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Abstract Schema mapping is becoming pervasive in all data transformation, ex-
change and integration tasks. It brings to the surface the problem of differences
and mismatches between heterogeneous formats and models, respectively used in
source and target databases to be mapped one to another. In this chapter, we start
by describing the problem of schema mapping, its background and technical impli-
cations. Then, we outline the early schema mapping systems, along with the new
generation of schema mapping tools. Moving from the former to the latter entailed
a dramatic change in the performance of mapping generation algorithms. Finally,
we conclude the chapter by revisiting the query answering techniques allowed by
the mappings, and by discussing useful applications and future and current develop-
ments of schema mapping tools.

1 Introduction

There are currently many kinds of scenarios in which heterogeneous systems need
to exchange, transform, and integrate data. These include ETL (”Extract, Trans-
form and Load”) applications, object-relational mapping systems, EII (”Enterprise
Information Integration”) systems, and EAI (”Enterprise Application Integration”)
frameworks.
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A common feature of all of these applications is that data is organized according
to different descriptions, typically based on a variety of data models and formats. To
given one example, consider the scenario in Figure 1.

Fig. 1 Mapping Company Information

The inputs to the problem are three data sources about companies, potentially
organized according to rather different formats and models: (a) a list of companies
from the New York Stock Exchange, (NYSE); (ii) a public database concerning
companies and grants, (Public-Companies, Public-Grants); (iii) and database of
grants from the National Scientific Foundation (NSF-Grantee, NSF-Grant). Notice
that, for the purpose of this section, we shall assume that source data are relational
tables. However, as it will be clear in the following, they might easily be organized
according to more complex data models, for example as nested XML documents.

The expected output is an instance of a target database with the following
schema: two tables, Company and Grant, a key constraint on the Company.name
attribute, and a foreign-key constraint from Grant.company to Company.id. Assum-
ing the source data are those in Figure 1.a, it is natural to expect that the target
instance obtained by the translation process is the one in Figure 1.b. In fact, infor-
mally speaking, such instance has a number of desirable properties: (i) it is a legal
instance for the target database; (ii) it is “complete”, in the sense that it contains
all of the information that is in the source tables; (iii) at the same time, it is “non-
redundant”, i.e., no piece of information is reported twice.

It can be seen from this example that computing an output solution requires the
definition of some form of mapping from the source repository to the target repos-
itory. Generally speaking, mappings, also called schema mappings, are expressions
that specify how an instance of the source repository should be translated into an
instance of the target repository. In order to be useful in practical applications, they
should have an executable implementation – for example, under the form of SQL
queries for relational data, or XQuery scripts for XML.

There are many ways in which such a transformation can be implemented. Often,
this is done in a rather procedural fashion, and developers are forced to write quite
a lot of code in order to glue together the various sources. To give an example, in an
ETL application a developer would be forced to manually construct a script made of
potentially large number of simpler data-transformation steps. In other cases, such
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as commercial EII systems, transformation steps are often expressed using program-
ming language (such as Java). This procedural style of specifying the mapping has
made the problem of exchanging data across different repositories quite a burden,
as discussed in (Haas, 2007).

In order to alleviate developers from this burden, we can identify two key re-
quirements that a mapping system should have:

• a first key requirement is represented by ease of use and productivity. Develop-
ers should not be required to manually specify all of the details about the map-
ping; on the contrary, users would like to specify only a high-level, abstract and
declarative representation of the mapping; then, based on this input, the mapping
system should be able to generate the actual mappings, by working out the miss-
ing details. To support this process, mapping systems usually provide a graphical
user interface using which developers may specify the mapping as a set of value
correspondences, i.e., correspondences among schema elements. In our example,
the input provided to the mapping system would be that shown in Figure 2;

• a second essential requirement is concerned with the generation of the target
instances, i.e., with the quality and efficiency in the generation of solutions.

In this respect, database researchers have identified two main problems: (i) the
first one is that of schema mapping generation, largely inspired by the seminal Clio
papers (Miller et al, 2000; Popa et al, 2002); this is the problem of generating a set
of mappings based on the correspondences provided as input by the user; (ii) the
second one is that of solving the actual data exchange problem; originally formal-
ized in (Fagin et al, 2005a), this consists in assigning a clear semantics to a given
set of mappings, in order to turn them into executable queries on the source, and
updates on the target that generate the desired target instance.

Fig. 2 An Abstract Specification of the Mapping as a Set of Correspondences (dashed arrows
denote foreign-key constraints)

Another important application of schema mappings is query answering (Abiteboul
and Duschka, 1998). In particular, given a fixed data exchange scenario, target query
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answering aims at computing the set of answers to a query posed on the target
schema. In our example, this amounts to take a query initially expressed on the
target tables in Figure 1.b, and to reformulate it according to the source tables in
Figure 1.a.

In recent years, research on schema mappings, data exchange and query answer-
ing have provided quite a lot of building blocks towards this goal. Interestingly, the
of bulk theoretical ideas for solving the data exchange problem were introduced
several years after the first mapping generation techniques had been developed. The
main motivation was that of providing a clear theoretical foundation for schema
mappings, i.e., a solid formalism that systems could use to reason about mappings
and their properties, to optimize them and to guarantee that data are exchanged in
an optimal way.

In the following sections, we provide an overview of these contributions. More
specifically:

• Section 2 provides an overview of data exchange theory, and more specifically
of the notions of dependencies, mapping scenario, and solution;

• Section 3 introduces the seminal ideas about schema mapping generation, and
the early algorithms developed in the framework of the Clio project (Miller et al,
2000; Popa et al, 2002);

• Section 4 describes the recent advancements in terms of schema mapping rewrit-
ing techniques that were introduced to improve the quality of solutions;

• Section 5 provides an overview of the complexity results and algorithms devel-
oped for query answering over schema mappings;

• Section 6 discusses a number of other interesting developments and applications
of schema mapping techniques;

• finally, Section 7 concludes the chapter by discussing the open problems in this
area.

2 Preliminaries

In order to provide a common formalism to be used across the chapter, we first
introduce the data model we adopt as a reference. Data exchange was originally
formalized for the relation model, so we focus on this data model. Nested sources
will be discussed separately in the following sections.

In all of the data exchange theory, databases are considered as collections of
relations on two distinct and disjoint domains: a set of constants, CONST, a set of
labeled nulls, NULLS. Labeled nulls are used during the generation of solutions in
order to “invent” new values in the target that do not appear in the source database.
One way to generate labeled nulls through Skolem functions (Hull and Yoshikawa,
1990). A Skolem function is an injective function and can be used to produce unique
identifiers. It takes one or more arguments and it has the property of producing a
unique value for each different set of arguments.
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This said, we can formalize the relational model as follows. We fix a set of labels
{A0,A1 . . .}, and a set of relation symbols {R0,R1, . . .}. With each relation symbol
R we associate a relation schema R(A1, . . . ,Ak). A schema S = {R1, . . . ,Rn} is a
collection of relation schemas. An instance of a relation schema R(A1, . . . ,Ak) is a
finite set of tuples of the form R(A1 : v1, . . . ,Ak : vk), where, for each i, vi is either
a constant or a labeled null. An instance of a schema S is a collection of instances,
one for each relation schema in S. In the following, we will interchangeably use
the positional and non positional notation for tuples and facts; also, with an abuse
of notation, we will often blur the distinction between a relation symbol and the
corresponding instance.
Dependencies and Mapping Scenarios Data exchange systems rely on embedded
dependencies (Beeri and Vardi, 1984) in order to specify mappings. These depen-
dencies are logical formulas of two forms: tuple-generating dependencies (tgds)
or equality-generating dependencies (egds); each of them has a precise role in the
mapping. Informally speaking (the formal definition are reported below):

• source-to-target tgds (s-t tgds), i.e., tgds that use source relations in the premise,
and target relations in the conclusion, are used to specify which tuples should be
present in the target based on the tuples that appear in the source; they represent
the core of the mapping, since they state how to “move” data from the source to
the target;

• target tgds, i.e., tgds the only use target symbols; these are typically used to
specify foreign-key constraints on the target;

• target egds, in turn, are typically used to encode key constraints on the target
database.

