, vertical partitioning splits a set of records vertically into

two or more sets of records in the target. In other words, the target
sets are typically projections of the original set of records.

The source and target schema of the vertical partition scenario
are shown in Fig. 2(e). The first four subelements and the last two
subelements of Source/Reaction are subelements of Target/Reaction
and Target/ChemicalInfo respectively. Additionally, Target/Reaction
and Target/ChemicalInfo are related via the referential constraint on
CoFactor. The transformation takes each record in Source/Reaction
and splits it into two smaller records in the target. At the same time,
a unique CoFactor value is used to relate the two smaller records in
the target sets.
Unnesting (or Flattening) Another frequently occurring scenario in
information integration and particularly in XML-to-relational stor-
age is that of unnesting (or flattening) nested structures.

The source and target schema are shown in Fig. 2(f). The source
schema is a set of Source/Reference records within which there is
a nested set of Author records. The target schema consists of a set
of Target/Publication records without any nested sets. The set of
Reference records in the source is flattened into a set of Publication
records in the target. In other words, Target/Publication consists of
the set of records that is the result of taking the Cartesian product
of each Source/Reference record with their respective nested set of
Author tuples.
Nesting The nesting scenario, which is the opposite of unnesting,
also occurs frequently in information integration applications such
as relational-to-XML publishing [40] and schema evolution [27].

The source and target schema are shown in Fig. 2(g).
Source/Reference is a set of “flat” records. In the target, informa-
tion about references is organized as follows: For each year, there is
an associated set of authors who published in that year, and for each
author, there is an associated set of publications of that author.
Self Joins Join is the main operation used to associate information
located in different elements. In some cases, the elements to be as-
sociated by the join path are located in the same relation. Hence, a
relation has to be joined with itself. A classic textbook example is
a self-join on the parent relation to retrieve the set of parent-child
pairs. Our self-join scenario is similar to the parent-child example
and is described below. The scenario has been derived from the real
data integration application Biowarehouse [7].

The source and target schema are shown in Fig. 2(h). The source
schema consists of a single set of Source/Gene records with three
subelements describing the name of the gene, the type (whether it
is ‘primary’ or not) and the protein which the gene belongs to. The
target schema consists of two sets of records, Target/Gene and Tar-
get/Synonym respectively. Since a protein can have multiple genes
but only one of the genes is primary, the primary gene is stored in
Target/Gene, while all other genes of the same protein (i.e., syn-
onyms) are stored in Target/Synonyms. Additionally, a foreign key
Target/Synonym/WID references Target/Gene/Name to indicate the
primary gene of each synonym and the protein to which they collec-
tively belong.
Denormalization and Join Path Selection Relevant or overlapping
information is often found in different data sources and needs to be
combined. It may happen that there are multiple ways (i.e., join
paths) to combine these data sources. The denormalization and join
path selection scenario depicts this situation and can be seen as the
reverse of vertical partitioning scenario.

The source and target schema are shown in Fig. 2(i). If a record
in Source/Name has id value equal to the taxID value of a record
in Source/Node, then the two records are combined to form a Tar-
get/Taxon record. Note that Source/Name and Source/Node records
can also be joined through the id-parentID subelements. However, in
this scenario, we require that Source/Name and Source/Node records
be joined through id-taxID subelements.

Keys and Object Fusion The scenarios presented so far have not
taken into consideration any key constraints that may exist in the
source or in the target. Keys are frequently used to merge informa-
tion from different sources that refer to the same real world object
(i.e., object fusion) and for duplicate elimination. Such scenarios
occur frequently in data integration.

The source and target schema are shown in Fig. 2(j). Every
time an experiment is performed, details about the experiment
are recorded in Source/Experiment. Each experiment is uniquely
identified by the contact and date subelements and may have
zero or more experimental data associated with it. An experi-
ment may also be associated with zero or more flow cytometry
probes. Information about flow cytometry probes is recorded under
Source/FlowCytometrySample. Each FlowCytometrySample is
also uniquely identified by its contact and date. Target/Experiment
is a warehouse of experimental data and flow cytometry probes.
It consolidates the two, based on contact and date, making no
distinction between experimental data and probes. In this transfor-
mation, we migrate all ExperimentalData from Source/Experiments
and all Probes from Source/FlowCytometrySample to Tar-
get/Experiment/ExperimentalData. In the target, all Exper-
imentalData from Source/Experiment and all Probes from
Source/FlowCytometrySample are grouped by contact and
date. Hence, Target/Experiment is essentially a full outer join of
Source/Experiment and Source/FlowCytometrySample on contact
and date.
Manipulating Atomic Values In data integration and schema evolu-
tion, information stored as one atomic element in one database may
be modeled as more than one atomic element in another. The re-
verse situation where multiple atomic elements in one database are
combined into a single element in another database also occurs fre-
quently in practice. Due to semantic heterogeneity, sometimes, there
is also a need to apply a function on an atomic value in order to bring
it into the correct semantic context in another database. A simple ex-
ample would be the need to translate US dollars into Euros. In all
these cases, mapping from one element to one or more elements and
vice versa will typically require the application of one or more func-
tions.

The source and target schema are shown in Fig. 2(k).
The transformation assumes the existence of three functions
getFirstName(), getLastName() and concat(). For
every Source/Contact record, a Target/Contact record is created
where its FirstName and LastName values are obtained by apply-
ing getFirstName() and getLastName(), respectively, on
the name value of the Source/Contact record. A reverse situation
occurs with Target/Contact/Address, where the Address value is the
result of applying the concat() function on street, city and zip of
Address in the Source/Contact record.

4. COMPLEX MAPPING SCENARIO AND
SOURCE INSTANCE GENERATION

In order to allow a thorough evaluation of the mapping systems,
it is important for a mapping benchmark to provide scenarios and
instances of different complexity and sizes. STBenchmark provides
two modules for this purpose, namely SGen and IGen. SGen takes
as input a set of configuration parameters and returns as output a
mapping scenario (S,T,P). Using appropriate configuration pa-
rameters, the mapping scenario generated by SGen can be signifi-
cantly more complex and larger than the basic mapping scenarios of
Sec. 3. SGen can also be used as a schema generator since one can
choose to ignore T and P . IGen takes as input a schema and a set of
configuration parameters and returns as output an instance that con-
forms to the input schema. The size of the generated instance varies
according to the configuration parameters.

Figure 3: (a) Example of an unnesting scenario generated by
SGen and (b) a concatenation of mapping scenarios by SGen.

The data model used internally by SGen and IGen is the nested
relational model, which is sufficiently general to model relational
schemas and a large class of XML schemas. In this model, a schema
is a set of roots (or labels), where each root has an associated type
τ . A type τ can be an atomic type (e.g., String or Int), or a Set of τ ,
or a record Rcd[l1 : τ1, ..., ln : τn], where li are labels and τi are
types. In the case when each root is a Set of Rcd[l1 : τ1, ..., ln : τn]
where τi are atomic types, this models a relational schema.

4.1 SGen: A mapping Scenario Generator
In what follows, we describe how SGen (i) allows a benchmark

user to tune the characteristics of a generated mapping scenario
through a set of configuration parameters, (ii) constructs the source
and target schemas, including source and target constraints, of a
complex mapping scenario from basic mapping scenarios, (iii) gen-
erates the specification of the transformation in a generated mapping
scenario, (iv) ensures that generated mapping scenarios are repro-
ducible over time, across different hardware platforms and operating
systems.

(i) Input configuration parameters to SGen. SGen allows a bench-
mark user to tune the characteristics of generated mapping scenarios
through a set of configuration parameters. These parameters essen-
tially specify the characteristics of the schemas in the mapping sce-
narios to be generated. The configuration parameters consist of 6
characteristic parameters C, along with 6 standard deviation param-
eters D, and 12 repetition parameters R (one for each basic scenario
and one for a composed scenario which will be explained shortly).
The parameters in C are described below.

• Nesting Depth (Nd): Determines the nesting level of the
schemas. If set to 0, the generated schemas are relational.

• Number of Subelements (Ns): Specifies the number of children
elements of an element. In the case of relational schemas, it
specifies the number of attributes in the tables.

• Join Size (Nj): Specifies the length of the join paths in the
schemas.

• Join Kind (Nk): Determines the kind of the joins (star or chain)
in the schemas.

• Join Width (Nw): Specifies the number of atomic subelements
that participate in a join.

• Number of Function Arguments (Na): Determines the number
of source atomic elements on which a function should be applied.

