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ABSTRACT
Keyword queries offer a convenient alternative to traditional
SQL in querying relational databases with large, often unknown,
schemas and instances. The challenge in answering such queries
is to discover their intended semantics, construct the SQL queries
that describe them and used them to retrieve the respective tuples.
Existing approaches typically rely on indices built a-priori on the
database content. This seriously limits their applicability if a-priori
access to the database content is not possible. Examples include the
on-line databases accessed through web interface, or the sources in
information integration systems that operate behind wrappers with
specific query capabilities. Furthermore, existing literature has not
studied to its full extend the inter-dependencies across the ways the
different keywords are mapped into the database values and schema
elements. In this work, we describe a novel technique for translat-
ing keyword queries into SQL based on the Munkres (a.k.a. Hun-
garian) algorithm. Our approach not only tackles the above two
limitations, but it offers significant improvements in the identifica-
tion of the semantically meaningful SQL queries that describe the
intended keyword query semantics. We provide details of the tech-
nique implementation and an extensive experimental evaluation.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Search process; Retrieval models; Query formula-
tion

General Terms
Algorithms, Experimentation, Performance

Keywords
Semantic Keyword Search, Intensional Knowledge, Relational
Databases, Metadata
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1. INTRODUCTION
The more the relational data complexity is increasing and the

user base is shifting towards the less technically skilled, the more
the keyword searching is becoming an attractive alternative to tradi-
tional SQL queries, mainly due to its simplicity. Unfortunately, this
simplicity comes with the price of inherent ambiguity. Thus, the
challenge of answering a keyword query over a relational database
is to discover the database structures that contain the keywords and
explore how these structures are inter-connected to form an answer.
The discovered structures, alongside their inter-connections, are ac-
tually representing in relational terms the semantic interpretation of
the keyword query.

Numerous studies and tools can already be found in the sci-
entific literature. They include DISCOVER [16], DBXplorer [2],
BANKS [1], SPARK [22], SQAK [31], and many others [21, 29,
27, 33, 34, 38]. Generally, these works consider the database as a
network of interconnected tuples, they detect those containing the
keywords in the query, they generate connected components based
on how these tuples are associated, and they return these connected
tuples as an answer to the query. To do so, specialized structures
that index the database content [2] are used. By using these indices,
they may directly retrieve the tuples of interest, or they may instead
construct the queries expressions that retrieve these tuples when
evaluated. This is the basic idea followed by the modern commer-
cial database management systems supporting full-text search over
their relational database.

Unfortunately, existing techniques suffer from two main limi-
tations. The first is that they require a-priori access to the data
instance in order to build the indices that will locate the tuples re-
lated to the given keywords at run time. This seriously limits their
applicability if such access is not possible. Examples of such sit-
uations include databases on the hidden web and sources located
behind wrappers in data integration systems [19] that typically ex-
pose only their schema information and lack notification mecha-
nisms for their data updates. The second limitation is that no con-
siderable attention has been paid to the inter-dependencies among
the query keywords. The likelihood that a specific data structure
represent the same semantics as a keyword in a user query does not
only depend on the relationship between the keyword and the data
structure, but also on the data to which the other keywords in the
query are mapped. This is because despite the fact that a keyword
query is a flat list of keywords, the meaning of each keyword is
not independent of the meaning of the others, but they all collec-
tively represent the intended concepts the user had in mind posing
the query. Furthermore, not all the keywords represent instance
values. Many are used as meta-data specification of the adjacent
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keywords. Although there are already keyword based approaches
on relational data that take into consideration metadata [21][31],
they provide only partial solutions to the problem, and they only
use the metadata as a way to improve their technique.

In this work, we propose a novel technique for answering key-
word queries over relational databases. The queries are translated
into a number of SQL queries that capture the possible semantics of
the keyword query. The generated SQL queries can be evaluated on
the database, and their results serve as the answer to the keyword
query. One of the novelties of the technique is that it is not based
on an a-priori access to the database instances. Moreover, our ap-
proach exploits the relative positions of the keywords in the query
alongside auxiliary external knowledge in order to make a more
educated guess of the semantics that most likely represent those
of the keyword query, and then rank them accordingly. The strat-
egy can not only be easily incorporated to many relational database
management systems, but it can also be used as an enhancement of
existing keyword searching techniques that utilize the database in-
stance, offering them significant improvements over effectiveness
and efficiency.

An advantage of our approach is that it can be used to assist
users browsing databases with large unknown schemas. It is of-
ten the case that users formulate keyword queries without some
specific semantics in mind but in an exploratory manner, mainly
when they are neither fully aware of the type of information that
is stored in a database, nor of the way this information is stored.
The possible interpretations of a keyword query according to the
schema and domain information of the database will be generated
by our approach. In contrast to other keyword searching techniques
on relational data that return sets of linked tuples, we can return
the interpretations expressed in SQL. The study of these queries
can reveal tables, attributes and join paths, providing the user with
enough information to understand the kind of data that is stored in
the database and the way this data is structured.

Our key contributions are as follows: (i) we formally define the
problem of keyword querying over relational databases that lack a-
priori access to the database instance; (ii) we introduce the notion
of a weight as a measure of the likelihood that the semantics of a
keyword are represented by a database structure, i.e., a table, an
attribute, or a value. We further distinguish the weights to intrinsic
and contextual, to emphasize that this likelihood does not depend
only on the meaning of the keyword semantics when the keyword is
considered in isolation (intrinsic), but also on the way the seman-
tics of the remaining, especially the neighbouring, keywords are
represented in the data (contextual). (iii) we extend and exploit the
Hungarian (a.k.a., Munkres) algorithm [7] to develop a technique
for the systematic computation of the contextual weights that leads
into to the generation and ranking of the different interpretations of
a keyword query in terms of SQL; finally, (iv) we experimentally
evaluate our approach on real application scenarios.

The remainder of the paper is structured as follows: Section 2
provides a motivating example and Section 3 formally defines the
problem. Section 4 describes our technique. Sections 5 - 7 provides
details on our technical contributions, i.e. the computation of the
intrinsic weights, the contextualization and the selection of the best
mappings. The relationship of our approach to the related work
is discussed in Section 8 and Section 9 describes our experimental
evaluation and discusses our findings. Finally some conclusions
are presented in Section 10.

2. MOTIVATING EXAMPLE
Consider the database illustrated in Figure 1, containing infor-

mation about academic researchers, departments, publications, and

publication databases, all modeled by the respective tables. The ta-
bles Affiliated and Author materialize many-to-many relation-
ships between Person-Department and Person-Publication,
respectively. Let “Date Database” be a keyword query posed
over this database. To answer this query we need to understand
the meaning of each keyword and build an SQL query that offers
an interpretation of the keyword query semantics in terms of the
relational database.

The first problem of this translation is to decide what role each
keyword plays in the query, i.e., it represents a value or describes
some meta-information (specification) about another keyword or
the element of interest. In the above query, the keyword Date may
represent the value of a name, and the keyword Database the
value of a research area. In that case, a possible interpretation of
the keyword query is information about a person called Date that
has done work in the Database area. If the intended meaning of
the keyword query was instead to find the online databases contain-
ing Date’s publications, then the keyword Database is actually
representing meta-information about the element of interest.