In our example, the desired mapping can be expressed using the following depen-
dencies:

SOURCE-TO-TARGET TGDS
m1. ∀s,n : NYSE(s,n)→∃I: Company(I,n,s)
m2. ∀n,c,a, pi : Public-Company(n,c)∧Public-Grant(a, pi,n)→

∃I,S: Company(I,n,S)∧Grant(a, I)
m3. ∀i,n,s : NSF-Grantee(i,n,s)→ Company(i,n,s)
m4. ∀a,c : NSF-Grant(a,c)→ Grant(a,c)
TARGET TGDS
t1. ∀a,c : Grant(a,c)→∃N,S: Company(c,N,S)
TARGET EGDS
e1. ∀n,n′, i, i′,s : Company(i,n,s)∧Company(i′,n′,s)→ (i = i′)∧ (n = n′)

Intuitively, each of the s-t tgds specifies how to map the organization of a portion of
the source tables to that of a portion of the target tables. In particular, mapping m1
copies company names and symbols in the NYSE source table to the Company table
in the target. In doing this, the mapping requires that some value – represented by the
I existentially quantified variable – is assigned to the id attribute of the Company ta-
ble. The Public source contains two relations with companies names and grants that
are assigned to them; these information are copied to the target tables by mapping
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m2; in this case, a value – again denoted by the I existentially quantified variable
– must be “invented” in order to correlate a tuple in Grant with the corresponding
tuple in Company. Finally, mappings m3 and m4 copy data in the NSF source tables
to the corresponding target tables; note that in this case we don’t need to invent any
values.

The target tgd encode the foreign key on the target. The target egd simply states
that symbol is key for Company.

To formalize, given two schemas, S and T, an embedded dependency (Beeri and
Vardi, 1984) is a first-order formula of the form ∀x(φ(x)→ ∃y(ψ(x,y))), where x
and y are vectors of variables, φ(x) is a conjunction of atomic formulas such that all
variables in x appear in it, and ψ(x,y) is a conjunction of atomic formulas. φ(x) and
ψ(x,y) may contain equations of the form vi = v j, where vi and v j are variables.

An embedded dependency is a tuple–generating dependency if φ(x) and ψ(x,y)
only contain relational atoms. It is an equality generating dependency (egd) if
ψ(x,y) contains only equations. A tgd is called a source-to-target tgd if φ(x) is
a formula over S and ψ(x,y) over T. It is a target tgd if both φ(x) and ψ(x,y) are
formulas over T.

A mapping scenario (also called a data exchange scenario or a schema mapping)
is a quadruple M = (S,T,Σst ,Σt), where S is a source schema, T is a target schema,
Σst is a set of source-to-target tgds, and Σt is a set of target dependencies that may
contain tgds and egds. If the set of target dependencies Σt is empty, we will use the
notation (S,T,Σst).
Solutions We can now introduce the notion of a solution for a mapping scenario. In
order to do this, given two disjoint schemas, S and T, we shall denote by 〈S,T〉 the
schema {S1 . . .Sn,T1 . . .Tm}. If I is an instance of S and J is an instance of T, then
the pair 〈I,J〉 is an instance of 〈S,T〉.

A target instance J is a solution of M and a source instance I (denoted J ∈
Sol(M , I)) iff 〈I,J〉 |= Σst ∪Σt , i.e., I and J together satisfy the dependencies.

Given a mapping scenario M = (S,T,Σst ,Σt), with s-t and target dependencies,
we find it useful to define a notion of a pre-solution for M and a source instance I
as a solution over I for scenario Mst = (S,T,Σst), obtained from M by removing
target constraints. In essence, a pre-solution is a solution for the s-t tgds only, and it
does not necessarily enforce the target constraints.

Figure 3 shows several solutions for our example scenario on the source instance
in Figure 1. In particular, solution a is a pre-solution, since it satisfies the s-t tgds
but it does not comply with the key constraints and therefore it does not satisfy the
egds. Solution b is a solution for both the s-t tgds and the egds. We want however to
note that a given scenario may have multiple solutions on a given source instance.
This is a consequence of the fact that each tgd only states an inclusion constraint,
but it does not fully determine the content of the target. To give an example, beside
solution b in Figure 3, also the two target instances c and d are solutions for the
same source instance.

By looking at these solutions, we notice two things: (i) solution c is more com-
pact than solution b; it can be seen that the grayed tuples in solution b are somehow
“redundant”, since they do not add any information to that contained in solution c;
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Fig. 3 Several Solutions for the Companies Scenario

(ii) solution d contains a tuple (the one with a gray background) with a ground value
(80,000) that does not belong to the source instance. In essence, the space of solu-
tions is quite various: on one side, solutions may have different sizes; intuitively,
we prefer those of smaller size; on the other side, some of them may contain some
“arbitrary” values, that do not really follow from the content of the source instance
and from the constraints in Σst ∪Σt .

It is natural to state a couple of quality requirements for solutions to a mapping
scenario:

• first, we would like to restrict our attention to those solutions – which we call
universal – that only contain information that follows from I and Σst ∪Σt ;

• among universal solutions, we would like to select the ones of the smallest size
– called the core universal solutions.

To formalize these two notions, we introduce the notion of a homomorphism among
solutions. Given two instances J, J′ over a schema T, a homomorphism h : J→ J′

is a mapping of the values of dom(J) to the values in dom(J′) such that it maps
each constant to itself, i.e., for each c ∈ const()(J), h(c) = c, and it maps each tuple
in J to a tuple in J′, i.e, for each t = R(A1 : v1, . . . ,Ak : vk) in J it is the case that
h(t) = R(A1 : h(v1), . . . ,Ak : h(vk)) belongs to J′. h is called an endomorphism if
J′ ⊆ J; if J′ ⊂ J it is called a proper endomorphism.

In essence, a homomorphism is a constant-preserving mapping that can be used
to turn one instance into a subset of another. Whenever a homomorphism h turns
a tuple t of J into a tuple t ′ of J′, we may be certain that t ′ contains at least “as
much information as” t. Similarly, if h maps J into J′, then J′ contains at least as
much information as J. If, on the contrary, there exists a tuple t in J that contains a
constant (like 80,000 in our example) that does not appear in J′, i.e., if J contains
some “extra” information that is not in J′, then there cannot be any homomorphism
of t into a tuple of J′ and therefore no homomorphism of J itself into J′.

This allows us to formalize the notion of a universal solution. A solution J for
M and source instance I is universal (Fagin et al, 2005a) (denoted J ∈USol(M , I))
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iff for every other solution K for M and I there is an homomorphism from J to K.
In the following, we shall only consider universal solutions.

Among these, we prefer those of minimal size. Given a scenario M , and an
instance I, a core universal solution (Fagin et al, 2005b) J ∈ USol(M , I), denoted
C ∈ Core(M , I), is a subinstance C⊆ J such that there is a homomorphism from J
to C, but there is no homomorphism from J to a proper subinstance of C. Cores of
universal solutions are themselves universal solutions (Fagin et al, 2005b), and they
are all isomorphic to each other. It is therefore possible to speak of the core solution
as the “optimal” solution, in the sense that it is the universal solution of minimal
size (Fagin et al, 2005b).
The Chase A natural question is how it is possible to derive universal solutions
for a mapping scenario and a source instance. It turns out that this can be done by
resorting to the classical chase procedure (Fagin et al, 2005a).

The chase works differently for tgds and egds. Given a vector of variables v, an
assignment for v is a mapping a : v→ CONST∪ NULLS that associates with each
universal variable a constant in CONST. Given a formula φ(x) with free variables x,
and an instance I, we write I |= φ(a(x)) whenever I satisfies the formula φ(a(x)),
that is whenever I contains all the atoms in φ(a(x)).

Given instances I,J, during the naive chase (ten Cate et al, 2009)1 a tgd φ(x)→
∃y(ψ(x,y)) is fired for all assignments a such that I |= φ(a(x)); to fire the tgd, a is
extended to y by injectively assigning to each yi ∈ y a fresh null, and then adding the
facts in ψ(a(x),a(y)) to J. Consider tgd m2 in our example:

m2. ∀n,c,a, pi,n : Public-Company(n,c)∧Public-Grant(a, pi,n)→
∃I,S: Company(I,n,S)∧Grant(a, I)

On source tuples Public-Company(Adobe, SJ), Public-Grant(Adobe., Anne C., 50,-
000) it will generate two target tuples, Company(N1,Adobe,N2), and Grant(50,000,
N1), where N1,N2 are fresh nulls.