Every characteristic parameter in C is in fact the mean value of
a Gaussian distribution whose standard deviation is the value of the
corresponding parameter in D. By sampling values from these Gaus-
sian distributions, SGen is able to generate natural looking schemas,
i.e., schemas that are not rigid. For example, if Ns has a value of 3
and the corresponding standard deviation is 1, it essentially means
that most complex schema elements that are generated will have be-
tween 2 and 4 subelements, and not always 3. If the standard devi-

ation is 0, then every complex schema element will have exactly 3
subelements.

(ii) Generating Complex Mapping Scenarios. SGen generates
and outputs a complex mapping scenario by concatenating multi-
ple mapping scenarios. Intuitively, the concatenation of two sce-
narios M1 = (S1,T1,P1) and M2 = (S2,T2,P2), denoted
as M1.M2, is a new mapping scenario (S1.S2,T1.T2,P1.P2),
where S1.S2 (resp. T1.T2) denotes a schema that is obtained by
concatenating the roots of S1 (resp. T1) with the roots of S2 (resp.
T2) and P1.P2 has the following semantics: Given a source instance
I of S1.S2, the target instance of T1.T2 is obtained by concatenat-
ing the results of executing P1 and P2 on the parts of I that corre-
spond to S1 and S2 respectively. Here, we assume that the symbols
in S1 and S2 are disjoint and the symbols in T1 and T2 are disjoint.

The scenarios used in the concatenation by SGen are of two kinds.
The first kind is referred to as expanded scenarios. An expanded
scenario MB is generated from one of the basic mapping scenarios
described in Sec. 3, say B, using the configuration parameters C
and D. The transformation function PB of the expanded scenario
MB=(SB,TB,PB) is the same as the one described by the basic
mapping scenario B, except that PB is now written according to the
source and target schemas SB and TB, respectively. As an example
of an expanded scenario, consider the one illustrated in Fig. 3(a)
which has been generated by the Unnesting basic mapping scenario.
Observe that the specific expanded scenario has two additional levels
of nesting (i.e., Affiliation and Student4 and additional subelements
when compared to the basic unnesting scenario of section 3. The
transformation function of the expanded scenario of Fig. 3(a) can be
found in Appendix B.

The second kind of scenario used by SGen in the generation of its
complex mapping scenario is an intermix of different types of ba-
sic mapping scenario transformations, in which, unlike the previous
kind, there may be no clean separation between a Nesting and a Ver-
tical partitioning, for instance. This kind of scenario is referred to as
composed. Composed scenarios intend to capture cases where differ-
ent types of transformations occur simultaneously in the same part
of the schema. They are powerful enough to describe intermixed ba-
sic transformations such as those described by GLAV mappings [26]
or explicit mappings involving outer joins [34].

A composed scenario is constructed through a series of consecu-
tive steps that are described next and illustrated through an example
in Fig. 4. The role of each step it to model some of the basic mapping
scenario transformations. The first step in the creation of a composed
scenario is the generation of a schema S according to the configu-
ration parameters C and D. In the general case this will be a nested
schema with referential constraints involving multiple elements. If
Nd=1, the schema S will be relational, and if Nj or Nw are 0, then
there will be no referential constraints in it. Fig. 4(a) illustrates a
possible schema S generated in this first step. In the next step, for
every root i in S, a list Fi is constructed to contain all the atomic
elements in the root i, at any depth. See Fig. 4(b). This step is per-
formed in order to implement the Flattening transformation. In the
third step, one of the lists Fi is randomly selected and duplicated.
The new list F ′ is added in the list of Fis. The role of the duplicated
list is to model the self join basic scenario transformation. Due to
space limitations we do not perform this step in Fig. 4. To model the
case in which some elements of the source schema do not appear in
the target, an average of 5% of the atomic elements of the Fi lists
are eliminated. Fig. 4(c) depicts the result of eliminating elements
Attr2, Attr5 and Attr10 from Fig. 4(b). Next, some shuffling of ele-
4In general, element names may not be as meaningful as what is
shown in Fig. 3(a) since we sample element names from a dictionary
of English words.

ments occurs across the Fi lists. In particular, two randomly selected
elements from each list Fk are moved to Fk+1 and one element from
Fk+1 to Fk. During the shuffling, the system may randomly decide
to perform an element duplication instead of a move. In that case, a
referential constraint is added between the two duplicates. To better
understand these two tasks, Fig. 4(d) illustrates an element transfer
(Attr13) and an element duplication (Attr8). The shuffling is an im-
portant task since it guarantees that the root elements in the target
will not have the same atomic elements as in the source. This actu-
ally models the denormalization and the vertical partitioning trans-
formations. A sixth step is to introduce a number of new atomic
elements in some randomly selected lists Fi. In each selected list,
the number of new elements is obtained by rounding up to the near-
est integer 5% of the number of atomic elements that already exist
in the list. This step is shown in Fig. 4(e) where the introduced ele-
ments are the Attr17, Attr18 and Attr19. Each of the new elements is
set either to some constant value (e.g., Attr17), simulating that way a
Constant Value Generation scenario, or some identifier (e.g., Attr19),
simulating the Surrogate Key scenario, or a value that is a function
of other atomic elements (e.g., Attr18), modeling the Atomic Value
Manipulation scenario. The number of arguments of the functions
in the latter case is also a random value that depends on the param-
eter Na and its deviation value. In the sequel, the elements of each
flat list Fi are nested to form a tree structure, implementing that way
the Nesting scenario. The level of nesting and the number of atomic
subelements of each element are random numbers whose value de-
pend on the parameters Nd and Ns, respectively, and their deviation
values. The root element of each such tree becomes one of the roots
of a new schema T. For our running example, the schema T is il-
lustrated in Fig. 4(f). There are two additional steps that have not
been mentioned here, and they serve to model the transformations of
Object Fusion and Horizontal Partitioning.

It is important to note that the execution of each of the above steps
is conditional on the repetition parameters R. For instance, if the
repetition parameter for the Nesting basic scenario is 0, then the re-
spective step above will not be performed, ensuring that way that the
target schema will not be a nested schema.

The generated composed scenario has as a source schema the
schema S that was created in the first step (e.g., Fig. 4(a)), and as
a target schema the schema T that was created during the last step
(e.g., Fig. 4(f)). The transformation specification that we generate is
a XQuery and follows the semantics of the chase with GLAV map-
pings, which are implicitly generated during the composed scenario
generation steps. The query generation algorithm we use is similar in
spirit to the query generation algorithm of [33]. We omit the discus-
sion of this algorithm here. The transformation specification for the
composed scenario example of Fig. 4 can be found in Appendix C.

To generate the final mapping scenario, SGen produces and con-
catenates a set of extended and composed scenarios. The mapping
scenario generation algorithm steps are illustrated in Algorithm 1.
SGen starts with an empty mapping scenario, i.e., a scenario with an
empty source and target schema and an empty transformation func-
tion (line 1 of Algorithm 1). It then iterates through each type B
of basic mapping scenario (i.e., Copy, Constant Value Generation
etc.) and generates rB extended scenarios of type B, where rB is
the value in the repetition parameter list R for the scenario of type
B (lines 2-6 of Algorithm 1). By setting the configuration parame-
ter rB to 0, the benchmark user can prevent SGen from generating
scenarios of type B. This is useful if the user already knows that
the mapping system under evaluation does not support the respec-
tive transformation type. The mapping scenario generated so far is
intended to model real life mappings which typically involve mul-
tiple types of transformations that occur in parallel and in different
parts of the schemas. In the sequel, SGen generates rS composed

Algorithm 1: SGen

Input: The characteristic parameters C,
the corresponding standard deviations D,
and the list of repetition parameters R.