Knowing what kind of information each keyword represents,
the next critical step is to decide which part of the database ac-
tually models the intended keyword meaning. Consider the key-
word query “Director Watson Address” and assume that
the first and last keyword represent meta information while the sec-
ond represents a value. The intended information of the keyword
Director is most probably the one modeled by the attribute with
the respective name. It is not clear, however, whether the keyword
Address refers to the homonym attribute in the table Person or
to the one in the table Department. Choosing one over another
leads to completely different interpretations of the keyword query.
Furthermore, the keyword Watson, even though we know it is a
value, might be the name of a director, the name of a street, or even
a value of some other attribute.

Deciding which database structures model the meaning of the
different keywords in the query is not enough. It is also impor-
tant to decide how these structures relate to each other. In rela-
tional databases, such relationships are expressed either through
the table-attribute-value hierarchy or through join paths, i.e., chains
of key/foreign key relationships. Between two database structures
there may be multiple different join paths. Each such path leads to
a different interpretation of the query keywords. For instance, con-
sider the keyword query “email CS”, and assume that the key-
word email corresponds to attribute Email and keyword CS to a
value of the attribute DName. Between DName and Email, there are
two different paths, one that goes through the table Affiliated

and one through the Director. If the semantics of the keyword
query were to find emails of the CS affiliated persons, then the
database query describing this semantics is one that uses the first
path. If instead the semantics were to find the email of the CS de-
partment director, the query is one that uses the second path.

Finding the different semantic interpretations of a keyword query
is a combinatorial problem which can be solved by an exhaustive
enumeration of the different ways that mappings can be associated
to database structures and values. The challenging task is to de-
velop a mechanism that is able to significantly reduce the possi-
ble associations that most likely represent the intended keyword
semantics. One way to do this is to exploit syntactic knowledge
or other forms of auxiliary information. For instance, a keyword
“(320)463-1463” is more likely to represent a phone num-
ber due to its format, while a keyword Everest, given the pub-
licly available geo-name knowledge, is very likely to represent the
mount Everest. Similarly, the keyword “article” is likely to cor-
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Person
Name Area Phone Address Email
Watson Database (320) 4631234 30 Bloor watson@aaa.bb
Lenzerini Database (390) 6987654 Ariosto 25 lenzerini@bbb.cc
Date Database (817) 1937842 107 GACB date@ccc.dd
Hunt Inf. Systems (343) 2920812 17 Helix Hunt@ddd.ee

Affiliated
Professor Department
Watson x123
Lenzerini cs34
Date cs34
Hunt m111

Department
id DName Address Director
x123 CS 25 Blicker Watson
cs34 IE 15 Tribeca Hunt
ee67 EE 5 Charles Date
m111 ME 2 Cottle Hunt

Author
Name Publication
Lenzerini Data Integration
Date Foundation Matters

Publication
Title Year Resource
Data Integration 2002 ACM DL
Foundation Matters 2002 DBLP

Database
Name Address
DBLP http://www.informatik.uni-trier.de
ACM DL http://portal.acm.org/dl.cfm

Figure 1: A fraction of a database schema with its data.

respond to the table Publication, based on some lexical database
knowledge like WordNet1.

The quest for the database structure that a keyword corresponds
should not be an isolated task. Keywords are not independent en-
tities, but it should be seen in the context of the presence of the
other keywords in the query. To illustrate this fact, consider the
keyword query “Name Date Database”. A possible interpre-
tation of the query is that the user is looking for the person called
Date who works in the area of databases. This means that keywords
Name and Date may correspond to the attribute Name of the ta-
ble Person and one of its values, respectively, while the keyword
Database to one of the values of the attribute Area. Consider
now the query “Name Date Database DBLP”. In this case,
a possible interpretation is that the user is looking for data items
related to Date in the DBLP database, hence, the meaning of the
keyword Database is represented by the table Database and not
by some value of the Area attribute.

A natural and challenging question that comes to mind is which
of the different semantic interpretations of a query should be con-
sidered as the correct one. It is a well-known and documented fact
that keyword queries are under-specified queries [18]. As such,
any of the possible interpretations may be correct, and all have to
be considered. However, based on some known patterns of human
behavior [18], we know that the order of keywords is important
and that correlated keywords are typically close. This means that
certain interpretations of a keyword query are actually more likely
than others. Thus, instead of returning a flat list of possible in-
terpretations to the user, one can return a ranked list based on the
likelihood that they represent the intended keyword semantics.

3. PROBLEM STATEMENT
A database D is a collection of relational tables. A relational

table is denoted as R(A1, A2, . . . , An), where R is the name of
the table and A1, A2, . . . , An its attributes. The vocabulary of the
database D, denoted as VD , is the set VD={X | ∃R(A1, A2, . . . ,
An)∈D, s.t. X=R ∨X=Ak ∨X=Dom(Ak) with 1≤k≤n}. In
other words, the vocabulary of a database is the set of all its relation
names, their attributes and their respective domains. A database
term is a member of its vocabulary.

A keyword query q is an ordered list of keywords {k1, k2, . . . ,
kn}. Each keyword is a specification about the element of interest.
The specification may have been modeled in the database as a rela-
tional table, an attribute, or a value of an attribute. A configuration
is a mapping function that describes a specification for each query
keyword in terms of database terms.

DEFINITION 3.1. A configuration C of a keyword query q on
a database D is an injective mapping from the keywords in q to
database terms in the vocabulary of D.

1wordnet.princeton.edu

We have made the natural assumption that each keyword cannot
have more than one meaning in the same configuration, i.e., it can
be mapped to only one database term. Furthermore, we have as-
sumed that no two keywords can be mapped into the same database
term based on the fact that overspecified queries is only a small
fraction of the queries that are typically met in practice [18]. How-
ever, our technique can be extended to work without this assump-
tion with only minor modifications. We have also made the natural
assumption that every keyword plays some role in the query, i.e.,
there are no unjustified keywords.

Answering a keyword query over a database D means finding a
set of SQL queries, with each of these queries using all the database
elements that belong to the range2 of a specific configuration. Such
an SQL query is referred to as an interpretation of the keyword
query, since it provides a possible meaning of the keyword query in
terms of the database vocabulary. In the current work, we consider
only select-project-join (SPJ) interpretations, that are typically the
queries of interest in similar works [2, 16]. Nevertheless, inter-
pretations involving aggregations [31] are also in our list of future
extensions.

DEFINITION 3.2. An interpretation of a keyword query q={k1,
k2, . . . , kn} on a database D using a configuration C is an SQL
query: select A1, A2, . . ., Aj

from R1 JOIN R2 JOIN . . . JOIN Rn

where A′1=v1 AND A′2=v2 AND . . . AND A′m=vm
such that ∀k∈q one of the following is true:

• C(k)∈{R1, R2, . . ., Rn}
• C(k)∈{A1, A2, . . ., Aj}
• C(k)=dom(A′i)∈{dom(A′1), dom(A′2), . . ., dom(A′j)}

and 〈A′i, k〉 ∈ {〈A′1, v1〉, 〈A′2, v2〉, . . . , 〈A′m, vm〉}

To eliminate redundancies, we require any use of a database term
in an interpretation to be justified either by belonging to the range
of the configuration, or by participating in a join path connecting
two database terms that belong in the range of the configuration.
Note that even with that restriction, due to the multiple join paths
in a database D, it is still possible to have multiple interpretations
of a given keyword query q and a configuration C of it. We will
use the notation I(q, C,D) to refer to the set of these interpreta-
tions. and I(q,D) for the union of all these sets for all the possible
configurations of the query q.