A solution generated by the (naive) chase is called a canonical solution. It is pos-
sible to prove (Fagin et al, 2005a) that each canonical solution is a universal solution.
Chasing the s-t tgds in our example scenario generates the canonical, universal pre-
solution in Figure 3.a. In (Fagin et al, 2005a), the notion of a weakly-acyclic set of
tgds was introduced to guarantee that the chase terminates and generates a universal
solution.

After a canonical pre-solution has been generated by chasing the s-t tgds, to
generate an actual universal solution it is necessary to chase the target dependencies.
Notice that the chase of target tgds can be defined exactly in the same way, with the
variant that it only works for assignments such that J |= φ(a(x)). However, in this
example, there is no need to chase the target tgd: the pre-solution is also a solution
for tgd t1. In fact, the target tgd states that, whenever a tuple is inserted into the
Grant table, a corresponding tuple must exist in the the Company table, and this is
the case in our pre-solution. Generating tgds that have this property is one of the

1 We refer to naive chase rather than to the standard chase used in Fagin et al (2005a), since
the naive chase is much simpler and rather straightforward to implement in SQL. Such chase is
sometimes calles oblivious chase, e.g. in (Marnette, 2009)



Discovery and Correctness of Schema Mapping Transformations 9

main intuitions behind the Clio algorithms Miller et al (2000); Popa et al (2002),
which will be discussed in more details in Section 3.

To chase an egd φ(x)→ (xi = x j) over an instance J, for each assignment a
such that J |= φ(a(x)), if h(xi) 6= h(x j), the chase tries to equate the two values. We
distinguish two cases: (i) both h(xi) and h(x j) are constants; in this case, the chase
procedure fails, since it attempts to identify two different constants; (ii) at least one
of h(xi), h(x j) is a null – say h(xi) – in this case chasing the egd generates a new
instance J′ obtained from J by replacing all occurrences of h(xi) by h(x j). To give
an example, consider egd e1:

e1. ∀n,n′, i, i′,s : Company(i,n,s)∧Company(i′,n′,s)→ (i = i′)∧ (n = n′)

On the two tuples generated by chasing the tgds, Company (23,Yahoo!,Y HOO),
Company (N2,Yahoo!,Y HOO), chasing the egd equates N2 to the constant 23, based
on the same value for the symbol attribute, YHOO. Chasing the egds returns the
canonical universal solution in Figure 3.b. Notice how the canonical universal solu-
tion is not the core universal solution, which in turn is represented in Figure 3.c.

Based on these ideas, it is possible to introduce the following procedure to solve
a mapping scenario M given a source instance I:

• first, chase the s-t tgds in Σst on I to generate a canonical pre-solution, Jpre;
• then, chase the target constraints (target tgds and especially egds) on Jpre, to

generate a canonical universal solution, J;
• minimize J by looking for endomorphic subsets that are still universal solutions,

to generate the core universal solution, J0

There currently exist chase engines capable of doing this (Savenkov and Pichler,
2008), which we will discuss thoroughly in the remainder of this chapter.
Chasing with SQL As an alternative, the naive chase of a set of tgds on a given
source instance I can be naturally implemented using SQL. Given a tgd φ(x)→
∃y(ψ(x,y)), in order to chase it over I we may see φ(x) as a first-order query Qφ

with free variables x over S. We may execute Qφ (I) using SQL in order to find all
vectors of constants that satisfy the premise.

We now need to insert the appropriate tuples into the target instance to satisfy
ψ(x,y). However, in order to do this, we need to find a way to properly “invent”
some fresh nulls for y. To do this, Skolem functions (Hull and Yoshikawa, 1990) are
typically used. Given a vector of k universally quantified variables x, a Skolem term2

over x is a term of the form f (x) where f is a function symbol of arity k. Skolem
terms are used to create fresh labeled nulls on the target. Given an assignment of
values a for x, with the Skolem term above we (injectively) associate a labeled null
N f (a(x)).

Based on this, in order to implement the chase by means of SQL statements,
as a preliminary step we replace existential variables in the conclusion by means
of Skolem terms. More specifically, for each tgd m : φ(x)→ ∃y(ψ(x,y)), we use

2 While Skolem terms are usually nested, for the sake of simplicity here we only consider flat
terms.
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a different Skolem function fm,yi for each variable yi ∈ y, and take as argument all
universal variables that appear in the conclusion.

To give an example of how the process works, consider tgd m2 above.

m2. ∀n,c,a, pi,n : Public-Company(n,c)∧Public-Grant(a, pi,n)→
∃I,S: Company(I,n,S)∧Grant(a, I)

In order to implement the chase in SQL, the tgd is first rewritten using Skolem terms
as follows:
m′2. ∀n,c,a, pi,n : Public-Company(n,c)∧Public-Grant(a, pi,n)→

∃I,S: Company( fI(n,a),n, fS(n,a))∧Grant(a, fI(n,a))

As an example, we show below one of the two SQL statements to which m′2 is
translated (we omit the second on Grant for space reasons):

INSERT into Company
SELECT append(‘fI(’,c.name, ‘,’, g.amount, ‘)’), c.n,

append(‘fS(’,c.name, ‘,’, g.amount, ‘)’)
FROM Public-Company c, Public-Grant g
WHERE c.name = g.company

3 Schema Mappings: The Early Years

The design of mappings had for a long time been a manual task. Transformation
designers had to express their mappings in complex transformation languages and
scripts, and this only after they had obtained a good knowledge and understanding of
the semantics of the schemas and of the desired transformation. As schemas started
to become larger and more complex, it was soon realized that the manual design
of the mappings was at the same time laborious, time-consuming and error-prone.
While seeking support for mapping designers, mapping tools were created with the
intention of raising the level of abstraction an the automated part of the tasks. This
section provides an overview of the developments in mapping generation since the
very first need of data transformations, until the development of the first schema
mapping tools under the form they are widely understood today. Having defined the
data exchange problem, this section describes how a mapping scenario can be con-
structed. The presented algorithm, which is the basis of the Clio (Popa et al, 2002)
mapping scenario generation mechanism, has the additional advantage that gener-
ates scenarios in which the mappings respect the target schema constraints. In that
sense, generating the target instance can be done by taking into consideration only
the mappings of the mapping scenario and not the target schema constraints. This
kind of mappings are more expressive that other formalisms like simple correspon-
dence lines (Rahm and Bernstein, 2001) or morphisms (Melnik et al, 2005).
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3.1 The First Data Translation Systems

Since the beginning of data integration, a major challenge has been the ability to
translate data from one format to another. This problem of data translation has
been studied for many years, in different variants and under different assumptions.
One of the first systems was EXPRESS (Shu et al, 1977), a system developed by
IBM. A series of similar but more advanced tools have followed EXPRESS. The
TXL language (Abu-Hamdeh et al, 1994), initially designed to describe syntactic
software transformations, offered a richer set of operations and soon became pop-
ular in the data management community. It was based on transformation rules that
were fired upon successful parsing of the input data. The problem became more
challenging when data had to be transformed across different data models, a situa-
tion that was typically met in wrapper construction (Tork-Roth and Schwarz, 1997).
MDM (Atzeni and Torlone, 1997) was a system for this kind of transformations that
was based on patterns (Atzeni and Torlone, 1995).

Some later works (Beeri and Milo, 1999) proposed a tree-structured data model
for describing schemas, and showed that the model was expressive enough to repre-
sent relational and XML schemas, paving the way for the later introduction of tree
based transformations. A formal foundation for data translation was created, along-
side a declarative framework for data translation (Abiteboul et al, 1997). Based on
this work, the TranScm system (Milo and Zohar, 1998) used a library of transfor-
mation rules and pattern matching techniques to select the most applicable rules
between two schemas, in an effort to automate the whole data translation task.
Other transformation languages developed in parallel emphasized on the type check-
ing (Cluet et al, 1998) task or on integrity constraint satisfaction (Davidson and
Kosky, 1997).