Output: A mapping scenario (S,T,P)

SGEN(C,D,R)
(1) M← (∅, ∅, ∅)
(2) foreach type of basic scenario B
(3) Let rB be the corresponding value for scenario B inR.
(4) foreach i∈[1..rB]
(5) MB ← generateExtendedScenario(B, C, D)
(6) M←M .MB

(7) foreach i∈[1..rS]
(8) MS ← generateComposedScenario(R, C,D)
(9) M←M .MS

(10) returnM

Attr1
R4 [0−*]

Attr11
Attr12

Attr9
Attr8

Attr13

Attr3

Attr16

Attr4
SE5 [0−*]

Attr14
Attr15

R7 [0−*]

Attr6
Attr7
Attr8b
Attr19

R6 [0−*]

SE6 [0−*]

(f)

Attr17

Attr18

Attr2
Attr1

Attr6

Attr4

R1 [0−*]

SE1 [0−*]
Attr3

Attr5
SE2 [0−*]

Attr7

Attr14

R3 [0−*]
Attr13

Attr15
Attr16

Attr9

R2 [0−*]

SE3 [0−*]
Attr10

Attr8

SE4 [0−*]

Attr12
Attr11

Attr1
Attr2

Attr8
Attr9

Attr13
Attr14
Attr15
Attr16

Attr10
Attr11
Attr12

Attr3
Attr4
Attr5
Attr6
Attr7

F1:

F2:

F3:

Attr1

Attr14
Attr15
Attr16

F1:

Attr3
Attr4
Attr6
Attr7

Attr11
Attr12

Attr9
Attr8

F2:

Attr8b

Attr13

F3:

Attr1

Attr13
Attr14
Attr15
Attr16

F1:

Attr3
Attr4
Attr6
Attr7

Attr11
Attr12

Attr9
Attr8

F2:

F3:

Attr1

Attr14
Attr15
Attr16

F1:

Attr3
Attr4
Attr6
Attr7

Attr11
Attr12

Attr9
Attr8

F2:

Attr8b

Attr13
Attr17 (="June")

Attr18 (=Attr2*Attr14)

Attr19 (=id())

F3:

(b) (c) (d) (e)(a)

Figure 4: Composed scenario generation steps

scenarios and concatenates them to the mapping scenario that will
be returned (lines 7-9 of Algorithm 1). The value rS is the one in the
repetition parameter list R that corresponds to the composed sce-
narios. By setting this parameter to 0, a benchmark user can also
disallow the existence of composed scenario transformations in the
generated mapping scenario. The addition of the composed scenar-
ios in the mapping scenario generated by SGen models real life sit-
uations in which different kinds of transformations occur simultane-
ously at the same part of the schema. Fig. 3(b) illustrates a mapping
scenario that has been constructed through this procedure. Each pair
of squares with the same pattern in the source and the target schema
corresponds to a component scenario. For instance, the Horizontal
Partition type extended scenario was generated first, and it was fol-
lowed by a Copy and an Unnesting type extended scenarios. Finally
a composed scenario was generated and concatenated to the existing
scenario.

(iii) Communicating the intended transformations.
The generated transformation function P is potentially complex

and difficult to understand. To help the benchmark user understand
the specification P , one approach is to load the source and target
schemas of the mapping scenario returned by SGen into a map-
ping system that supports automatic matching of source and tar-
get elements. Since our generated mapping scenario has identical
source and target element names, this makes it easy for the matching
module to determine the correspondences between source and target
schema elements. The visual representation of the correspondences
between source and target elements is thus an intuitive description of
P . However, as described in Sec. 2, the visual representation is not a
reliable mechanism for describing P since there is currently no stan-
dard approach for interpreting such visual representations. To allevi-
ate this problem, SGen provides hints about the transformation func-

tions of each component mapping scenario M1, ...,Mn through the
naming of the schema elements. For example, SGen may construct
a source schema element with name “Date 2CPR2K2” in the pro-
cess of generating a mapping scenario. The word “Date” is the ele-
ment name. The first occurrence of the number 2 indicates that this
schema element belongs to the second mapping scenario that was
concatenated by SGen. Pictorially, this means that the schema ele-
ment is located in the second square box from the top of the source
schema in Fig. 3(b). The two letters “CP” indicate that the second
square box is a Copy scenario. The two letters “R2” means that this
schema element is a subelement of the second root in the Copy sce-
nario. The letters “K2” indicate that “Date 2CPR2K2” participates
in a join that involves at least two elements and “Date 2CPR2K2” is
the second element in the join. It is always possible for SGen to gen-
erate such meaningful codes due to the way it constructs a mapping
scenario. It is also possible to construct explanations of the transfor-
mation functions of each component scenario Mi, 1 ≤ i ≤ n, in
order to explain the transformation function P .

(iv) Determinism. An important requirement for benchmark mod-
ules that generate test cases is that, given the same input parameters,
these modules must be able to reproduce the same test cases regard-
less of where and when they are executed. To obtain this property
and to guarantee that the benchmark will easily run on different plat-
forms, we implemented SGen in Java. The random number gen-
erators provided by the Java library, with identical seeds, produce
identical streams of pseudo-random numbers that are independent of
hardware platforms, operating systems, and time. Hence, given the
same configuration parameters, SGen can reproduce identical map-
ping scenarios regardless of where and when it is executed. IGen,
which we describe next, also enjoys the same determinism property.

4.2 IGen: a source Instance Generator
In this section we describe IGen, the component of STBenchmark

that is used to generate instances that conform to the source schema
of a mapping scenario generated through SGen. Such source in-
stances are needed in order to perform the data transformation spec-
ified in a mapping scenario generated by SGen.

Before describing IGen, we briefly describe the ToXGene [2] data
generation engine on which IGen is built upon. ToXGene takes as in-
put a template, which describes the structure of the XML document
to be generated, in a format similar to an XML schema. The input
template contains annotations that specify the vocabularies and data
ranges used for generating random data values, as well as the dis-
tributions used when sampling for these random values. ToXGene
has a mechanism of reusing the same generated data values for dif-
ferent elements, providing the user with a way to enforce referential
integrity constraints in the generated instance.

IGen takes as input a schema (with constraints), as well as three
configuration parameters (and their associated standard deviations)
which we describe next:

• No sets the number of occurrences of a complex element. In the
nested relational model (see Sec. 4), this corresponds to the car-
dinality of a set of records. In the relational model, this would
correspond to the number of tuples in a relation. This param-
eter provides the most direct way of controlling the size of the
generated instance.

• Smax sets the maximum length of the atomic string values. By
default, for string-typed atomic elements, IGen uses XMark-
compliant [39] random text values, as they are generated by ToX-
Gene. The upper bound on the length of these text values is set
through Smax.

• Nmax sets the upper limit for numeric values. By default, for
numeric-typed atomic elements, IGen generates uniformly dis-

tributed integer values in the range from 0 to Nmax.

Each of the above parameter has an associated standard deviation,
denoted as σo, σs, and σn respectively. Like SGen, IGen samples
values from a Gaussian distribution with mean (e.g., No) and stan-
dard deviation (e.g., σo).

Source instance generation takes place in two phases. First, IGen
considers the configuration parameters described above, together
with the source schema and its constraints, and outputs a ToXGene
template. In the second phase, this template is provided as input to
ToXGene, which in turn generates an XML instance. This process
is completely transparent to the benchmark user, who only observes
the final product, namely the XML instance conforming to the source
schema.

5. A SIMPLE USABILITY MODEL
In this section, we describe our simple usability (SU) model,

which is a model intended to provide a first-cut measure on the
amount of effort required by a mapping designer to implement a
mapping scenario through the visual interface of a mapping system.
Our SU model quantifies effort roughly as the number of mouse ac-
tions and the number of keystrokes used for text input. Three dif-
ferent types of mouse actions are captured by our model: dragging
actions, single and double mouse clicks. One might argue that there
is little need to measure the exact number (e.g., x vs. 3x) of mouse
actions or keystrokes used since the task of executing the generated
transformation takes a long time in general. However, since the goal
of visual interfaces is to reduce a mapping designer’s effort towards
the generation of the desired transformation, we would like to quan-
tify the amount of effort used in our model.

DEFINITION 5.1. The effort required by a mapping designer to
implement a mapping scenario on a mapping system according to
the SU model is a quadruple (L, S, D, K), where L is the number
of dragging actions, S and D are the numbers of single mouse clicks
and double mouse clicks respectively, and K is the total number of
keystrokes used for text input.

For example, consider the following sequence of actions:
Right mouse click to pull up menu.
Click to select “Insert Input”. Box 1 will appear on screen.
Enter name of variable “var1” in box 1.
Click to select “Specify Value”.
Enter string “Testing”.
Draw line from box 1 to a target schema element.

The effort required by a mapping designer in the sequence of ac-
tions above is (1, 3, 0, 11) because the sequence of steps consists of
1 dragging action, 3 single mouse clicks and 11 keystrokes.