EXAMPLE 3.1. Consider the keyword query “email CS” over
the database of Figure 1, and a configuration that maps email to
Email and CS to DName. At least two different interpretations can
be generated from this. One is the:

select Email
from Person P JOIN Affiliated A ON (P.name=A.professor)

JOIN Department D ON (A.Department=D.id)
where D.DName=‘CS’ AND D.id=A.Department

AND A.Professor=P.Name
2Since a configuration is a function, we can talk about its range.
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Figure 2: Overview of the keyword query translation process

and the other is the:
select Email
from Person P JOIN Department D ON (P.person=D.Director)
where D.DName=‘CS’ AND D.Director=P.Name

DEFINITION 3.3. An answer to a keyword query q over a re-
lational database D is the set ans(q) ={t | t ∈ evalD(q′) ∧
q′∈ I(q,D)}, where evalD(q′) denotes the evaluation of the rela-
tional query q′ on the database D.

Note that since there is no restriction on the number of attributes
in the select clause of an answer, the answer set of a keyword query
will naturally be heterogeneous.

Since each keyword in a query can be mapped to a relation name,
an attribute name or an attribute domain, there are 2∗Σ|D|i=1|Ri| +
|D| different configurations, with |Ri| denoting the arity of the re-
lation Ri and |D| the number of tables in the database. Based on
this, and on the fact that no two keywords can be mapped to the
same database term, for N keywords, there are |VD|!

(|VD|−N)!
pos-

sible configurations. Of course, not all the interpretations gen-
erated by these configurations are equally meaningful. Some are
more likely to represent the intended keyword query semantics. In
the following sections we will show how different kinds of meta-
information and inter-dependencies between the mappings of key-
words to database terms can be exploited in order to effectively and
efficiently identify these interpretations and present them first. Our
work is based on the natural assumption that the intended semantics
of the keyword query can be expressed as a query over the relational
database. If those semantics cannot be expressed, no answer can be
provided.

4. FROM KEYWORDS TO QUERIES
The generation of interpretations that most likely describe the

intended semantics of a keyword query is based on semantically

R1 ... RnA
R1
1 . . . AR1

n1
. . . ARn

nn
A

R1
1 . . . AR1

n1
. . . ARn

nn

keyword1

keyword2

. . .
keywordk

Figure 3: Weight table with its SW (light) and VW (dark) parts

meaningful configurations, i.e. sets of mappings between each key-
word and a database term. We introduce the notion of weight that
offers a quantitative measure of the relativeness of a keyword to a
database term, i.e., the likelihood that the semantics of the database
term are the intended semantics of the keyword in the query. The
sum of the weights of the keyword-database term pairs can form
a score serving as a quantitative measure of the likelihood of the
configuration to lead to an interpretation that accurately describes
the intended keyword query semantics. The range and full seman-
tics of the score cannot be fully specified in advance. They depend
on the method used to compute the similarity. This is not a prob-
lem as long as the same method is used to compute the scores for
all the keywords. This is the same approach followed in schema
matching [28] where a score is used to measure the likelihood that
an element of a schema corresponds to an element of another.

The naive approach for selecting the best configurations, and, as
a consequence, generating the most prominent interpretations of a
keyword query, is the computation of the score of each possible
configuration and then selecting those that have the highest scores.
Of course, we would like to avoid an exhaustive enumeration of all
the possible configurations, and compute only those that give high
scores. The problem of computing the mapping with the maximum
score without an exhaustive computation of the scores of all the
possible mappings is known in the literature as the problem of Bi-
partite Weighted Assignments [9]. Unfortunately, solutions to this
problem suffer from two main limitations. First, apart from the mu-
tual exclusiveness, they do not consider any other interdependen-
cies that may exist between the mappings. Second, they typically
provide only the best mapping, instead of a ranked list based on the
scores.

To cope with the first limitation, we introduce two different kinds
of weights: the intrinsic, and the contextual weights. Given a map-
ping of a keyword to a database term, its intrinsic weight mea-
sures the likelihood that the semantics of the keyword is that of
the database term if considered in isolation from the mappings of
all the other keywords in the query. The computation of an in-
trinsic weight is based on syntactic, semantic and structural fac-
tors such as attribute and relation names, or other auxiliary exter-
nal sources, such as vocabularies, ontologies, domains, common
syntactic patterns, etc. On the other hand, a contextual weight is
used to measure the same likelihood but considering the mappings
of the remaining query keywords. This is motivated by the fact
that the assignment of a keyword to a database term may increase
or decrease the likelihood that another keyword corresponds to a
certain database term. This is again based on observations that hu-
mans tend to write queries in which related keywords are close to
each other [18]. As an example, for the keyword query “Watson
Area Database” expressed on the database in Figure 1, since
the keyword “Database” is right next to keyword Area, map-
ping the keyword Area to the attribute Area of the table Person

makes more likely the fact that the keyword Database is an
area value, i.e., should be mapped to the domain of the attribute
Area. At the same time, it decreases its relativeness to the table
Database. A similar idea has already been exploited in the con-
text of schema matching [24] with many interesting results. To
cope with the second limitation, we have developed a novel algo-
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P D P.Na P.Ar P.Ph P.Ad P.Em D.Id D.Dn D.Ad D.Di P.Na P.Ar P.Ph P.Ad P.Em D.Id D.Dn D.Ad D.Di
workers 68 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1
department 0 100 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1
CS 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1

Figure 4: Intrinsic Weight SW (light gray) and VW (dark gray) matrix.

rithm for computing the best mappings. The algorithm is based on
and extends the Hungarian (a.k.a., Munkres) algorithm [7] and will
be described in detail in Section 7.

A visual illustration of the individual steps in the keyword query
translation task is depicted in Figure 2. A special data structure,
called weight matrix, plays a central role in these steps. The weight
matrix is a two-dimensional array with a row for each keyword in
the keyword query, and a column for each database term. The value
of a cell [i, j] represents the weight associated to the mapping be-
tween the keyword i and the database term j. Figure 3 provides an
abstract illustration of a weight matrix. An Ri and ARi

j columns
correspond to the relation Ri and the attribute Aj of Ri, respec-
tively, while a column with an underline attribute name ARi

j rep-
resents the data values in the column Aj of table Ri may have,
i.e., its domain. Two parts (i.e., sub-matrices) can be distinguished
in the weight matrix. One corresponds to the database terms re-
lated to schema elements, i.e., relational tables and attributes, and
the other one corresponds to attribute values, i.e., the domains of
the attributes. We refer to database terms related to schema ele-
ments as schema database terms, and to those related to domains
of the attributes as value database terms. In Figure 3, these two
sub-matrices are illustrated with different shades of gray. We re-
fer to the weights in the first sub-matrix as schema weights, and to
those of the second as value weights. We also use the notation SW
and VW to refer either to the respective sub-matrix, or to their val-
ues. The details of the individual steps of Figure 2 are provided
next.
Intrinsic Weight Computation. The first step of the process is the
intrinsic weight computation. The output is the populated SW and
VW sub-matrices. The computation is achieved by the exploita-
tion and combination of a number of similarity techniques based
on structural and lexical knowledge extracted from the data source,
and on external knowledge, such as ontologies, vocabularies, do-
main terminologies, etc. Note that the knowledge extracted from
the data source is basically the meta-information that the source
makes public, typically, the schema structure and constraints. In the
absence of any other external information, a simple string compar-
ison based on tree-edit distance can be used for populating the SW
sub-matrix. For the VW sub-matrix the notion of Semantic Dis-
tance [11] can always be used in the absence of anything else. As it
happens in similar situations [28], measuring the success of such a
task is not easy since there is no single correct answer. In general,
the more meta-information has been used, the better. However,
even in the case that the current step is skipped, the process can
continue with the weight matrix where all the intrinsic values have
the same default value. The computation of the intrinsic weights is
detailed in Section 5.
Selection of the Best Mappings to Schema Terms. The intrinsic
weights provide a first indication of the similarities of the keywords
to database terms. To generate the prominent mappings, we need
on top of that to take into consideration the inter-dependencies be-
tween the mappings of the different keywords. We consider first
the prominent mappings of keywords to schema terms. For that we
work on the SW sub-matrix. Based on the intrinsic weights, a se-
ries of mappings MS