3.2 Correspondences

The first step towards the creation of mappings between two schemas was to un-
derstand how the elements of the different schemas relate to each other. This rela-
tionship had to be expressed in some high level specification. That specification was
materialized in the form of correspondences.

A correspondence maps atomic elements of a source schema to atomic elements
of the target schema. This specification is independent of logical design choices
such as the grouping of elements into tables (normalization choices), or the nesting
of records or tables (for example, the hierarchical structure of an XML schema). In
other words, one need not specify the logical access paths (join or navigation) that
define the associations between the elements involved. Therefore, even users that
are unfamiliar with the complex structure of the schema can easily specify them.
Correspondences can be represented graphically through simple arrows or lines that
connect the elements of the two schemas.
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The efficacy of using element-to-element correspondences is greatly increased
by the fact that they need not be specified by a human user. They could be in fact the
result of an automatic component that matches the elements of the two schemas, and
then the mapping designer simply verifies the correctness of the results. This task
is found in the literature under the name schema matching and has received consid-
erable attention, and has led into a variety of methodologies and techniques (Rahm
and Bernstein, 2001).

A correspondence can be formally described as a tgd with one and only one ex-
istentially quantified variable being equal to one of the universally quantified vari-
ables, and one term on each side of the dependency (for the case of the relational
schemas). The correspondence states that every value of the source schema element
represented by the first variable should also exist in the instance values of target
schema element represented by the second.

In certain cases, correspondences that involve more than one source schema el-
ements may exist, but there should always be one existentially quantified variable
whose value is determined as a function of the universally quantified variables rep-
resenting the participated source schema elements.

Fig. 4 Two Schema Matching Examples

Consider the example of Figure 4(a) which is a variation of the example pre-
viously presented. Here the first source consists of only the three relational tables
Public-Company, Public-Grant, and Contact, while the target consists of only the
table Company. As before, the intra-schema lines represent schema constraints, and
in the particular example are foreign key constraints. The red dotted inter-schema
lines, represent the correspondences. Note that the appearance of an attribute with
the same or similar name in both schemas, does not necessarily mean that the two
attributes represent the same fact. For instance, consider the attributes symbol and
id. Although in the companies world these terms may be used interchangingly , in
the specific example, the lack of a line among them may be justified by a case in
which the attribute id may represent the fiscal number of the company while the



Discovery and Correctness of Schema Mapping Transformations 13

attribute symbol may be the symbol with which the company appears in the stock
exchange.

The line v1 from the attribute name of the Public-Company table to the attribute
name of the Company table, represents a correspondence declaring that the latter
has to be populated with values from the former. Its tgd representation is:
v1: ∀na,sy Public−Company(na,sy) →

∃na2, id, f i,am2,sc, ph2 Company(na2, id, f i,am2,sc, ph2), na2 = na
It can be seen in the above logical expression that among all the existential variables
of its right-hand side, only the value of the na2 is determined by a source variable,
i.e., one of the universally quantified.

A situation that demonstrate the case in which an attribute value in the target
schema is created by a combination of attribute values from the source is the one
of amount. Although the attribute amount appears in both schemas, it may be the
case that in the first, amount means the amount of an installment while in the second
amount may mean the total figure. In that case, the value of the latter is composed
by the value of the former multiplied by the number of installments that is stored in
the attribute installements. The tgd of the correspondence is:
v3: ∀gi,am, in,co,re,ma,as Public−Grant(gi,am, in,co,re,ma,as)→

∃na2, id, f i,am2,sc, ph2 Company(na2, id, f i,am2,sc, ph2), am2= am∗ in
Note that even in this case, there is only one target schema variable whose value is
determined by source variable values.

While easy to create, understand and manipulate, element correspondences are
not expressive enough to describe the full semantics of a transformation. As a con-
sequence, they are inherently ambiguous. There may be many mappings that are
consistent with a set of correspondences, and still, not all of them have the same
semantics. A mapping generation tool needs to be able to identify what the mapping
designer had in mind when he/she provided a given set of correspondences, and
generate plausible interpretations to produce a precise and faithful representation of
the transformation, i.e., the mappings. For instance, in the schema mapping scenario
of Figure 4(a), consider only the correspondence v1. One possible mapping that this
correspondence alone describes is that for each Public-Company in the source in-
stance, there should be in the target instance a Company with the same name.
Based on a similar reasoning for correspondence v2, for every Public-Grant with
identifier gid in the source instance, it is expected that there should be a Company
tuple in the target instance with that grant identifier as attribute fid. By noticing that a
Public-Grant is related to a Public-Company through the foreign key on attribute
company, one can easily realized that a more natural interpretation of these two
correspondences is that every public grant identifier found in a target schema tuple
of table Company should have as an associated company name the name of the
respective public company that the public grant is associated in the source. Yet, it is
not clear, whether public companies with no associated grants should appear in the
target table Company with a null fid attribute, or should not appear at all. Further-
more, notice that the target schema relation has an attribute phone that is populated
from the homonym attribute from the source. This value, should not be random, but
somehow related to the company and the grant. However, notice that the Contact
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table in which the phone is located, is related to the grant information through two
different join paths, i.e. one on the manager and one on the assistant. The informa-
tion provided by the correspondence on the phone, is not enough to specify whether
the target should be populated with the phone of the manager or the phone of the
assistant.

The challenging task of interpreting the ambiguous correspondences gave raise
to the schema mapping problem as it has been introduced in Section 2.

3.3 Schema Mapping as Query Discovery

One of the first mapping tools to systematically study the schema mapping problem
was Clio (Miller et al, 2000), a tool developed by IBM. The initial algorithm of
the tool considers each target schema relation independently. For each relation Ri, it
creates a set V Ri of all the correspondences that are on a target schema element that
belongs to the relation Ri. Naturally, all these sets are mutually disjoint. For each
such set, a query QV Ri will be constructed to populate the relation Ri. The latter
query is constructed as follows. The set V Ri of correspondences is further divided
into maximal subsets such that each such maximal subset MV Ri

k contains at most
one correspondence for each attribute of the respective target schema relation. For
all the source schema elements used by the correspondences in each such subset,
the possible join paths connecting them are discovered, and combined to form the
union of join queries. These queries are then combined together through an outer
union operator to form the query QV Ri .

3.4 Schema Mapping as Constraint Discovery

The algorithm for managing the schema mapping problem as query discovery failed
to handle two important cases. The first, was the complex nesting schema situations,
and the second was the management of unspecified attributes, i.e., attributes in the
target schema for which there is no correspondence to specify their value, yet, the
target schema specification either does not permit a null value, or even if it does, its
use will lead to loss of information. Furthermore, it became clear that the schema
information in conjunction will the correspondences could not always lead into a full
specification of the target instance, but only into a constraint relationship between
the source and the target instance. Thus, the notion of a mapping stopped being
the actual transformation script and became this notion of inter-schema constraint,
expressed as a tgd. This is a more natural view of the mapping problem since with
schemas being heterogeneous, it is natural to expect that not all the information
represented in the source can also exist in the target, and vice versa. Since a mapping
describes only the data that is to be exchanged between the schemas, the information
described by the mapping is a subset of the information described by the schemas.
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Consider the example of Figure 4(b). The situation is more or less the same as
the one on its left, with the small difference that the target schema has all the grant
information grouped and nested within the company in which the grant belongs.
Furthermore, the amount of the grand is not stored within the grand but separately
in the FinancialData structure. Note that the Grant structure has an attribute fdid
used by no correspondence, thus it could have remained null, if the target schema
specification permits it. If not, a random value could have been generated to deal
with this restriction. Unfortunately, either of the two actions would break the re-
lationship of the funding information with its amount, since the attribute fdid is
actually the foreign key relationship that connects their respective structures.