Limitations of the SU model. The SU model does not consider the
aesthetics of a mapping system, such as the presentation and layout
of features on the visual interface, the ease of accessing frequently
used features etc. It also does not take into account human errors
that may occur during the process of implementing a mapping sce-
nario. Neither does it capture the “think time” of a mapping designer
in implementing a scenario nor the amount of time required to find
a particular feature (e.g., button) on the visual interface. In particu-
lar, the SU model assumes that the mapping designer is completely
familiar with the visual interface of the mapping system and makes
no mistakes when implementing a mapping scenario. We emphasize
that the SU model is a first-cut measure on the ease of use of a map-
ping system. A systematic human-computer interaction study with
real users (which is not the subject of this paper) would be required
to make a comprehensive study on the usability of mapping systems.

A Simple Cost Model. Following the findings of [28] which show
that it is generally slower and more error-prone to perform a drag-
ging task than a point-and-click task, we assign a higher cost for

dragging than for a single or double mouse click in our cost model.
The cost for a double mouse click is twice that of the cost for a single
mouse click since it requires twice the effort. In addition, following
the intuition that it is also easy to make mistakes (e.g., typos) when
typing, we model the cost of a keystroke to be equal to that of the
cost of a dragging task.

DEFINITION 5.2. Let (L, S, D, K) be the effort of implement-
ing a mapping scenario on a mapping system under the SU model.
The cost associated with this effort is 4L + S + 2D + 4K.

For example, the cost associated with the effort consisting of 1
dragging action, 3 single mouse clicks and 11 keystrokes is 51.

Our experience shows that the SU model is able to cover all types
of actions needed to implement all mapping scenarios in every map-
ping system that we have considered. The details are presented in
Sec. 6.1.

6. EXPERIENCE AND EXPERIMENTS
To demonstrate the wide applicability of our benchmark, we de-

scribe a few potential applications with STBenchmark and showcase
the use of STBenchmark [1] by applying it to evaluate four different
mapping systems.
Example applications. Schema integration is the problem of pro-
ducing an integrated schema from multiple input schemas. Hence,
SGen could be used to produce multiple input schemas for exper-
imenting with schema integration algorithms. SGen could also be
used to produce pairs of schemas to test schema matching algo-
rithms. Another example that requires generating mapping scenar-
ios, in addition to schemas, to test the algorithms that were devel-
oped is that of schema evolution. Indeed, SGen could replace the
custom-made schema evolution scenario generators in [48, 44, 4]
that were developed specially for their experiments. As another ap-
plication, in the area of debugging schema mappings, algorithms
have been developed to compute routes that show the relationships
of tuples in the source and target instance of a data exchange [15].
SGen and IGen, together with a schema mapping tool that is used
to obtain a target instance, could be employed to create synthetic
mapping scenarios for these route computation algorithms. We note
that SGen’s ability to generate constraints in the target schema is
extremely useful for testing the route algorithms.

Next, we showcase the use of STBenchmark by applying it to
evaluate four mapping systems.

6.1 Usability Experience
In this section, we report our usability experience of each map-

ping system. Our goal is to implement each basic mapping scenario
through the visual interface of each mapping tool and report on the
ease/difficulty of doing so. One method of quantifying the degree of
ease/difficulty is through the cost and effort measures as described
in Sec. 5.
Methodology. Prior to implementing each basic mapping scenario,
we have familiarized ourselves with each mapping system and can
thus be considered expert users of each mapping system. This means
that when there are multiple ways of implementing a mapping sce-
nario, we assume that we know the method of implementing the
mapping scenario with the least cost and this is the cost we report
in our findings. Each mapping scenario is implemented using the
default visual interface of the mapping system as customizing the
visual interface may decrease the cost of implementing certain map-
ping scenarios. Except when mentioned, we generate execution code
in the XSLT 1.0 language, which is the language that is commonly
supported across all four mapping systems. In our implementations,
the action of drawing a line to associate a source schema element
with a target schema element is classified as a dragging action and a
right mouse click is classified as a single mouse click.

Scenario / Mapping System A B C D
Effort Cost Effort Cost Effort Cost Effort Cost

Copy (1,4,0,0) 8 (4,0,0,0) 16 (4,0,0,0) 16 (0,4,0,0) 4
Constant Value Generation (2,4,0,17) 80 (2,0,0,17) 76 (4,0,0,17) 84 (0,6,0,17) 74
Horizontal Partition (10,4,0,7) 72 (9,4,1,9) 78 (8,5,0,7) 65 (0,22,2,21) 110
Surrogate Key Assignment (14,6,0,7) 90 (13,6,1,9) 96 (8,6,0,28) 150 (0,42,2,39) 202
Vertical Partition (7,4,0,0) 32 (12,4,0,0) 52 (9,1,0,0) 37 (0,7,0,0) 7
Unnesting (5,0,0,0) 20 (6,2,0,0) 26 (6,1,0,0) 25 (0,7,0,0) 7
Nesting * * (8,11,6,54) (a) 271 (a) * * (0,18,2,0) 22
Self Joins (18,10,0,7) (b) 110 (b) * * * * * *
Denormalization * * * * * * (0,23,2,1) 31
Keys and Object Fusion (12,10,0,0) (c) 58 (c) * * * * (0,30,4,0) 38
Manipulation of Atomic Values (12,6,0,3) 66 (11,9,2,6) 81 (15,5,0,0) 65 (0,20,0,45) 200

Legend
(*) Cannot be fully implemented through the visual interface. Requires inspection and manual modification of partially generated XSLT code.
(a) Requires the use of XSLT 2.0 specific features.

Some manual modifications required on the generated XSLT code because of an apparent bug in the mapping system.
(b) Requires that the source schema be duplicated through the visual interface.
(c) Requires that part of the target schema be duplicated through the visual interface.

Table 1: Effort and cost of implementing each basic mapping scenario.

Observations. Fig. 6.1 tabulates our findings in terms of effort and
cost. We first state some cost-independent observations.

(1) A is the only system that is able to implement the self joins sce-
nario. This is because A allows one to duplicate the source schema
through the visual interface and perform a join with the original
schema.

(2) C could not implement the most number of basic mapping sce-
narios. In addition, for those mapping scenarios which could be
implemented, some of the generated execution code contains non-
standard XSLT 1.0 code that can only be executed using the evalua-
tion engine that comes with the system.

(3) All mapping scenarios, except for self joins, can be implemented
through the visual interface of D. Every other mapping system could
not implement at least two basic mapping scenarios. Furthermore,
D is the only system that is capable of implementing the denormal-
ization scenario.

We state our cost-dependent observations next. Note that except
for the copy and constant value generation scenarios, the costs asso-
ciated with D are either significantly higher or lower than the rest of
the systems.

(1) The costs of implementing the copy scenario in A and D are
lower than those of B and C for the following reason: While B
and C support only dragging actions to relate source elements to
target elements5, A and D do not. In fact, observe that the effort for
dragging actions for D is always 0 for every mapping scenario. To
relate the source element Source/Protein/name to the target element
Target/Protein/Name in D for example, one is required to click on
the former element, click on the latter element and then perform a
right mouse click action to bring up a menu and another click to
confirm the correspondence. This sequence of actions has a total cost
of 4 units which is in fact the same as the cost of a dragging action
from the former to the latter element. The lower cost of D is due
to the schema matching module of D which kicks in automatically,
after the first correspondence is established, to suggest matching the
corresponding accession elements and created elements in the source
and target schemas. The mapping designer only needs to perform an
additional mouse click to confirm all suggestions (cost of 1 unit).
Furthermore, in D, there is no need to relate the protein elements
in the two schemas to generate the correct XSLT script. Hence the
5A total of four dragging actions are required to match the corre-
sponding protein, name, accession and created elements in the two
schemas and hence the total cost of 16 units.

total cost to implement the copy scenario in D is 4 units. A also
has a schema matching module but one is required to first draw a
line (which involves a dragging action) between the protein elements
of the two schemas before manually invoking this module (which
involves 4 single mouse clicks) to relate children elements.

(2) The cost to implement the vertical partitioning scenario for D
is much lower than the rest of the systems. There are two reasons:
First, the schema matching module of D automatically kicks in and
“does the right thing”. That is, the lines inferred by the matching
module go hand-in-hand with the semantics of the intended trans-
formation. Second, D automatically handles the target schema con-
straint on CoFactor in its XSLT code generation. In contrast, A,
B and C require the designer to explicitly correlate the two target
relations by CoFactor in order to achieve the desired effect.

It also costs less to implement the unnesting scenario with D when
compared to the rest. Again, this is because D is the only system
in which the schema matching module can be used effectively to
achieve the desired visual specification.