1 ,MS
2 , . . . , MS

n , of keywords to schema terms
are generated. The mappings are those that achieve the highest

overall score, i.e., the sum of the weights of the individual keyword
mappings. The mappings are partial, i.e., not all the keywords are
mapped to some schema term. Those that remain unmapped will
play the role of an actual data value and will be considered in a
subsequent step for mapping to value database terms. The selec-
tion of the keywords to remain unmapped is based on the weight
matrix and some cut-off threshold. Those with a similarity below
the threshold remain unmapped. For each of the mappings MS

i , the
weights of its SW matrix are adjusted to take into consideration the
context generated by the mapping of the neighborhing keywords. It
is based on the observation that users form queries in which key-
words referring to the same or related concepts are adjacent [18,
33]. The generation of the mappings and the adjustment of the
weights in SW are performed by our extension of the Hungarian
algorithm that is described in detail in Section 7. The output of
such a step is an updated weight matrix SWi and, naturally, an up-
dated score for each mapping MS

i . Given the updated scores, some
mappings may be rejected. The selection is based on a threshold.
There is no golden value to set the threshold value. It depends on
the expectations from the keyword query answering systems. The
higher its value, the less the interpretations generated at the end, but
with higher confidence. In contrast, the lower the threshold value,
the more the mappings with lower confidence.
Contextualization of VW and selection of the Best Mappings to
Value Terms. For each partial mapping MS

i of keyword to schema
terms generated in the previous step, the mappings of the remain-
ing unmapped keywords to value terms needs to be decided. This
is done in two phases. First, the intrinsic weights of the VW sub-
matrix that were generated in Step 1 are updated to reflect the added
value provided by the mappings in MS

i of some of the keywords
to schema database terms. This is called the process of contextu-
alization of the VW sub-matrix. It is based on the documented
observation that users form queries in which keywords specifying
metadata information about a concept are adjacent or at least neigh-
boring [18, 33]. Thus, when a keyword is mapped to a schema
term, it becomes more likely that an adjacent keyword should be
mapped to a value in the domain of that schema term. The contex-
tualization process increases the weights of the respective values
terms to reflect exactly that. For example, in the keyword query
“Name Alexandria” assume that the keyword Alexandria
was found during the first step to be equally likely the name of
a person or of a city. If in Step 2 the keyword Name has been
mapped to the attribute Name of the table Person, the confidence
that Alexandria is actually the name of a person is increased,
thus, the weight between that keyword and the value database term
representing the domain of attribute Name should be increased, ac-
cordingly. In the second phase, given an updated VWi sub-matrix,
the most prominent mappings of the remaining unmapped key-
words to value database terms are generated. The mappings are
generated by using again the adapted technique of the Hungarian
algorithm (ref. Section 7). The result is a series of partial mappings
MV

ik , with k=1..mi, where i identifies the mapping MS
i on which

the computation of the updated matrix VWi was based. Given one
such mapping MV

ik the value weights are further updated to reflect
the mappings of the adjacent keywords to value database terms, in
a way similar to the one done in Step 2 for the SW sub-matrix. The
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outcome modifies the total score of each mapping MV
ik , and based

on that score the mappings are ranked.
Generation of the Configurations. As a fourth step, each pair of
a mapping MV

ik together with its associated mapping MS
i is a total

mapping of the keywords to database terms, forming a configura-
tion Cik. The score of the configuration is the sum of the scores
of the two mappings, or alternatively the sum of the weights in the
weight matrix of the elements [i, j] where i is a keyword and j is
the database term to which it is mapped through MV

ik or MS
i .

Generation of the Interpretations. Having computed the best
configurations, the interpretations of the keyword query, i.e., the
SQL queries, can be generated. The score of each such query is the
score of the respective configuration. Recall, however, that a con-
figuration is simply a mapping of the keywords to database terms.
The presence of different join paths among these terms results in
multiple interpretations. Different strategies can be used to further
rank the selections. One popular option is the length of the join
path [17] but other heuristics found in the literature [16] can also
be used. It is also possible that a same interpretation be obtained
with different configurations. A post-processing analysis and the
application of data-fusion techniques [6] can be used to deal with
this issue. However, this is not the main focus of the current work
and we will not elaborate further on it. We adopt a greedy approach
that computes a query for every alternative join path. In particular,
we construct a graph in which each node corresponds to a database
term. An edge connects two terms if they are structurally related,
i.e., through a table-attribute-domain value relationship, or seman-
tically, i.e., through a referential integrity constraint. Given a con-
figuration we mark all terms that are part of the range of the con-
figuration as “marked”. Then we run a breath-first traversal (that
favors shorter paths) to find paths that connect the disconnected
components of the graph (if possible). The final SQL query is then
constructed using the “marked" database terms, and in particular,
the tables for its from clause, the conditions modeled by the edges
for its where clause and the remaining attributes for its select

clause. Then the process is repeated to find a different interpreta-
tion, that will be based on a different join path. The final order of
the generated interpretations is determined by the way the differ-
ent paths are discovered and the cost of the configuration on which
each interpretation is based.

It is important to note here that if the thresholds used in the above
steps are all brought down to zero, then our technique is able to
generate all the possible interpretations that can be defined on a
database, even the most unlikely. In that sense, our technique is
complete. The thresholds serve only to exclude from the results
any interpretation that is not likely to represent the semantics of the
keyword query, while the weights are used to provide the basis for
a ranking metric.

5. INTRINSIC WEIGHT COMPUTATION
To compute the intrinsic weights, we need to compute the rel-

evance between every query keyword and every database term.
Some fundamental information that can be used towards this di-
rections, and that is typically available, is the schema information.
It may include the table and attribute names, the domains of the
attributes, and very often referential and integrity constraints, such
as keys and foreign keys. Syntactic descriptions of the contents
of an attribute (e.g., regular expressions) can also lead to a better
matching of keywords to database terms since they offer indica-
tions on whether a keyword can serve as a value for an attribute
or not. There are already many works that offer typical syntax for
common attributes such as phone numbers, addresses, etc. [28], and

Algorithm 1: Intrinsic SW Matrix Computation

Input: Q: Keyword Query
T : Schema Database Terms

Output: SW matrix

COMPUTEISW(Q,T )
(1) SW ← [0, 0, . . . , 0]
(2) Σ←{ Synonyms(w,t), Hyponyms(w,t), Hypernyms(w,t),

StringSimilarity(w,t) . . .}
(3) foreach w ∈ Q
(4) foreach e ∈ T
(5) sim← 0;
(6) foreach m ∈ Σ
(7) if m(w, e)> sim
(8) sim←m(w, e)
(9) if ssim ≤ threshold
(10) sim← 0;
(11) SW [w, c] = ssim * 100

have been used extensively and successfully in other areas. If ac-
cess to the catalog tables is possible, assertion statements can offer
an alternative source of syntactic information. In the same spirit,
relevant values [5], i.e., clusters of the attribute domains, are also
valuable auxiliary information. Furthermore, there is today a large
volume of grammatical and semantic information that is publicly
available on the Internet and can be used as a service. Examples
include the popular WordNet and the many community specific on-
tologies.