To discover the intended meaning of the correspondences and generate the map-
pings, it is important to realize how the elements within a schema relate to each
other. This relationship will guide the combination of correspondences into groups
and the creation of the expected mappings. The idea for doing so comes from the
work on the universal relation (Maier et al, 1984). The universal relation provides
a single-relation view of the whole database, in a way that the user does not have
to specify different tables and join paths. The construction of the universal relation
is based on the notion of logical access paths, or connections, as they were initially
introduced, and are groups of attributes connected either by being in the same table
or by following foreign key constraints (Maier et al, 1984).

A generalized notion of a connection is that of the association (Popa et al, 2002).
Intuitively, an association represents a set of elements in the same schema along-
side their relationships. An association is represented as a logical query whose head
consists of a relation with all the attributes mentioned in the body. For simplicity the
head of the association is most of the time omitted. As an example, the following
logical query body:

A(x,y,z), B(u,v,w), x = u
represents an association that consists of the six attributes of the tables A and B, for
which the first is equal to the fourth. Obviously, not all associations are semantically
meaningful. In database systems, there are many ways one can specify semantic re-
lationships between schema elements, but three are the most prevalent, the schema
structure, the schema constraints, and the user specification, which define three re-
spective kinds of associations.

The structural associations are based on the aggregation of schema elements as it
has been specified by the database designer. For instance, the placement of a number
of attributes in the same tables means that these attributes are related to each other,
most probably by describing different characteristics of the entity that the respective
table represents. In a relational schema there is one structural association for each set
of attributes in a table. For a nested schema, there is a structural association for each
set element, at any level of nesting. The association is constructed by collecting all
the non-set subelements of the set element alongside all the non-set subelements of
every set element ancestor. Due to the way structural associations are constructed in
nested schemas, they are also known broadly as primary paths. The source schema
of Figure 4(a) has the following three primary paths: (i) Public−Company(na,sy),
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(ii) Public−Grant(gi,am, in,co,re,ma,as), and (iii) Contact(ci, ph), while the tar-
get schema has only the Company(na2, id, f i,am,sc, ph2).

For the scenario of Figure 4(b), the primary paths of the source schema are the
same, while those of the target schema are: (i) Company(na2, id), (ii) Company(na2, id,Grant),
Grant( f i,sc, f d), and (iii) FinancialData( f d2,am2, ph2). Note that the structural
association that contains the elements of the set element Grant, those of the set
element Company are also included since the former is nested within the latter.

Schema formalisms may not always be enough to describe the full semantics of
the data. A data administrator may have some knowledge about sets of attributes
that are associated that is nowhere recorded. Based on this user knowledge, an as-
sociation can be constructed. These kinds of associations are known as user associ-
ations (Velegrakis, 2005).

Apart from the schema structure, another way database designers can specify se-
mantic relationships between schema elements is the use of schema constraints. This
lead to the form of association called the logical associations. A logical association
is a maximal set of schema elements that are related either through user specification
(user association), either through structural construction (structural association), or
through constraints. Since logical associations are based on constraints, they can be
used as an alternative for computing different join paths on the schema.

Logical associations, also known in the literature, as logical relations, are com-
puted by using the chase (Maier et al, 1979), a classical method that has been used in
query optimization (Popa and Tannen, 1999), although originally introduced to test
implications of functional dependencies. A chase procedure is a sequence of chase
steps. A chase step is is an enhancement of an association using a schema constraint.
In particular, when the left part of the tgd that expresses a referential constraint is
logically implied by the logical representation of the association, then the latter is
enhanced with the terms and the conditions of the right-hand side of the tgd of the
constraint. This intuitively means that the association is expanded to include the ref-
erenced attributes of the constraint. The procedure is repeated until no more schema
constraints can be applied, in which case the association has become maximal. This
maximal association is a logical association. Maier et al. (Maier et al, 1979) have
shown that for the relational model, two different chase sequences with the same
set of dependencies, i.e., constraints, generate identical results. Popa (Popa, 2000)
has shown a similar result for the case of the nested relational model. These two
results mean that the the result of the chase of a user or a structural association with
a set of constraints is unique. To illustrate how the logical relations are computed,
consider again the example on Figure 4(b). Let A represent the structural associa-
tion Public−Grant(gi,am,co, in,ma,as). The tgd expressing the foreign key con-
straint from the attribute company to name is Public−Grant(gi,am,co, in,ma,as)
→ Public−Company(na,sy), na = co. Its left-hand side is the same as A, thus, the
question on whether it is logically implied by A is yes which means that a chase
step can be applied on A using the specific constraint. This will enhance A with the
contents of the right-hand side of the tgd of the constraint, bringing the association
into the form:
Public−Grant(gi,am,co, in,ma,as), Public−Company(na,sy), na = co
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Further chase steps on the association using the foreign key constraints on the at-
tributes manager and assistant will further expand the association into the form:
Public−Grant(gi,am,co, in,ma,as), Public−Company(na,sy),

Contact(cim, phm), Contact(cia, pha), na = co ∧ cim = ma ∧ cia = as
Since no other constraint can be further applied to it A, A in its last form is a logical
association.

Associations form the basis for understanding how the correspondences can be
combined together to form groups that will produce semantically meaningful map-
pings. The technique presented here forms the basis of the Clio (Fagin et al, 2009)
mapping tool. Given a set of correspondences, Clio generates a mapping scenario
with nested tgds. Similar technique has also been adapted by other tools, such as
Spicy (Bonifati et al, 2008) or HePToX (Bonifati et al, 2005). This is done by con-
sidering pairs of source and target logical associations. For each such pair, the set
of correspondences covered by the pair is discovered. A correspondence is said
to be covered by the pair A,B of a source and a target association, if its left and
right part (apart from the equality condition) are logically implied by A and B, re-
spectively. A mapping is formed by creating a tgd whose left-hand side consists of
association A, and whose right-hand side is the association B enhanced with the con-
ditions of the covered correspondences. Note that the covering of a correspondence
is based on the notion of homomorphism. If there are multiple homomorphisms,
then there are multiple alternative mappings. Consider for instance the source-target
logical association pair Public−Company(na,sy) and Company(na2, id,Grand).
Only the correspondence v1 is covered by this pair. This leads to the mapping m1:
Public−Company(na,sy) → Company(na2, id,Grand), na2 = na, where the last
equation is the one that was on the tgd representation of the correspondence v1.
For the source-target logical association pair A and B, where A is

Public−Grant(gi,am,co, in,ma,as), Public−Company(na,sy),
Contact(cim, phm), Contact(cia, pha), na=co ∧ cim=ma ∧ cia=as

and B is
Company(na2, id,Grand), Grant( f i,sc,sd),

FinancialData( f d2,am2, ph2), f d2= f d,
all the correspondences illustrated in Figure 4 are covered. However, for v5 there are
two ways that it can be covered, which leads to two different mappings. The first is:

Public−Grant(gi,am,co, in,ma,as), Public−Company(na,sy),
Contact(cim, phm), Contact(cia, pha), na=co ∧ cim=ma ∧ cia=as

→Company(na2, id,Grand), Grant( f i,sc,sd),
FinancialData( f d2,am2, ph2), f d2= f d ∧
na2=na ∧ f i=gi ∧ am2=am ∧ re=sc ∧ ph2=pha

The second mapping is exactly the same with the only difference that the last equal-
ity is ph2=phm instead of ph2=pha.

Note that through the right-hand side conditions, the mappings guarantee to gen-
erate data that does not violate the constraints of the target schema, which is why
finding a solution to a Clio generated scenario does not need to take into considera-
tion the target schema constraints, since they have been taken into consideration in
the source-to-target tgd construction.
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3.5 Data Exchange and Query Generation

Once the mapping scenario has been constructed, the next step it to find a solution
(see Section 2). Clio (Popa et al, 2002) was the first tool to consider mappings in a
nested relational setting, thus not only offering mappings that were nested tgds, but
also offering an algorithm for generating nested universal solutions.

The algorithm mainly starts by creating a graph of the target schema in which
every node corresponds to a schema element, i.e., a table or an attribute in the case
of a relational schema. Then, the nodes are annotated with source schema elements
from where the values will be derived. These annotations propagate to other nodes
based on the nested relationship and on integrity constraint associations. The value
for the unspecified elements is the result if a Skolem function that gets as arguments
the values of all the source schema elements of the source. The annotations that
have been made on the set elements are used to create Skolem functions that drive
the right nesting. More details can be found in (Fagin et al, 2009).