(3) For implementing surrogate key assignment and manipulation
of atomic values scenarios, D is costlier than A, B, and C by more
than 50 units. This is because in D, the mapping designer is required
to enter the names of the XSLT functions used (e.g., “substring-
before” to extract the first name). In contrast, one can drag the de-
sired function from a library of supported functions in A, B, and
C. Since our cost model heavily penalizes keyboard-based input,
the cost for D’s implementation is high in these cases.

6.2 Performance Comparisons
In this section we report on our experiments comparing the perfor-

mance of the transformation scripts generated by the four mapping
systems. Although different mapping systems could support differ-
ent transformation languages, XSLT 1.0 is the only language sup-
ported by all of them. Thus, it was the natural choice for achieving
meaningful comparisons between the systems. As a consequence,
XML was also the data type used for the experiments.

We conducted two series of experiments. The first one determines
how the size of the source instance influences the time needed to
perform the data transformation through the XSLT scripts generated
by the systems. The second series of experiments investigates the
influence of the size of the mapping scenario on the time needed to
perform the data transformation.
Experimental Setting. All of our experiments were performed on
a Dual Intel Xeon 3.4 GHz workstation with 4GB RAM running
GNU/Linux. To have meaningful and comparable results, we used a

Flattening

1 2 5 10 20 50 10
0

50
0

0

20

40

60

80

100

120

System B
System A
System D

Source Instance Size (MB)

T
im

e
(s

)

Horizontal Partitioning

1 2 5 10 20 50 10
0

50
0

0

20

40

60

80

100

120

System B
System A
System D

Source Instance Size (MB)

T
im

e
(s

)

Atomic Value Management

1 2 5 10 20 50 10
0

50
0

0
20
40
60

460

500

540
41900

41950

42000

System B
System A
System D

Source Instance Size (MB)

T
im

e
(s

)

Copy

1_
0_

0_
0_

0_
0

2_
1_

0_
0_

0_
0

3_
2_

0_
0_

0_
0

0.1

1

10

100

1000

System B

System A
System D

Characteristic Parameters

T
im

e
(s

)
(l

o
g

sc
al

e)

Surrogate Key Assignment

4_
0_

0_
0_

0_
2

5_
0_

0_
0_

0_
3

6_
0_

0_
0_

0_
4

7_
0_

0_
0_

0_
5

8_
0_

0_
0_

0_
6

0

10

20

30

40

50

System B
System A
System D

Characteristic Parameters

T
im

e
(s

)

Vertical Partitioning

4_
0_

2_
0_

0_
0

6_
0_

3_
0_

0_
0

8_
0_

4_
0_

0_
0

10
_0

_5
_0

_0
_0

12
_0

_6
_0

_0
_0

0

50

100

150

200

System B
System A
System D

Characteristic Parameters

T
im

e
(s

)

(a) Source instance scaling experiments

(b) Mapping scenario scaling experiments

Figure 5: XSLT Scripts Performance Comparisons

common evaluation engine (Saxon-B version 8.9 [38]) to execute the
XSLT scripts generated by all the mapping systems. Since system C
generates non-standard XSLT code that can only be executed using
the engine built in their system, we excluded system C from our
performance comparisons.
Methodology. First, we restricted our attention, among the mapping
scenarios presented in section 3, to the ones that could be imple-
mented entirely through the graphical interface by at least two of
the mapping systems A, B, and D. One exception is the nesting
scenario, which can be implemented by both B and D, but was nev-
ertheless discarded from our experimental comparison. The reason
is that B can generate XSLT 2.0 code that takes advantage of group-
ing constructs built into the language, whereas D has to achieve the
same effect through XSLT 1.0 constructs. This leads to uncompara-
ble experimental results.
Source Instance Scaling Experiments. In the first set of exper-
iments, for each basic scenario, we keep the source and target
schemas fixed (as they are presented in Sec. 3). Using IGen, we
generated multiple source instances of varying sizes.

In Fig. 5(a), we show only the results we obtained for the flat-
tening, horizontal partitioning and atomic value management basic
scenarios. The results for the other scenarios show a similar trend
and are thus omitted. The size of the source instance (in MB) is
represented on the X axis, while the execution time (in seconds) is
represented on the Y axis.

For source instances of size no greater than 100MB, all the pro-
cessing could be done in main memory. However, for larger in-
stances, (e.g., 500MB) we noticed significant disk swapping dur-
ing the execution of the XSLT scripts. Hence, the observed execu-
tion times for 500MB instances are much longer than the times for
smaller instances. For the flattening and horizontal partitioning sce-
narios, the scripts generated by D could not be executed on 500MB
instances due to insufficient memory.

As a general observation, the scripts generated by B are the fastest
to execute, followed by A, and the transformation scripts generated
by D are the slowest. Throughout the experiments, the gap between
B and A was much less significant than the one between A and D.
By inspecting the XSLT scripts generated by the systems, we can
identify some possible causes for the differences in execution times,
which we detail below:

First, one peculiarity of the scripts generated by A is that they em-
ploy for-each loops with value-of statements nested inside, in
order to access the value of an atomic element in any context, even
if the cardinality of the atomic element is at most one. On the other
hand, the scripts generated by B use directly value-of statements
relative to the current context to achieve the same goal. Since atomic
elements with a cardinality of one represent a very frequent case in
our scenarios, the redundant for-each loops account for a signif-
icant part of the difference in execution time between scripts gener-
ated by B and A.

Another cause of overhead in the scripts of A is the way they
make use of variables. For instance, to make a string comparison,
a script of A would first store the Boolean result of the comparison
in a variable, then convert the value of this variable to a string, and
finally make a second comparison between this value and the literals
true or false. Also, to produce a value through a sequence of
function applications, the scripts of A store each intermediate result
in a separate variable and use this variable as an argument to subse-
quent function applications. In contrast, the scripts of B employ di-
rectly an expression containing the composed function applications,
without storing intermediate results in temporary variables.

The main cause of the observed differences in execution time be-
tween the scripts generated by D and the others lies in the fact that
D performs the data transformation through a two-phased process,
where each phase involves the execution of a separate XSLT script.
Also, the script executed in the first phase assigns an identifier to
each element of a complex type generated in the intermediate in-
stance. Computing the value of this identifier is potentially expen-
sive since it involves accessing the values of all the atomic elements
in the source instance that contribute to the complex element being
generated.
Mapping Scenario Scaling Experiments. In the second series of
experiments, we investigate the influence of the size of the mapping
scenario on the time needed to execute the XSLT scripts generated
by the mapping systems. We performed one group of experiments
for each mapping scenario described in Sec. 3. The results for the
copy, surrogate key assignment, and vertical partitioning scenarios
are presented in Fig. 5(b). The graphs we obtained for the other
basic scenarios exhibited a similar trend and we omit them here.

As presented in Sec. 4.1, SGen produces a mapping scenario

based on configuration parameters C, D and R. The mean values
used for each of the 6 characteristic parameters in C are represented
on the X axis of the graphs (in the vector Nd Ns Nj Nk Nw Na),
while the execution time of the scripts (in seconds) is represented
on the Y axis. For the join kind Nk parameter we used a value of
0 for star joins and 1 for chain joins. To ensure that we are able to
sample larger values as we increase the vector of mean values, we
set the standard deviations of every parameter in D to 0. Except for
the basic scenario of interest for which the repetition parameter is
set to 1, every other repetition parameter in R is set to 0. We started
with a set of initial mean values for C To achieve the desired sce-
nario scaling effect, we increased simultaneously the mean values of
all relevant characteristic parameters, thus obtaining, at each step, a
larger mapping scenario.

To make the comparisons meaningful, in each experiment, we
kept the parameters used for generating the synthetic source instance
using IGen (see Sec. 4.2) constant across the different schema con-
figurations. We then implemented each scenario through the graph-
ical interfaces of A, B, and D. As in the previous series of ex-
periments, we compared the execution times of the XSLT scripts
generated by each system.

There are some interesting observations we can make by analyz-
ing the results of this second set of experiments. For the copy sce-
nario, the scripts generated by D are orders of magnitude slower to
execute than the scripts generated by the two other systems (observe
the logarithmic scale of the time axis in the first graph of Fig. 5(b)).
This behavior appears if the source and target schemas (identical in
the case of the copy scenario) are nested. The XSLT script gener-
ated by D contains a nested for-each loop with as many levels
as the levels of nesting in the source schema. The domain of each
for-each iteration is a nodeset returned by an XPath expression
relative to the root of the source instance. Evaluating these XPath
expressions at each iteration in the nested loop becomes very expen-
sive on large source schemas and instances. This accounts for the
blowup in execution times of D scripts when introducing nesting in
the source schemas used for the copying scenario.