5.1 Weights for Schema Database Terms
Finding matches between the flat list of keywords and the

schema terms looks like the situation of schema matching [28] in
which one of the schemas is the flat universal relation [23]. We fol-
low a similar approach in which we employ a number of different
similarity measurement techniques and consider the one that offers
the best result. One of these techniques is the string similarity [12].
For the string similarity we further employ a number of different
similarity metrics such as the Jaccard, the Hamming, the Leven-
shtein, etc., in order to cover a broad spectrum of situations that
may occur. Since string similarity may fail in cases of highly het-
erogeneous schemas that lack a common vocabulary, we also mea-
sure the relativeness of a keyword to schema database term based
on their semantic relationship. For that we employ public ontolo-
gies, such as SUMO3, or semantic dictionaries such as WordNet,
that can provide synonyms, hypernyms, hyponyms, or other terms
related to a given word.

Algorithm 1 describes the computation procedure of the intrin-
sic schema weight matrix SW . The set Σ represents the similarity
methods we employ. We have a number of default methods that
represent the state of the art in the area, but additional methods can
be included. Each such method takes as input two strings and re-
turns their respective similarity in a range between 0 and 1. We
trust the method that gives the highest similarity. If a similarity
between a keyword and a schema term is found below a specific
threshold (that is set by the application) then the similarity is set
explicitly to 0. As a result, at the end of the procedure there might
be rows in the matrix SW containing only zeros. These rows rep-
resent keywords that are not similar enough to any of the schema
database terms, thus, they will be considered later as candidates for
mapping to value database terms, i.e., domains of the schema at-
tributes. The fact that their rows in the SW matrix are 0 instead of
3www.ontologyportal.org

570



some low value, makes the similarities of the keyword to the value
database terms that will be computed in a later step to be the dom-
inating factor determining the guess on the role a specific keyword
can play.

EXAMPLE 5.1. Consider the keyword query “workers depart-
ment CS” posed on the database of Figure 1. Figure 4 illustrates a
fraction of the weight matrix containing the intrinsic weights for the
database terms derived from the tables Person and Department.
Instead of the full names of tables and attributes, only the first let-
ter of the tables and the first two letters of the attributes are used.
The schema weights SW are the light gray colored part of the ma-
trix. Note that the keyword CS has not been mapped to any of the
schema terms since all the values of its row in SW are 0.

5.2 Weights for Value Database Terms
For computing the intrinsic value weights, we mainly ex-

ploit domain information, and base our decision on whether
a keyword belongs to the domain of an attribute or not.
Furthermore, we have adapted the notion of Semantic Dis-
tance [11] that is based on results retrieved by a search en-
gine in order to evaluate the relatedness of two concepts.
In particular, we define the semantic relatedness SR(x, y)

of two terms x and y as: SR(x, y)=e−2NXD(x,y) where
NXD(x, y)={max{logf(x), logf(y)}− logf(x, y)}/{logN−
min{logf(x), logf(y)}} with f(x) denoting the number of web
documents containing x, and f(x, y) the number of documents
containing both x and y, as these numbers are reported by spe-
cific search engines such as Google, Yahoo!, Cuil, Excite!, etc.
The number N represents the number of documents indexed by the
corresponding search engine. For our purpose, we compute the se-
mantic relatedness of every keyword - attribute domain pair and this
gives us an indication of the similarity degree between the keyword
and the attribute domain. Information about possible values that an
attribute can accept is also an important factor. The information is
based on the explicit enumeration of values, as in the Relevant Val-
ues approach [5]. When a keyword is found among (or is similar
to) the valid values that an attribute can get, the keyword receives
a high weight. Additional comparison techniques include semantic
measures based on external knowledge bases.

EXAMPLE 5.2. For the keyword query introduced in Exam-
ple 5.1, the intrinsic value weights are indicated in the VW part
of Figure 4 i.e., the dark gray-colored part. These weights have
been computed by using domain knowledge and regular expres-
sions. Note that these are the value weights, thus, the similarity
is not between the keyword and the name of the attribute, but con-
cerns the compatibility of the keyword with the attribute domain.

6. CONTEXTUALIZATION
The process of contextualization, as previously explained, ex-

ploits the interdependencies across mappings of different key-
words. There are three different forms of contextualization that
we consider. The first one increases the confidence of a keyword
corresponding to an attribute (respectively, relation), if an adjacent
keyword is mapped to the relation it belongs (respectively, one of
the attributes of the relation). This is based on the generally ob-
served behavior that users may sometimes provide more than one
specification for a concept in a keyword query. For instance, they
may use the keyword Person before the keyword Name to specify
that they refer to the name of a person. The second form of contex-
tualization is similar to the first, but applies on the value weights

Algorithm 2: Contextualizing Value Weight Sub-Matrix VW

Input: M : Partial keyword assignment to schema database terms
Q : Keyword Query
SW : Schema intriscic weight sub-matrix
VW : Value intrinsic weight sub-matrix

Output: Updated VW sub-matrix

COMPUTECVW(SW ,VW ,M )
(1) foreach k ∈Q
(2) t ← x: ∃ (k, x) ∈M
(3) if t = null
(4) continue
(5) if t is a relation R
(6) foreach attribute A of R
(7) foreach k′ ∈ T (k)∪P (k)
(8) VW [k′, R.A]← VW [k′, R.A] + ∆w
(9) else if t is an attribute A of a relation R
(10) foreach attribute A′ of R with A′ 6=A
(11) foreach k′ ∈ T (k)∪P (k)
(12) VW [k′, R.A]← VW [k′, R.A] + ∆w
(13) foreach attribute A′ of R′ s.t. ∃ join path from A′ to A
(14) foreach k′ ∈ T (k)∪P (k)
(15) VW [k′, R.A]← VW [k′, R.A] + ∆w

instead of the schema weights. The third and most important con-
textualization form is the one that updates the confidence of certain
keywords corresponding to value database terms based on the map-
pings of other keywords to schema terms. The process consists of
three phases and takes as input the value weight matrix VW and a
partial mapping of keywords to schema database terms, and returns
an updated matrix VW . Let K be the ordered list of keywords in
a query, MS

i a partial mapping of keywords in K to schema terms,
and KS the subset of K containing the keywords for which MS

i

is defined, i.e., those that are mapped to some schema terms. We
define the notion of free trailing keywords of a keyword k, denoted
as T (k), to be the maximum set k1, k2, . . .km, of consecutive key-
words in K that are between two keywords ks and ke in the query
and for which ks=k, MS

i is defined for ks and ke and undefined
for every ki with i=1..m. The notion of free preceding keywords
of a keyword k, denoted as P (k), is defined accordingly, with k
playing the role of ke.