At this point, the final queries, or transformation scripts in general, can be con-
structed. First, the variable of every unspecified target schema element in the map-
ping is replaced by its Skolem function expression. In its simplest brute-force form,
the final query is generated by first executing the query described on the left-hand
side of the mapping tgd expression for every nesting level, i.e., for every set element
of any nesting depth of the target. Then, the Skolem functions that have been com-
puted for the set elements of the target are used to partition the result set of these
queries and place them nested under the right elements. The full details of this task
can be found in (Fagin et al, 2009).

4 Second-Generation Mapping Systems

Inspired by the seminal papers about the first schema mapping system (Miller et al,
2000; Popa et al, 2002), in the following years a rich body of research has pro-
posed algorithms and tools to improve the easiness of use of mapping systems (An
et al, 2007; Raffio et al, 2008; Cabibbo, 2009; Mecca et al, 2009b) (see Section 7
and Chapter 9) and the quality of the solutions they produce. As experimentally
shown in (Fuxman et al, 2006; Mecca et al, 2009a), different solutions for the same
scenario may differ significantly in size and for large source instances the amount
of redundancy in the target produced by first generation mapping systems may be
very large, thus impairing the efficiency of the exchange and the query answering
process. Since the core is the smallest among the solutions that preserve the seman-
tics of the exchange, it is considered a desirable requirement for a schema mapping
system to generate executable scripts that materialize core solutions for a mapping
scenario.

In this Section, we present results related to this latest issue and we show
how novel algorithms for mapping generation and rewriting have progressively ad-
dressed the challenge of producing the best solution for data exchange.
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4.1 Problems with canonical solutions

To see how translating data with mapping systems from a given source database
may bring to a certain amount of redundancy into the target data, consider again
the mapping scenario in Figure 2 and its source instance in Figure 1. To simplify
the discussion, in the following we drop the target egd constraints as they are not
handled by most mapping systems during the schema mapping generation. Based on
the schemas and the correspondences in the scenario, a constraint-driven mapping
system such as Clio would rewrite the target tgd constraints into a set of s-t tgds
(using the logical associations described in Section 3), like the ones below.

m1. ∀s,n : NYSE(s,n)→∃I: Company(I,n,s)
m2. ∀n,c,a, pi : Public-Company(n,c)∧Public-Grant(a, pi,n)→

∃I,S: Company(I,n,S)∧Grant(a, I)
m3. ∀i,n,s : NSF-Grantee(i,n,s)→ Company(i,n,s)
m4. ∀a,c : NSF-Grant(a,c)→∃M,S: Company(c,M,S)∧Grant(a,c)

Notice that these expressions are different from those in Section 2. In fact, the
mapping tool is taking care of the foreign key constraint in m4 and produces the
canonical universal solution in Figure 5.a. While this instance satisfies the s-t tgds
(and the original target tgd), still it contains many redundant tuples, those with a
gray background.

Fig. 5 Canonical and Core Solutions for the Mapping Scenario

Consider for example the tuple t1 = (N2, Yahoo!, YHOO) in the Company table;
it can be seen that the tuple is redundant since the target contains another tuple t2 =
(23, Yahoo!, YHOO) for the same company, which in addition to the company name
also gives information about its id in the target database (i.e., there is an homomor-
phism from t1 to t2). A similar argument holds for the tuples (I2, Adobe, S2) and
(50,000, I2), where I2 and S2 are the values invented by executing tgd m2, while
there are tuples with real id and symbol values for the same company and grant. The
core in this example is the solution reported in Figure 5.b.
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Therefore, a natural requirement for a schema mapping system becomes that of
materializing core solutions. We now review the algorithms that have been proposed
to compute the core solution in a relational data exchange setting.

4.2 Theoretical results on core computation

The first approach that has been studied to generate the core for a relational data
exchange problem is to generate the canonical solution, and then to apply a post-
processing algorithm for its core identification. It is known that computing the
core of an arbitrary relational instance with variables is NP-complete, as many NP-
complete problems (e.g., computing the core of a graph (Fagin et al, 2005b; Hell
and Nešetřil, 1992) or conjunctive query optimization (Chandra and Merlin, 1977))
can be reduced to it. In contrast with the case of computing the core of an arbitrary
instance, computing the core of a universal solution in data exchange can be done
in polynomial time.

In Fagin et al. (Fagin et al, 2005b), an algorithm is presented that computes the
core in polynomial time in a restricted setting, that is, for a data exchange problem
whose source-to-target constraints are tgds and whose target constraints consist of
arbitrary egds only. More specifically, they proved that the core of a universal solu-
tion can be computed in polynomial time in two settings: (i) when the set of target
constraints is empty, (ii) when the set of target constraints contains egds only. To
address these goals, two different methods are provided.

A greedy algorithm, given a source instance I, first computes an universal solu-
tion J for I, if it exists, and then computes its core by successively removing tuples
from J, as long as I and the instance resulting in each step satisfy the s-t tgds and the
target constraints. Although the greedy algorithm is conceptually simple, it requires
the availability of the source instance I for the execution of the algorithm.

The blocks method does not require the availability of the source instance and
is based on the relationships among the labeled nulls of a canonical solution J.
The Gaifman graph of the nulls of J is an undirected graph in which the nodes
are the nulls of J and there exists an edge between two labeled nulls whenever
there exists some tuple in some relation of J in which both labeled nulls occur. A
block of nulls is the set of nulls in a connected component of the Gaifman graph
of the nulls. Given J as the result of applying the source-to-target tgds to a ground
source instance S, the block method starts from the observation that the Gaifman
graph of the labeled nulls of the result instance J consists of connected components
whose size is bounded by a constant b. The main step of the algorithm relies on the
observation that checking whether there is a homomorphism from any J ∈ K, where
K is any set of instances with such bound b, into any arbitrary other instance J0 is
feasible in polynomial time. The algorithm works also for the case where the target
constraints consist of egds, which, when applied, can merge blocks by equating
variables from different blocks. Thus, after chasing J with egds, the resulting J′ can
lost the bounded block-size property. However, the authors show an algorithm that
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looks at the nulls in J and computes its core by successively finding and applying a
sequence of small useful endomorphisms; where useful means that at least one null
disappears. More practically, (i) the algorithm starts computing a canonical universal
solution J0, (ii) then it recursively generates a sequence of intermediate instances
such that, given the intermediate instance Ji, there is a useful endomorphism that is
the identity everywhere except for a block from Ji to Ji+1; (iii) when the algorithm
stops, the instance Ji is the core solution. The polynomial-time bound is due to the
total number of endomorphisms that the algorithm explores, which is at most nb

for each block of J0, where b is the maximum number of existentially quantified
variables over all the s-t tgds and n is the number of tuples in J0.

Gottlob and Nash (Gottlob and Nash, 2008) extended previous results by intro-
ducing an algorithm that computes, still in polynomial time, the core solution of a
data exchange problem whose target constraints are (weakly-acyclic) tgds and arbi-
trary egds. The authors introduce novel technical intuitions to compute the core of
universal solutions and prove two complexity bounds. Using an exhaustive enumer-
ation algorithm they get an upper bound of O(vm|dom(J)|b), where v is the number
of variables in the canonical solution J, m is the size of J, and b is the block size
of J. There exist cases where a better bound can be achieved by relying on hyper-
tree decomposition techniques. In such cases, the upper bound is O(vm[b/2]+2), with
special benefits if the target constraints of the data exchange scenario are LAV tgds.

The main algorithm in (Gottlob and Nash, 2008) has been revised in (Savenkov
and Pichler, 2008) (by removing the simulation of egds with full tgds) and in (Marnette,
2009) (by replacing a key component of the algorithm with a faster one). Also, an
implementation of the core-computation algorithm in (Gottlob and Nash, 2008) has
been developed (Savenkov and Pichler, 2008): the prototype uses a relational DBMS
to chase tgds and egds, and a specialized engine to find endomorphisms and mini-
mize the universal solution.