In the surrogate key assignment and vertical partitioning sce-
narios, there is an additional reason for the differences observed
in execution times. While the scripts of A and B use the built-
in generate-id XSLT function to construct identifiers, D’s
method of constructing identifiers does not rely on any XSLT built-
in functions or any language-specific constructs for that matter. The
generate-id function is a function of the first node in the node-
set given as an argument, while D’s identifier-generating function
constructs a string from a sequence of atomic-valued expressions.
This method of constructing identifiers is more expensive since D is
required to obtain all values of the atomic-valued expressions before
an identifier can be constructed.

7. RELATED WORK
Benchmarks have been developed for many different areas, such

as data mining, dependable systems and data stream systems. Per-
haps the most notable benchmarks are the ones for relational or XML
query engines [8, 12, 37, 39, 42, 46]. Benchmarks for query en-
gines typically consist of a set of queries on a predefined schema,
as well as a data generation module that produces instances of dif-
ferent sizes according to the schema. The queries are designed to
test various features that are typically expected to be supported by
a query engine. The benchmark can be used to determine the ex-
tent of queries supported by a query engine, as well as how well the
performance of the query engine scales with the size of the input
instances. STBenchmark is similar to such benchmarks. The ba-
sic mapping scenarios and the generators, SGen and IGen, serve a
similar purpose.

Benchmarks have also been developed for schema matching sys-
tems. In XBenchMatch [17], a matching system is evaluated by mea-
suring the precision and recall (similar to the way they are used in
information retrieval) of the results returned by the matching system
with respect to the correct matchings. In STBenchmark, one aspect
of the evaluation of a mapping system is to test whether each basic
mapping scenario can be implemented through its visual interface.
It does not measure the precision and recall, or the extent to which
an implementation of a mapping scenario can be achieved. Another
benchmark for ontology/schema matching is OAEI [31], which aims
at building evaluation methods and collecting test cases for ontol-
ogy/schema matchings. STBenchmark is not about collecting test
cases although it would be useful to have a repository of mapping
scenarios, especially when a standard for specifying mapping sce-
narios as input to mapping systems exists.

In [25], the authors gave a detailed study on the different kinds of
matchings that can exist between schema elements. Their findings
can serve as a guide on some of the basic transformations that should
be directly supported by a mapping system. Some of our basic map-
ping scenarios coincide with their findings.

One approach in measuring data exchange systems is to evaluate
the process from end-to-end, i.e., considering the matching, the map-
ping and the query execution time as one single process and evaluate
the final result. Based on this idea, Spicy [10] uses stractural analy-
sis to compare a target instance to another one used as a reference,
and deciding that way the quality of the mapping. For benchmarking
ETL transformations, on the other hand, factors like complexity and
execution time are of major importance [43].

In [32], a framework for developing benchmarks for data ex-
change tools has been proposed. However, no actual benchmark
has been implemented. The proposed schema generation algorithm
in [32] follows a top down approach, where parts of a large schema
are projected to create different mapping scenarios. In contrast, our
scenario generation strategy is bottom up. It scales and combines
basic mapping scenarios in different ways to form larger complex
mapping scenarios. For this reason, we believe the space of possible
mapping scenarios that we can generate is much larger.

THALIA [22] is a benchmark for information integration systems.
It describes a set of benchmark queries and the respective schemas
these queries are based upon. The integration system is evaluated by
counting the number of queries that return correct results and the ef-
fort required to reconcile the schemas. In contrast to STBenchmark,
it does not provide synthetic schemas, thus it is hard to evaluate how
well the integration systems scale. Furthemore, it does not provide a
detailed model for measuring the required integration effort.

Various schema and evolution scenario generators have also been
proposed in different research projects for their experimental set-
tings [4, 47, 48]. However, to the best of our knowledge, SGen is the
first general-purpose mapping scenario generator.

Visual interfaces for specifying XML-to-XML [11, 18] or
relational-to-relational [49] transformations, in XQuery or XML, re-
spectively, can also be considered as mapping systems. Hence, it is
also possible to apply STBenchmark on these systems to evaluate the
expressiveness, performance of queries generated, and the usability
of these systems.

8. CONCLUSIONS
We have described STBenchmark, a benchmark that we have de-

veloped for evaluating mapping systems. STBenchmark consists of
three components that are designed to test how readily mapping sys-
tems support basic mapping scenarios, how well they perform (in
this paper, in terms of the performance of generated XSLT scripts)
on simple and complex mapping scenarios with instances of varying
sizes, as well as the ease of use of mapping systems. We have eval-

uated four mapping systems with STBenchmark. In addition to our
findings reported in Sec. 6, our experience with mapping systems
indicate that mapping systems share a lot of commonality in terms
of the visual metaphors and constructs used for designing mappings.
However, there is currently a lack of standard in interpreting these
visual metaphors and constructs. Hence, even though mapping sys-
tems take visual specifications as input, the transformation functions
in our basic mapping scenarios are specified with XQuery and we
leave the task of creating the visual specifications of mapping sce-
narios on mapping systems to the benchmark user.

Based on our study, we believe that it is crucial to develop a stan-
dard (either by standardizing the interpretation of visual metaphors
and constructs and extending upon them to achieve more expressive-
ness (e.g., [34]) or, by developing a standard mapping specification
language) for specifying inputs to mapping systems. Such a standard
will not only serve to standardize the specifications of basic mapping
scenarios in STBenchmark and output of SGen, but also serve as an
important step towards the development of a uniform testbed and
repository for schema mappings and data exchange tasks [6].

Acknowledgment: Work partly supported by the NSF CAREER
Award IIS-0347065, the NSF grant IIS-0430994 and the EU Marrie-
Currie Fellowship MIRG-CT-2006-046548.

References
[1] B. Alexe, W. Tan, and Y. Velegrakis. Comparing and Evaluating Map-

ping Systems with STBenchmark. In VLDB, 2008.
[2] D. Barbosa, A. O. Mendelzon, J. Keenleyside, and K. A. Lyons. Tox-

gene: An extensible template-based data generator for xml. In WebDB,
pages 49–54, 2002.

[3] P. Bernstein and S. Melnik. Model Management 2.0: Manipulating
Richer Mappings. In SIGMOD, pages 1–12, 2007.

[4] P. A. Bernstein, T. J. Green, S. Melnik, and A. Nash. Implementing
Mapping Composition. In VLDB, pages 55–66, 2006.

[5] P. A. Bernstein, S. Melnik, and J. E. Churchill. Incremental Schema
Matching. In VLDB (demo), pages 1167–1170, 2006.

[6] Bertinoro Workshop on Information Integration.
http://www.dis.uniroma1.it/˜lenzerin/INFINT2007/.

[7] Biowarehouse database integration for bioinformatics.
http://biowarehouse.ai.sri.com/.

[8] T. Bohme and E. Rahm. XMach-1: A Benchmark for XML Data Man-
agement. In BTW, pages 264–273, 2001.

[9] A. Bonifati, E. Q. Chang, T. Ho, and L. V. S. Lakshmanan. HepToX:
Heterogeneous Peer to Peer XML Databases, 2005.

[10] A. Bonifati, G. Mecca, A. Pappalardo, S. Raunich, and G. Summa.
Schema mapping verification: the spicy way. In EDBT, pages 85–96,
2008.

[11] D. Braga, A. Campi, and S. Ceri. QBE (query by example): A visual
interface to the standard xml query language. ACM TODS, 30(2):398–
443, 2005.

[12] S. Bressan, G. Dobbie, Z. Lacroix, M.-L. Lee, Y. G. Li, U. Nambiar,
and B. Wadhwa. X007: Applying 007 Benchmark to XML Query Pro-
cessing Tool. In CIKM, pages 167–174, 2001.

[13] M. J. Carey. Data delivery in a service-oriented world: the BEA Aqua-
Logic data services platform. In SIGMOD Conference, pages 695–705,
2006.

[14] M. J. Carey, J. Kiernan, J. Shanmugasundaram, E. J. Shekita, and S. N.
Subramanian. Xperanto: Middleware for publishing object-relational
data as xml documents. In VLDB, pages 646–648, 2000.

[15] L. Chiticariu and W. Tan. Debugging Schema Mappings with Routes.
In VLDB, pages 79–90, 2006.

[16] dblp.uni-trier.de: Computer science bibliography. http://dblp.uni-
trier.de/.