As an initialization step, all the weights in the rows of VW cor-
responding to keywords already mapped to database terms are set
to zero. This is done to guarantee that in the three phases that are
described next, none of these keywords will be mapped to a value
term. In the first phase of the contextualization, for every keyword
k mapped to a relation R through MS

i , the weights of the trailing
and preceding keywords T (k) and P (k) for terms representing the
domains of the attributes of the relation R are increased by a con-
stant value ∆w. The rational of this action is that queries typically
contain keywords that are generic descriptions for the values they
provide. For instance, “Person Bill”, “Department CS”,
etc., which means that consecutive keywords may correspond to
a relation and a value of one of that relation’s attributes. During
the second phase, for every keyword k mapped to an attribute A
through MS

i , the weights of the trailing and preceding keywords
T (k) and P (k) with the database terms representing domains of
attributes in the same relation as A are also increased by a constant
value ∆w. The rational of this rule is that consecutive keywords
may represent value specifications and related values. An example
is the query “Name Bill Databases” intended to ask about
the person Bill who works in the area of databases. In the third
phase, if a keyword k is mapped to an attribute A, the weights of
the trailing and preceding keywords related to domains of attributes
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P.Na P.Ar P.Ph P.Ad P.Em D.Id D.Dn D.Ad D.Di

workers 0 0 0 0 0 0 0 0 0
department 0 0 0 0 0 0 0 0 0
CS 30 18 0 18 0 50 75 50 50

Figure 5: Contextualized Value Weights VW

related to A through some join path are increased by the constant
value ∆w. The rational is that users use keywords referring to con-
cepts that are semantically related, even if these concepts have been
modeled in the database in different tables. An example of this sit-
uation is the keyword query “Phone Tribeca”. If phone is
mapped to the attribute Phone of the relation Person, then the
keyword Tribeca most likely represents the address of the de-
partment, which is stored in a separate table, and then the keyword
query is about finding the phone number of the department that
is on Tribeca street. Note that the weight increase ∆w can also
be a percentage, instead of a constant, but our experimentations
have showed no significant differences. The three phases described
above are illustrated in pseudocode in Algorithm 2.

EXAMPLE 6.1. Figure 5 illustrates the VW sub-matrix after
the value weights of Figure 4 have been contextualized based on
the mapping that maps the keyword person into workers and
department to department. Note that the lines for keywords
person and department are 0, a result of the initialization
step.

7. SELECTION OF THE BEST MAPPINGS
Given a weight matrix, computing the best possible mapping

of keywords to database terms is known as the assignment prob-
lem [9]. Unfortunately, the traditional solutions return the first best
mapping while we would like them all in descending order, or at
least the top-k. Furthermore, we need a solution that, during the
computation of the best mappings, takes into consideration inter-
dependencies of the different assignments, i.e., the contextualiza-
tion process. For this reason, we have adapted the popular sys-
tematic Hungarian, a.k.a. Munkres, algorithm [7] in order not to
stop after the generation of the best mapping but to continue to the
generation of the second best, the third, etc. Furthermore, some of
its internal steps have been modified so that the weight matrix is
dynamically updated every time that a mapping of a keyword to a
database term is decided during the computation.

The execution of the algorithm consists of a series of iterative
steps that generate a mapping with a maximum score. Once done,
the weight matrix is modified accordingly to exclude the mapping
that was generated and the process continues to compute the map-
ping with the second largest score, etc. More specifically, the max-
imum weight of each row is first identified and characterized as
maximum. If the characterized as maximum weights are all located
in different columns, then a mapping is generated by associating
for each of the characterized as maximum weights the keyword and
the database term that correspond to its respective row and column.
On the other hand, if there is a column containing more than one
weight characterized as maximum, all maximums in the column
except the one with the maximum value loose their characteriza-
tion as maximum. This last action means that some of the rows are
left without some characterized weight. The values of the weights
in these rows are then updated according to a number of contex-
tual rules mentioned in Section 4. This is the effect of the mapped
keywords to those that have remained unmapped.

In the sequel, for each row with no characterized weight, the
one with the maximum value that belongs to a column correspond-

Algorithm 3: Keyword to db term mapping selection

Input: I(iij) where I ≡ SW or I ≡ VW
Output: MI = {MI

1 , . . . ,M
I
z }: Mappings generated by I

MAPPING(I,WMAX )
(1) tempM =

⋃
ipt←HUNGARIANExt ∗ (I)

(2) W ←
∑

ipt
(3) MI ← tempM
(4) if (W > c ∗WMAX)
(5) WMAX ←W
(6) while (W > c ∗WMAX)
(7) foreach ipt ∈ tempM
(8) ipt ∈ I ←−100
(9) Mapping(I,WMAX)

ing to a database term different from the previous one is selected
and characterized as maximum. If this leads to a matrix that has
each characterized weight in a different column, then a mapping is
generated as above or the process of un-characterizing some of the
values as previously described is repeated.

Once a mapping of all the keywords has been formed, it is in-
cluded in the set of mappings that will be returned by the algo-
rithm. Then, the algorithm needs to be repeated to generate addi-
tional mappings. To avoid recomputing the same assignments, the
algorithm is re-executed cyclically with a new matrix as input. The
new matrix is the old one modified to exclude mappings that have
already been considered in previous runs of the algorithm. This
is done by setting the values of the respective weights to a large
negative number, forcing the algorithm to never select them again.
This whole process is repeated until the scores of the mappings
that the algorithm generates fall below some specific threshold. By
construction, the most prominent mapping is the one that is first
reported by this task.

The original Hungarian algorithm for rectangular matrices has
an O(n2 ∗m) complexity [7], where n is the number of keywords
and m is the number of databases terms. Extending the algorithm
to consider dynamic weights as described above brings the com-
plexity to O(n3 ∗m2) which is due to the fact that a mapping may
affect any other mapping, thus, in the worst case, (n−1)∗ (m−1)
weight updates may take place. Nevertheless, this worst case rarely
happens since only a subset of the matrix is updated in each iter-
ation, and, due to the threshold, not all the possible updates are
evaluated.

Algorithm 3 depicts the overall process of computing the set of
most prominent mappings of a set of keywords to database terms,
given a weight matrix. The expression HUNGARIANext refers
to our extended version of the Hungarian algorithm.

EXAMPLE 7.1. Figure 6 illustrates a VW matrix similar to the
one of Figure 5, but with additional keywords to better demonstrate
the steps described in this section. The initial version of the matrix
is the one composed of the first 7 lines. The lines of the keywords
workers and department will remain unchanged since the keywords
are mapped to schema terms, and for this reason they are omit-
ted from the subsequent versions. The weights in white cells are
those characterized as maximum. Each one is the largest weight in
its row. Note that for column P.N there are more than one weight
characterized as maximum. From those, only the largest one is
kept, in our case the 46. This leaves the row of keyword Hopkins
with no weight characterized as maximum. The result is the second
VW matrix illustrated in Figure 6. The three characterized weights
suggest a mapping for the keywords CS, Mary and Summerhill.
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P.N P.A P.P P.Ad P.E D.I D.D D.A D.Di

workers 0 0 0 0 0 0 0 0 0
department 0 0 0 0 0 0 0 0 0
CS 30 18 0 18 0 50 75 50 50
Hopkins 45 30 0 35 10 32 40 35 39
Mary 46 20 0 5 7 20 25 30 40
Summerhill 10 7 0 34 22 20 10 32 15

CS 30 18 0 18 0 50 75 50 50
Hopkins 45 30 0 35 10 32 40 35 39
Mary 46 20 0 5 7 20 25 30 40
Summerhill 10 7 0 34 22 20 10 32 15