The algorithms above provide a very general solution to the problem of comput-
ing core solutions for a data exchange setting and made significant steps towards the
goal of integrating core computations into schema mapping systems. However, ex-
perience with these algorithms shows that, although polynomial, they require very
high computing times since they look for all possible endomorphisms among tu-
ples in the canonical solution (Savenkov and Pichler, 2008; Mecca et al, 2009a).
As a consequence, recursive algorithms iterating on intermediate instances hardly
scale to large mapping scenarios: the necessity to study more scalable solutions than
post-processing approaches motivated the works that follow.

4.3 Generating Core Solutions with SQL scripts

The fact that s-t tgds produced by first-generation schema mapping systems may
generate redundancy in the target has motivated several practical proposals towards
the goal of removing such redundant data. Unfortunately, some of these works are
applicable only in some cases and do not represent a general solution to the problem.
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Only recently there are been proposals for general rewriting techniques that are able
to obtain core solution with executable scripts. As we discuss next, all the mapping
systems that attempted to reduce the redundancy in the solutions started from the
formalism and the algorithms in (Popa et al, 2002).
Early attempts Nested mappings (Fuxman et al, 2006) are s-t tgds that extend the
language of s-t tgds allowing the arbitrary nesting of mapping formulas within other
mapping formulas. As an example, the schema mapping from the example in the
right-hand side of Figure 4 can be defined by means of nested s-t tgds. We omit the
quantifiers for the sake of readability (variables on the right that do not appear on
the left are existentially quantified), while the atomic variables are in lower-case and
the set variables start with upper-case, as follows:

m′1. Public-Company(sn,ss)→ [Company(sn, ti,Grant)
∧[Public-Grant(sg,sa,sn,sr,sm,sa)∧Contact(sm, ph)∧Contact(sa, ph2)→

Grant(sg,sr, t f )∧FinancialData(t f ,sa, ph)]]

The second mapping is exactly the same with the only difference that the last vari-
able in atom FinancialData is ph2 instead of ph.

Intuitively, whenever a tgd m1 writes into a target relation R1 and a tgd m2 writes
into a relation R2 nested into R1, it is possible to “correlate” the two mappings by
nesting m2 into m1. The correlation among inner and outer mappings can be ob-
served by the variable sn both in Public-Company and Public-Grant in the example
above. This rewritten mapping reduces the amount of redundant tuples in the target,
since the same data is not mapped twice in the generated target instance. The same
intuition applies if R2 contains a foreign key pointing to relation R1. Nested map-
pings are correlated in a rewriting step based on a nestable property for a given pair
of mappings. The property is verified with a syntactical check based on the struc-
tures of the schemas involved in the mappings and the correspondences between
them. Once the property has been verified for all the mappings composing a sce-
nario, the nesting algorithm constructs a DAG, where a node is a mapping having
edges to other mappings for which it is nestable. The DAG represents all the pos-
sible ways in which mappings can be nested under other mappings. The algorithm
identifies root mappings for the DAG (mappings that are not nestable), for each root
mapping traverses the DAG to identify a tree of mappings, and generates a nested
mapping for each tree rewriting the variables accordingly to the structure.

As nested mappings factor out common subexpressions, there are many benefits
in their use: (i) it is possible to produce more efficient translation queries by reducing
the number of passes over the source; (ii) the generated data have less redundancy
as the same data are not mapped repeatedly by s-t tgds sharing common parts.

Another attempt to reduce the redundancy generated by basic mappings has been
proposed by (Cabibbo, 2009). The work introduced a revision of both the mapping
and the query generation algorithms. In the mapping generation phase, the presence
of nullable attributes is considered to introduce an extended notion of logical as-
sociations, a modified chase procedure to compute them, and novel pruning rules
used together with the subsumption and implication rules from (Popa et al, 2002).
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The query generation algorithm is also revised to ensure the satisfaction of target
key constraints or to unveil unsatisfiability of such keys. Moreover, when there are
key conflicts between groups of logical mappings with the same target relation, an
algorithm tries to resolve those conflicts by rewriting conflicting logical mappings
in queries with negations. Such interaction between mapping and query generation
algorithms allows to have similar benefits to those gained by nested mappings in
different relational settings. In particular, those techniques generate target data with
less redundancy, as source data involved in the same target key constraints is copied
by the generated queries only once.

Unfortunately, the approaches above are applicable only in some specific cases:
the above techniques benefits apply only when schemas and correspondences obey
to certain structures or require the presence of key constraints to reduce the redun-
dancy in the output. Therefore, those approaches do not represent a general solution
to the problem of generating neither core nor compact universal solutions.
SQL core-generation algorithms The following systems introduce core computa-
tion algorithms that, given a set of s-t tgds, enable a more efficient implementation
by means of executable scripts that scale well to large databases. This problem has
been first approached in (Chiticariu, 2005), where an algorithm is presented for
schema mappings specified by the limited class of s-t tgds with single atomic for-
mulas (without repetition of existential quantified variables) in the conclusions.

The first complete proposal of an algorithm for rewriting s-t tgds in order to
generate core solutions was introduced in (Mecca et al, 2009a). This work is based
on the exploiting of two key ideas: the notion of homomorphism among formulas
and the use of negation to rewrite tgds.

m1. ∀s,n : NYSE(s,n)→∃I: Company(I,n,s)
m2. ∀n,c,a, pi : Public-Company(n,c)∧Public-Grant(a, pi,n)→

∃I,S: Company(I,n,S)∧Grant(a, I)
m3. ∀i,n,s : NSF-Grantee(i,n,s)→ Company(i,n,s)
m4. ∀a,c : NSF-Grant(a,c)→ Grant(a,c)

The first intuition is that it is possible to analyze the set of formulas in order to
recognize when two tgds may generate redundant tuples in the target. This happens
when it is possible to find a homomorphism between the right-hand sides of the two
tgds. Consider the right-hand sides of the s-t tgds m1 and m3 from the Example in
Section 2 reported here for convenience; with an abuse of notation, we treat the two
formulas as sets of tuples, with existentially quantified variables that correspond to
nulls. It can be seen that the conclusion Company(I,n,s) of m1 can be mapped into
the conclusion Company(i,n,s) of m3 by the following mapping of variables: I→ i,
n→ n, s→ s; in this case, they say that m3 subsumes m1. This gives a condition to
intercept possible redundancy that is general (i.e., key constraint on the target are not
required to identify causes of redundancy) and necessary, since the actual generation
of endomorphisms among facts in the target data depends on values coming from
the source. From the complexity viewpoint, checking for the presence of homomor-
phisms among formulas, i.e., conclusions of tgds, is completely different than doing
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the same check among instance tuples: since the number of tgds is typically order
of magnitudes smaller than the size of an instance, the check among formulas can
be carried out very quickly.

Based on these ideas, the algorithm finds all possible homomorphisms among
s-t tgd conclusions. More specifically, it looks for variable mappings that transform
atoms in the conclusion of one tgd into atoms belonging to the conclusions of other
tgds, with the constraint that universal variables are mapped to universal variables.
There are two homomorphisms of this form in the running example. The first one is
from the right hand side of m1 to the rhs of m3, as discussed above. The second one
is from the rhs of m2 to the union of the conclusions of m3 and m4 by the following
mapping: I→ i, n→ n, S→ s, a→ a, I→ c; in this case the homomorphisms to be
valid imply a condition i = c and they say that m3,m4 cover m2.

A second intuition is that, whenever two tgds m, m′ such that m subsumes m′ are
identified, it is possible to prevent the generation of redundant tuples in the target
instance by executing them according to the following strategy: first, generate the
target tuples for m, the “more informative” mapping; then, generate for m′ only those
tuples that actually add some new content to the target. In the running example, the
original s-t tgds can be rewritten as follows:

m3. ∀i,n,s : NSF-Grantee(i,n,s)→ Company(i,n,s)
m4. ∀a,c : NSF-Grant(a,c)→ Grant(a,c)
m′2. ∀n,c,a, pi,s, i : Public-Company(n,c)∧Public-Grant(a, pi,n)∧

∧¬(NSF-Grantee(i,n,s)∧NSF-Grant(a, i))→
∃I,S: Company(I,n,S)∧Grant(a, I)

m′1. ∀s,n, i : NYSE(s,n)∧¬(NSF-Grantee(i,n,s))→∃I: Company(I,n,s)

Once the original tgds have been rewritten in this form, which are called core schema
mappings, it is easy to generate an executable transformation under the form of
relational algebra expressions where negations become difference operators. The
algebraic expressions can then be implemented in an executable script, to be run in
any database engine. The authors experimentally show that, in the computation of
the target instance, with executable scripts there is a gain in efficiency of orders
of magnitude with respect to the post-processing algorithms(Fagin et al, 2005b;
Gottlob and Nash, 2008; Savenkov and Pichler, 2008).