[17] F. Duchateau, Z. Bellahsene, and E. Hunt. XBenchMatch: a Benchmark
for XML Schema Matching Tools. In VLDB, pages 1318–1321, 2007.

[18] M. Erwig. Xing: a visual xml query language. J. Vis. Lang. Comput.,
14(1):5–45, 2003.

[19] L. M. Haas. Beauty and the Beast: The Theory and Practice of Infor-
mation Integration. In ICDT, pages 28–43, 2007.

[20] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth. Clio
Grows Up: From Research Prototype to Industrial Tool. In SIGMOD,
pages 805–810, 2005.

[21] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema mediation
for large-scale semantic data sharing. VLDB J., 14(1):68–83, 2005.

[22] J. Hammer, M. Stonebraker, and O. Topsakal. THALIA: Test Harness
for the Assessment of Legacy Information Integration Approaches. In
ICDE, pages 485–486, 2005.

[23] Rational Data Architect. www.ibm.com/software/data/integration/rda.
[24] P. G. Kolaitis. Schema mappings, data exchange, and metadata man-

agement. In PODS, pages 61–75, 2005.
[25] F. Legler and F. Naumann. A Classification of Schema Mappings and

Analysis of Mapping Tools. In BTW, pages 449–464, 2007.
[26] M. Lenzerini. Data Integration: A Theoretical Perspective. In PODS,

pages 233–246, 2002.
[27] B. S. Lerner. A Model for Compound Type Changes Encountered in

Schema Evolution. TODS, 25(1):83–127, Mar. 2000.
[28] I. S. MacKenzie, A. Sellen, and W. Buxton. A comparison of input

devices in elemental pointing and dragging tasks. In CHI, pages 161–
166, 1991.

[29] Altova MapForce Professional Edition, Version 2008.
http://www.altova.com.

[30] Merriam-Webster. Merriam-Webster Online - The Language Center.
http://www.m-w.com/home.htm.

[31] http://oaei.ontologymatching.org.
[32] T. Okawara, A. Morishima, and S. Sugimoto. An Approach to the

Benchmark Development for Data Exchange Tools. In Databases and
Applications, pages 19–25, 2006.

[33] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and R. Fagin.
Translating Web Data. In VLDB, pages 598–609, 2002.

[34] A. Raffio, D. Braga, S. Ceri, P. Papotti, and M. A. Hernández. Clip: a
Visual Language for Explicit Schema Mappings. In ICDE, 2008.

[35] E. Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching. VLDB J., 10(4):334–350, 2001.

[36] M. Roth, M. A. Hernández, P. Coulthard, L. Yan, L. Popa, H. C.-T. Ho,
and C. C. Salter. XML mapping technology:Making connections in an
XML-centric world. IBM Sys. Journal, 45(2):389–410, 2006.

[37] K. Runapongsa, J. M. Patel, H. V. Jagadish, and S. Al-Khalifa. The
Michigan Benchmark: A Microbenchmark for XML Query Processing
Systems. In EEXTT, pages 160–161, 2002.

[38] The Saxon XSLT and XQuery Processor, version 8.9.
http://saxon.sourceforge.net.

[39] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu,
and R. Busse. XMark: A Benchmark for XML Data Management. In
VLDB, pages 974–985, 2002.

[40] J. Shanmugasundaram, E. J. Shekita, R. Barr, M. J. Carey, B. G. Lind-
say, H. Pirahesh, and B. Reinwald. Efficiently publishing relational data
as XML documents. VLDB J., 10(2-3):133–154, 2001.

[41] Stylus Studio, XML Enterprise Suite, Release 2.
http://www.stylusstudio.com.

[42] TPC Transaction Processing Performance Council. http://tpc.org.
[43] P. Vassiliadis, A. Karagiannis, V. Tziovara, and A. Simitsis. Towards a

Benchmark for ETL Workflows. In QDB, pages 49–60, 2007.
[44] Y. Velegrakis, R. J. Miller, and L. Popa. Mapping adaptation under

evolving schemas. In VLDB, pages 584–595, 2003.
[45] Microsoft Visual Studio 2005, Version 8.0.50727.42.

http://msdn2.microsoft.com/en-us/ie/bb188238.aspx.
[46] B. Yao, T. Ozsu, and N. Khandelwal. XBench benchmark and perfor-

mance testing of XML DBMSs. In ICDE, pages 621–633, 2004.
[47] Y.Lee, M. Sayyadian, A. Doan, and A. Rosenthal. eTuner: Tun-

ing Schema Matching Software using Synthetic Scenarios. VLDB J.,
16(1):97–122, 2007.

[48] C. Yu and L. Popa. Semantic adaptation of schema mappings when
schemas evolve. In VLDB, pages 1006–1017, 2005.

[49] M. Zloof. Query-By-Example: A Data Base Language. IBM Sys. Jour-
nal, 16(4):324–343, 1977.

APPENDIX

A. BASIC MAPPING SCENARIOS

A.1 Copying
The copying scenario is (S, T,P), where S and T are shown in Fig. 2(a).

The precise specification of P is described in XQuery below:

<Target>
for $x0 in /Source/Protein
return
<Protein>

<Name> $x0/name/text()</Name>
<Accession> $x0/accession/text()</Accession>
<Created> $x0/created/text()</Created>

</Protein>
</Target>

A.2 Constant Value Generation
The constant value generation scenario is (S,T,P), where T is

shown in Fig. 2(b). The source schema can be any schema and is
therefore not shown. The precise specification of P is described in
XQuery below:

<Target>
<DataSet>

<Name>SwissProt</Name>
<LoadingDate>July 4th</LoadingDate>

</DataSet>
</Target>

An alternative to the constant date value “July 4th” is a system
function today() that returns the current date. However, the use
of such system functions is dependent on the mapping system.

A.3 Horizontal Paritioning
The horizontal partitioning scenario is (S,T,P), where S and T

are shown in Fig. 2(c). For this mapping scenario, we ignore the
WID subelements in Target/Gene and Target/Synonym. The precise
specification of P is described in XQuery below.

<Target>
for $x0 in /Source/Gene
where $x0/type/text() = ’primary’
return

<Gene>
<Name> $x0/name/text() </Name>
<Protein> $x0/protein/text() </Protein>

</Gene>
for $x0 in /Source/Gene
where $x0/type/text() != ’primary’
return

<Synonym>
<Name> $x0/name/text() </Name>
<Protein> $x0/protein/text() </Protein>

</Synonym>
</Target>

A.4 Surrogate Key Assignment
The surrogate key assignment scenario is (S,T,P), where S and

T are shown in Fig. 2(d) and is identical to the source and target
schemas, respectively, of the horizontal partitioning scenario. As-
suming that genID() is an XQuery function that returns a new
identifier each time it is invoked, the precise specification of P is
described in XQuery below.

<Target>
for $x0 in /Source/Gene
where $x0/type/text() = ’primary’
return
<Gene>

<Name> $x0/name/text() </Name>
<Protein> $x0/protein/text() </Protein>
<WID> genID() </WID>

</Gene>
for $x0 in /Source/Gene
where $x0/type/text() != ’primary’
return
<Synonym>

<Name> $x0/name/text() </Name>
<Protein> $x0/protein/text() </Protein>
<WID> genID() </WID>

</Synonym>
</Target>

A.5 Vertical Partition
The vertical partition scenario is (S,T,P), where S and T are

shown in Fig. 2(e). Assuming that genID(.) is an XQuery func-
tion that returns an identifier based on its input arguments each time
it is invoked, the precise specification of P is described in XQuery
below. In our XQuery specification below, we sometimes omit the
end tags to save space.

<Target>
for $x0 in /Source/Reaction
let $id = genID($x0)
return

<Reaction>
<Entry> $x0/name/text()
<Name> $x0/name/text()
<Comment> $x0/comment/text()
<Orthology> $x0/orthology/text()
<CoFactor> $id </CoFactor>

</Reaction>
for $x0 in /Source/Reaction
let $id = genID($x0)
return

<ChemicalInfo>
<Definition> $x0/definition/text()
<Equation> $x0/equation/text()
<CoFactor> $id

</ChemicalInfo>
</Target>

A.6 Unnesting (or Flattening)
The unnesting scenario is (S,T,P), where S and T are shown

in Fig. 2(f). The precise specification of P is described in XQuery
below. As before, we sometimes omit the end tags to save space.