CS 30 18 0 18 0 50 75 50 50
Hopkins 49 34 0 39 14 34 42 37 41
Mary 50 24 0 9 11 22 27 32 42
Summerhill 14 11 0 38 26 22 12 34 17

CS 30 18 0 18 0 50 75 50 50
Hopkins 49 34 0 39 14 34 42 37 41
Mary 50 24 0 9 11 22 27 32 42
Summerhill 14 11 0 38 26 22 12 34 17

Figure 6: Weight matrix during best mapping computation

Given these mappings, the weights are adjusted to reflect the inter-
dependencies according to the contextual rules. For instance, the
mapping of CS to the database term D.D, triggers an increase in
the weights of the database terms on the attributes in the same ta-
ble. The result of firing the contextual rules is the third matrix in
Figure 6. In the updated matrix, the highest value is 49, which is
in the column P.N, but cannot be chosen since the keyword Mary
is already mapped to it. The same applies for the second and third
largest weights in the row, which are 42 and 39, respectively. The
fourth largest weight, 37, is in a column of a database term that no
keyword is mapped to, and it is becoming characterized as max-
imum. The final outcome is the fourth matrix of Figure 6 and,
based on this, the mappings of keywords CS,Hopkins, Mary and
Summerhill to the database terms D.D, D.Di, P.N and P.Ad, re-
spectively, which is added to the mapping results generated by the
algorithm. After that, the mapping is again considered for gener-
ating a new input for the algorithm. Four new matrices are derived
from it, each one having one of the weights that was in a white cell
in the last matrix reduced. For each obtained matrix, the whole
process starts again from the beginning.

8. RELATED WORK
The popularity of keyword searching is constantly increasing. It

has been the successful retrieval model in IR for text databases [30]
and the web [8] for more than a decade. It has also been adopted
by the data management community in the context of XML [13, 20,
32]. To answer a keyword query over XML data, the appearances of
the query keywords are first identified within the documents (pos-
sibly through some free-text search) and then combined together
into Meaningful Lowest Common Ancestor Structures (MLCAS).
A score is computed based on this structure and according to this
score the respective XML documents containing the MLCAS are
ranked and returned to the user. XML benefits from the fact that
its basic information model is the “document”, which is the same
as in IR, thus, many IR techniques can be easily employed in the
XML context. On the other hand, keyword search in relational
databases is particularly challenging [31], first because the database
instances are way larger, and second because the basic model is
fundamentally different making hard the identification of the infor-
mation units that are to be returned. Nevertheless, keyword search
over relational data is particularly appealing, and there are already

Figure 7: Success in finding the intended query semantics

many interesting proposals in the scientific literature [36, 10]. DIS-
COVER [16] and DBXplorer [2] have been among the first such
systems. The typical approach is to build a special index on the
contents of the database and then to use that index to identify the
appearances of the query keywords in the attribute values. Many
approaches use inverted indexes [1, 16, 29] for that purpose, while
others, like DBXplore, use symbol tables. A symbol table is an
index consisting of a set of triples 〈value, attribute, relation〉, used
to map every value to its schema information. Once the keywords
are located, the different ways by which their respective tuples are
connected are discovered, forming the so-called “joining network"
of tuples or tuple trees, that often become the information unit re-
turned to the user. The joining networks are constructed either
directly from the instances, or by building query expressions and
evaluating them [16]. DISCOVER is interested in finding total and
minimal joining networks. A joining network is total if each key-
word query is contained in at least one tuple of the network, and
minimal if the removal of any tuple makes the network no longer
total. More recent approaches [27], are oriented towards reducing
the number of tuples that need to be considered in order to im-
prove previous techniques. BANKS [1] follows a similar approach
but employs the Steiner tree algorithm to discover how the tuples
are associated. SQAK [31] is another system that is based on the
same generic principles but focuses on the discovery of aggregate
SQL expressions that describe the intended keyword query seman-
tics. Since the set of possible answers may be large, and since the
results are already ranked, the above systems typically return the
top-k results.

As happened in all the above approaches, we are also trying to
identify the possible semantics (i.e., expected answers) to the am-
biguous keywords queries, and rank the results. We return the top-k
but by bringing the thresholds down to their extreme values we can
provide the whole set if needed. Our fundamental difference is that
we do not assume a-priori access to the database instance, as our
approach do not need pre-build and exploit any index. Unavoid-
ably, we are based on schema and meta-data, i.e., intensional infor-
mation, which makes our work applicable to scenarios where the
above techniques cannot work. Nevertheless, our approach should
not be seen as an alternative to the above methods. Since we op-
erate on different information, i.e., the meta-data, our work can be
used to enhance these techniques by providing a better exploitation
of the meta-information and the relationships among the keywords.
The idea of using schema information and keyword semantics has
been considered in one of the approaches [21], but this is only lim-
ited to word semantics based on WordNet. We go further by com-
bining not only additional semantic similarity techniques, similar to
those used in schema matching [28], but also on syntactic and struc-
tural information. Data behavior has also been considered [31]. All
these works are complementary.

Another distinction of our approach is on the relationship among
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Figure 8: Time performance for different database sizes and different kinds of queries

the keywords. Existing approaches compute the relationship
among the keywords by considering the relationships of the data
values in the database instance. We believe that the keyword query
should be the one driving the translation and not the data. Our ap-
proach takes into consideration in a systematic way the position
of the keywords in the query itself and the inter-dependencies be-
tween the matchings of the keywords to the database structure. Fur-
thermore, we map keywords to schema elements that will form the
SQL query, instead of mapping them to the tuples themselves [31].
This allows us, without performing any query evaluation, to present
these queries to the user and communicate the considered seman-
tics. Of course, this is an optional step, but in highly heteroge-
neous environments, this is the norm for matching and mapping
techniques [26].

A related field is query relaxation [3], but the main difference is
that queries are expected to provide some form of structure spec-
ification while keyword queries, which are our interest, are com-
pletely flat. The same applies for approximate query answering
techniques [14, 15, 20]. The latter may not map all the parts of the
query, an assumption that for the moment we also have. Keyword
search has also been considered by the Semantic Web community
for RDF and linked data [33, 34, 37, 38]. The research issues and
the approaches are similar to the keyword search in relational sys-
tems, but in the context of the triple-based RDF data.

Our effort can also find applications in the field of graphical tools
that assist the user in formulating queries [25]. By finding the
different interpretations of a keyword query, we could detect re-
lated schema structures, make suggestions and guide the user in the
query formulation. Furthermore, in cases of exploratory searches,
the user can use the generated interpretations as a way to explore
an (unknown) data source and understand better its semantics.