<Target>
for $x0 in /Source/Reference

$x1 in $x0/Author
return

<Publication>
<Title> $x0/title/text()
<Year> $x0/text()
<PublishedIn> $x0/publishedIn/text()
<Name> $x1/name/text()

</Publication>
</Target>

A.7 Nesting
The nesting scenario is (S,T,P), where S and T are shown in

Fig. 2(g). The precise specification of P is described in XQuery
below.

<Target>
for $x0 in distinct-values(

/Source/Reference/year)
return

<Period>
<Year> $x0
for $x1 in distinct-values(

/Source/Reference[year=$x0]/name)
return

<Author>
<Name> $x1
for $x2 in /Source/Reference
where $x2/year/text()=$x0 and

$x2/name/text()=$x1
return

<Publication>
<Title> $x2/title/text()
<PublishedIn>

$x2/publishedIn/text()
</PublishedIn>

</Publication>
</Author>

</Period>
</Target>

A.8 Self Joins
The self joins scenario is (S,T,P), where S and T are shown

in Fig. 2(h). The precise specification of P is described in XQuery
below.

<Target>
for $x0 in /Source/Gene
where $x0/type/text() = ’primary’
return

<Gene>
<Name> $x0/name/text()
<Protein> $x0/protein/text()

</Gene>

for $x0 in /Source/Gene
$x1 in /Source/Gene

where $x0/type/text() = ’primary’ and
$x1/type/text() != ’primary’ and
$x1/protein/text() = $x0/protein/text()

return
<Synonym>

<Name> $x1/name/text()
<WID> $x0/name/text()

</Synonym>
</Target>

A.9 Denormalization and Join Path Selection
The denormalization and join path selection scenario is (S,T,P),

where S and T are shown in Fig. 2(i). The precise specification of
P is described in XQuery below.

<Target>
for $x0 in $doc/Source/Name,

$x1 in $doc/Source/Node
where $x0/id/text() = $x1/taxId/text()
return

<Taxon>
<Id> $x0/id/text()
<Name> $x0/name/text()
<UniqueName> $x0/uniqueName/text()
<Class> $x0/class/text()
<Parent> $x1/parentId/text()
<Rank> $x1/rank/text()
<EmblCode> $x1/emblCode/text()

</Taxon>
</Target>

A.10 Keys and Object Fusion
The keys and object fusion scenario is (S,T,P), where S and

T are shown in Fig. 2(j). We assume that contact and date form a
key for the Experiment and FlowCytometrySample sets. The pre-
cise specification of P is described in XQuery below. The first part
creates a target Experiment element for each source Experiment and
copies the associated ExperimentalData information, as well as the

ExperimentalData associated with any FlowCytometrySample that
agrees with the source Experiment on contact and date. The sec-
ond part creates target Experiment elements for each FlowCytome-
trySample that does not agree on contact and date with any source
Experiment.

<Target>
for $x0 in /Source/Experiment
return

<Experiment>
<Contact> $x0/contact/text()
<Date> $x0/date/text()
<Description> $x0/description/text()
for $x1 in $x0/ExperimentalData
return

<ExperimentalData>
<Data> $x1/data/text()
<Role> $x1/role/text()

</ExperimentalData>
for $x2 in /Source/FlowCytometrySample
where $x2/contact=$x0/contact

and $x2/date=$x0/date
return

for $x3 in $x2/Probe
return

<ExperimentalData>
<Data> $x3/data/text()
<Role> $x3/type/text()

</ExperimentalData>
</Experiment>

for $x0 in /Source/FlowCytometrySample
where

not(exists(/Source/Experiment
[contact=$x0/contact and date=$x0/date]))

return
<Experiment>

<Contact> $x0/contact/text()
<Date> $x0/date/text()
<Description/>
for $x1 in $x0/Probe
return

<ExperimentalData>
<Data> $x1/data/text()
<Role> $x1/type/text()

</ExperimentalData>
</Experiment>

</Target>

A.11 Manipulating Atomic Values
The keys and object fusion scenario is (S,T,P), where S and T

are shown in Fig. 2(k). The precise specification of P is described
in XQuery below.

<Target>
for $x0 in $doc/Source/Contact
return

<Contact>
<FirstName> getFirstName($x0/name/text())
<LastName> getLastName($x0/name/text())
<Address> concat($x0/street/text(),

$x0/city/text(),
$x0/zip/text())

<Phone> $x0/phone/text()
</Contact>

</Target>

B. AN EXPANDED SCENARIO
The precise specification of the transformation function P of the

scenario (S,T,P), where S and T are shown in Fig. 3(a) is pro-
vided next in XQuery. Note that this scenario is an expanded sce-
nario generated by the Unnesting basic scenario.

<Target>
for $x0 in /Source/Reference,

$x1 in $x0/Author,
$x2 in $x1/Affiliation,
$x3 in $x2/Student

return
<Publication>

<Title> $x0/title/text()
<Year> $x0/text()
<PublishedIn> $x0/publishedIn/text()
<Name> $x1/name/text()
<University> $x2/university/text()
<Country> $x2/country/text()
<StudName> $x3/sname/text()

</Publication>
</Target>

C. A COMPOSED SCENARIO
The precise specification of the transformation function P of the

scenario (S,T,P), where S and T are shown in Fig. 4(a) and
Fig. 4(f), respectively, is provided next in XQuery.

<Target>
for $x0 in /Source/R1,

$x1 in $x0/SE1, $x2 in $x1/SE2,
$x3 in /Source/R2,
$x4 in $x3/SE3, $x4 in $x3/SE4,
$x5 in /Source/R3

where
$x0/Attr2/text()=$x3/Attr9/text() and
$x5/Attr14/text()=$x4/Attr12/text() and
$x5/Attr15/text()=$x4/Attr11/text()

return
<R4>

<Attr1> $x0/Attr1/text()
<Attr3> $x1/Attr3/text()
<Attr4> $x1/Attr4/text()
for $x10 in /Source/R1,

$x11 in $x0/SE1, $x12 in $x1/SE2,
$x13 in /Source/R2,
$x14 in $x3/SE3, $x14 in $x3/SE4,
$x15 in /Source/R3

where
$x10/Attr2/text()=$x13/Attr9/text() and
$x15/Attr14/text()=$x14/Attr12/text() and
$x15/Attr15/text()=$x14/Attr11/text() and
$x10/Attr1/text()=$x0/Attr1/text() and
$x11/Attr3/text()=$x1/Attr3/text() and
$x11/Attr4/text()=$x1/Attr4/text()

return
<SE5>

<Attr6> $x12/Attr6/text()
<Attr7> $x12/Attr7/text()
<Attr8b> $x13/Attr8/text()
<Attr19> id()

</SE5>
</R4>

for $x0 in /Source/R1,
$x1 in $x0/SE1, $x2 in $x1/SE2,
$x3 in /Source/R2, $x4 in $x3/SE3,
$x4 in $x3/SE4,
$x5 in /Source/R3

where
$x0/Attr2/text()=$x3/Attr9/text() and
$x5/Attr14/text()=$x4/Attr12/text() and
$x5/Attr15/text()=$x4/Attr11/text()

return
<R6>
<Attr8> $x3/Attr8/text()
<Attr9> $x3/Attr9/text()
<Attr11> $x4/Attr11/text()
<Attr12> $x4/Attr12/text()
<Attr13> $x5/Attr13/text()

<Attr17> June
</R6>

for $x0 in /Source/R1,
$x1 in $x0/SE1, $x2 in $x1/SE2,
$x3 in /Source/R2,
$x4 in $x3/SE3, $x4 in $x3/SE4,
$x5 in /Source/R3

where $x0/Attr2/text()=$x3/Attr9/text() and
$x5/Attr14/text()=$x4/Attr12/text() and
$x5/Attr15/text()=$x4/Attr11/text()

return
<R7>

<Attr14> $x5/Attr14/text()
<Attr15> $x5/Attr15/text()
for $x20 in /Source/R1,

$x21 in $x0/SE1, $x22 in $x1/SE2,
$x23 in /Source/R2,
$x24 in $x3/SE3, $x24 in $x3/SE4,
$x25 in /Source/R3

where
$x20/Attr2/text()=$x23/Attr9/text() and
$x25/Attr14/text()=$x24/Attr12/text() and
$x25/Attr15/text()=$x24/Attr11/text() and
$x25/Attr14/text()=$x5/Attr14/text() and
$x25/Attr15/text()=$x5/Attr15/text()

return
<SE6>
<Attr16> $x25/Attr16/text()
<Attr18> $x20/Attr2/text()

* $x25/Attr14/text()
</SE6>

</R7>
</Target>