9. EVALUATION
We implemented the proposed technique into the Keymantic sys-

tem [4] and we run numerous experiments for studying its effi-
ciency and effectiveness. The experiments were performed on a
32bit Centrino Duo vPro Windows machine with 3GB of RAM.
Our work is intended for applications that heavily depend on the
user semantics, thus, generating synthetic dataset was not an effec-
tive alternative. We instead selected for our experiments two real
data sets. The first was a university database containing informa-
tion about courses, professors, students, publications, employees
and other academic issues. The second database was a fraction
of the popular IMDB service that is publicly available from the
respective web site (www.imdb.com). 29 real users were asked
to provide a set of keyword queries for these databases along-
side a natural language explanation of what they were looking
for. The users had no access to schema information, they neither
were technical experts. Only a verbal high level explanation of
what the database contents were about had been provided to them.
A database expert translated each natural language explanation of

what the user was looking as it had been provided by her, into SQL.
Since many queries were vague, high level and of exploratory na-
ture, some of these queries were translated into more than one SQL
query. The answer expected for each keyword query was the re-
sult of evaluating the SQL queries that the expert had created, and
this was used as a reference to evaluate the results returned by our
implementation. We used a total of 99 and 44 queries for the uni-
versity and the IMDB database, respectively. It is important to note
that evaluating a keyword search technique for relational databases
is a challenging task, mainly due to the lack of standards [35]. The
task is becoming more challenging in our case since existing tech-
niques have different assumptions and goals, making sometimes
unfair any direct comparison among them. One of the reasons
is that most of these techniques assume the availability of the in-
stance.

[The importance of Schema Information] Despite the existence
of many keyword search techniques, few exploit schema informa-
tion. We would like to study whether our claim that, a signifi-
cant number of keywords in keyword queries correspond, not to
the data, but to meta-data (schema) information, is true. For that,
we studied the SQL answers to the keywords queries of our eval-
uation dataset, and found that 58% of the keywords were actually
referring to schema terms.

[Effectiveness] To measure the effectiveness of our technique we
tested whether the queries that generate the intended answers (as
specified by the users and created by the expert) were among those
our algorithm generates. We also measured how many times the
expected results appear in the first place. In case a keyword query
had an answer generated by more than one SQL query, we con-
sidered in the counting multiple copies of the keyword query each
one with only one of these SQL queries. The threshold we used,
i.e., the parameter c in Algorithm 3, definitely played an impor-
tant role. When it was brought to zero, every expected answer to
a keyword query was included in the result. The percentage of
keyword queries that returned the expected answer in the first posi-
tion was not much different from the one in the case of a threshold
with some default value, thus, the results we report here are for that
default value. The results are graphically illustrated in Figure 7.
The “1st position" refers to the percentage of the keyword queries
in which we found the expected interpretation in the first position.
The “not in 1st position" indicates the percentage of the queries
in which our algorithm did generated the expected interpretation
but did not return it in the first position. Finally, the “not found”
indicates the percentage in which the expected interpretation was
not returned at all in the results produced by our algorithm. In the
IMDB scenario, we obtained worst results than in the university
scenario. This was mainly due to the fact that the IMDB schema
consists of many nested tables with the same structure, i.e., same
name and very similar data-types.

[Efficiency] To measure the efficiency of our system, we studied
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(a) Generated configurations for the University database (b) Generated configurations for the IMDB database

(c) Time performance for the University database (d) Time performance for the IMDB database

Figure 9: Experimental results using different thresholds

its time performance with respect to two different parameters: the
queries and the size of the database. For the former, we consid-
ered queries that differ not only on the number of keywords, but
also on their type, i.e., whether the keywords correspond to schema
or value terms. For the latter, since our approach assumes no ac-
cess to the instance, the variation in size was considered in terms
of the size of the schema. We created fractions of different sizes
from our original evaluation database. Our performance measure-
ments are illustrated in Figure 8. Each query is characterized by
a string. Each character of the string corresponds to a keyword in
the query and can be S, if the respective keyword is intended to
be a schema term, or V, if it is intended to be a value term. For
instance, the string SVS represents a keyword query in which the
first and last keyword represent schema terms while the middle a
value. As expected, the response time increases with the number of
keywords, but when there is a prevalence of keywords mapped to
schema terms this increase is not dramatic. The interesting result is
the increase in time due to the increase of the number of keywords
representing value terms. In general, this increase should have been
factorial (ref. Section 3), but the experiments showed no such in-
crease, which is because the metadata and the auxiliary information
alongside the contextual rules are significantly restricting the num-
ber of possible mappings of keywords to database terms. Only in
the last case, where there was one keyword referring to a schema el-
ement and four keywords referring to data values, the response time
increased. The comparison between the IMDB database and the
university database showed no significant difference, which means
that the nesting level of the database schema did not really affect the
time performance. In the experiments above, we did not report the
time needed to actually evaluate the interpretations, i.e., queries,
to avoid having the query engine performance blurring the results.
We did measured, however, the performance as well as the overall
time needed to answer a keyword query. We noticed that the overall
time was highly related to the number of results retrieved and the
number of join operations required. It ranged from some tenths of
a second for selective queries involving one table to a few minutes

for general queries. For example, in the IMDB scenario, the key-
word query “film” took 1.9 sec and retrieved 166936 records,
while the query “actor film 2007” took 1 min and 40 sec
and retrieved about 2.7 million tuples.

[Algorithm Configuration] To evaluate the effect of the threshold
value in the behavior of our system, we have experimented with
the same keyword query but with different threshold values. As
expected, a selective, i.e., high, threshold reduces the number of
results and the response time. Figure 9 provides an insight on the
dependencies between these two factors. A study of the results al-
lows us to observe that different number of configurations can be
obtained for the same threshold value. The reason of this discrep-
ancy is mainly due to the different keyword queries with which the
scenarios were evaluated and the different schemas of their respec-
tive databases. In particular, the university database is composed of
few tables with a large number of attributes and the IMDB database
contains many related tables with few attributes.

[Qualitative comparison to other approaches] Our approach is
the first to operate under the assumption that there is no prior ac-
cess to the relational database instance. Under such a condition,
existing works will return no results since they will have no way
to determine where the keywords appear. Even works that take
schema information into account [21] do so as an optimization step
after they find the appearance of some keywords in the database
instance. Thus, a direct comparison in terms of effectiveness and
efficiency would be unfair. Nevertheless, to realize a qualitative
comparison, we run some experiments using two popular systems
for keyword searching in relational databases, DBXplorer [2] and
DISCOVER [16], alongside our system. For DISCOVER, we had
exactly the same results as in DBXplorer, thus, we report only the
former. The first experiment we run was with DBXplorer assum-
ing that the relational database was not allowing access to its in-
stance so that DBXplorer could not create its index. As such, all
the queries we executed returned zero results. Then, we allowed
such access, and repeated the experiment. We run the same queries
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against our system, naturally assuming no access to the instances.
The number of queries generated by our system was larger than the
one generated by DBXplorer. This was expected since our system
was using no information about the existing data values and was
making more generic guesses of possible semantically meaningful
queries. We also tried what happens if our system did have in-
formation about the instance values. This allowed it to identify and
eliminate the queries generated by mappings of certain keywords to
value terms that were leading to zero results. The number of queries
generated by our system was less than the number of queries gen-
erated by DBXplorer since in our case some queries that were not
very likely to occur semantically were eliminated by the threshold
(the parameter c in Algorithm 3). We obtained the same number of
queries if the threshold was set to zero.

10. CONCLUSION
We have presented a novel framework for keyword search in re-

lational databases. In contrast to traditional keyword search tech-
niques that require access to the actual data stored in the database in
order to build an index, our technique uses intensional knowledge.
This allows our approach to be used in a wide range of applica-
tions, including, besides databases on the web, information integra-
tion systems, where building and maintaining specialized indexes
is not a feasible option, because the only service offered by the
source is to access the data through wrappers, predefined queries
or web forms. For the challenging task of interpreting the keyword
queries, we have extended the Hungarian algorithm in order to find
the SQL queries the most likely describe the meaning of the key-
word queries. We have implemented and evaluated the technique
and reported our findings.
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