In (ten Cate et al, 2009) the authors independently developed an algorithm to
rewrite a set of s-t tgds as a laconic mapping, that is, a new set of dependencies
from which to generate an SQL script that computes core solutions for the original
scenario. The algorithm is more general than the one proposed in (Mecca et al,
2009a), since it can be applied to dependencies that make use of arbitrary first-order
formulas in the premises, and not only conjunctive formulas.

The main algorithm to rewrite schema mappings as laconic is composed of four
step. In the first step, it constructs a finite list of potential patterns of tuples in the
core. This step is done by an exhaustive analysis of the target right hand side of each
s-t tgd in the input mapping. The number of patterns is finite, but exponential in the
size of the schema mapping in general. In the running example, the patterns are the
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right hand sides of the four original mappings. In the second step, the main algo-
rithm computes for each pattern a precondition: a first-order formula over the source
schema that is able to identify the cases when the core solution will contain the cur-
rent pattern. This crucial task is done by relying on a procedure called certain(),
which rewrites the certain answers of a query on the target as a query on the source.
Given a source instance I, a schema mapping M, and a query q on the target schema,
the set of certain answers to q in I with respect to M, is the intersection of the results
from the query q(Ji) over all the possible solutions Ji to the mapping. The authors
introduce a practical version of the algorithm in which certain() relies on a variant of
the MiniCon algorithm (Pottinger and Halevy, 2001), which works for conjunctive
formulas, and they also announce (ten Cate and Kolaitis, 2009) a more general algo-
rithm to compute certain() on arbitrary FO queries. In the example, the precondition
for the pattern Company(I,n,s) is the left hand side of mapping m′1 above. In the
third step, the algorithm generates additional side-conditions to handle special cases
with self-joins in the conclusion, i.e., s-t tgds in which the same relation symbols
occurs more than once in the right-hand side. Side-conditions are Boolean combina-
tion of formulas with inequalities. In our example, side-conditions are not generated
as there are not self-joins. In the final step, the algorithm put together the laconic
schema mapping with preconditions and side-conditions in the left-hand-side and
the respective pattern in the right-hand-side, thus generating mappings such as m′1
above.

In terms of dependencies generated by the algorithm, laconic mappings from the
algorithm in (ten Cate et al, 2009) tends to contain a lower number of dependencies
with more complex premises with respect to the core schema mappings from (Mecca
et al, 2009a), which typically contain more rules. In fact, laconic mappings reason on
patterns at a “global” level, while the rewriting algorithm for core schema mappings
works at a “local” level, i.e., at the tgd level.

5 Query Answering in Mapping Scenarios

An important application of schema mappings arises in all the scenarios in which
queries are formulated against one of the two schemas connected by the mappings
and need to be translated against the other schema. In the early years, the semantics
of query answering in indefinite databases adopted the notion of ‘certain answers’.
This notion has also been adopted in data exchange (Fagin et al, 2005a), while study-
ing the computational complexity of target query answering, i.e. the problem of
computing certain answers for a target query q.

As already explained in Section 4.3, to represent all possible databases, we must
consider the set of all possible target instances Ji consistent with M and the source
instance I. Since there may be several target instances Ji, we must consider the
intersection

⋂
Ji

q(Ji), the intersection being called the set of the certain answers of
q.
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In (Fagin et al, 2005a), the semantics of query answering has been defined by
considering the universal solutions. Indeed, it is important to ascertain whether the
certain answers of a query can be computed by query evaluation on the ‘good’ target
instance that has been chosen for materialization. In Section 2, we have already in-
troduced universal solutions for a data exchange scenario. Sufficient conditions for
the existence of a universal solution have been defined for weakly acyclic tgds (Fa-
gin et al, 2005a). In this special case, polynomial-time algorithms can be defined to
determine whether a solution exists and to produce a particular solution, the canoni-
cal universal solution (as defined in Section 2). By analyzing query answering issues
in greater details, (Fagin et al, 2005a) focuses on determining which target queries
can be answered using solely the materialized target instance, and studies the com-
putational complexity of computing certain answers for target queries.

Given a fixed data exchange scenario M = (S,T,Σst ,Σt), for each target query
q, the problem is to study the computational complexity of the following problem:
given a source instance I, find the certain answers of q with respect to I. If q is
a union of conjunctive queries, the certain answers of q can be computed on an
arbitrary canonical universal solution. Having this solution homomorphisms to all
solutions, and being computable in polynomial time, it implies that the certain an-
swers of q as union of conjunctive queries can also be computed in polynomial time.
However, if conjunctive queries have inequalities, computing the certain answers
becomes a coNP-complete problem (Abiteboul and Duschka, 1998). In particular,
in (Fagin et al, 2005a), it is shown that computing the certain answers of unions
of conjunctive queries with at most two equalities per disjunct is a coNP-complete
problem. Beyond the intractability result for the case with two or more inequalities,
(Fagin et al, 2005a) shows that there is a polynomial time algorithm for computing
certain answers of queries with at most one inequality per disjunct (thus overcoming
the result in (Abiteboul and Duschka, 1998)).

(Fagin et al, 2005a) focuses on the relational case, whereas (Yu and Popa, 2004)
extends the target query answering to the XML data model, by also covering the
presence of target constraints (also called nested equality-generating dependencies
(NEGDS). The latter presence further complicates the problem of defining the cor-
rect query answering semantics, since merging rules at the target have to be taken
into account. In (Yu and Popa, 2004), a nested extension of the relational chase (Fa-
gin et al, 2005a) is used to accomodate XML target instances. A basic query rewrit-
ing algorithm is presented, that consists of four phases, precisely rule generation,
query translation, query optimization and query assembly. The basic version ig-
nores the presence of target constraints. Rule generation is done by creating a rule
for each root of the target schema, and by taking the mappings into consideration.
The goal of this phase is to set of mapping rules that fully specify the target in
terms of the sources, and to prepare the target expressions that will be substituted
by source expressions in the next phase. Query translation is done by translating the
target query into a set of decorrelated source queries, by exploiting the set of map-
pings. Optimization is then performed to eliminate equal Skolem terms that have
been introduced in the previous phase and to guarantee the minimization of the
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rewriting, as one of the cases in (Deutsch et al, 1999). Finally, decorrelated queries
get assembled into nested source queries.

The above steps are modified when target constraints are present, since the above
query rewriting becomes incomplete. A resolution step needs to be performed before
query optimization takes place, in order to exhaustively explore all possible rewrit-
ings and the application of resolution to them. The computation is a tree, whose
branching factor corresponds to the multiple ways of applying a resolution step to
a query. The resolution step terminates if the set of source constraints obtained by
translating the target constraints is acyclic.

However, the query rewriting algorithm may still be incomplete, as it explicitly
avoids recursion. The validity of the incomplete results is proved experimentally,
by measuring their approximation with respect to the complete set of certain an-
swers. However, it is still an open problem how to bridge the completeness gap in
an efficient way.

Target query answering is addressed in HePToX (Bonifati et al, 2010) as back-
ward translation, i.e. translation of a query q over the target schema and against the
direction of the mappings. In HePToX, the opposite direction of query translation,
namely the forward translation, is also considered, to highlight the importance of
having bidirectional mappings, that can be traversed either ways. A key complica-
tion in forward translation is that µ , the mapping that transforms instances of S to
those of T, may not be invertible (Fagin, 2007). In this direction, the semantics of
query answering is still based on certain answers over all possible pre-images Ik for
which J = µ(Ik). This direction is novel and has not been handled in previous work.

To handle this translation, the query q posed against S is transformed into a tree
pattern (for simplicity, only one tree pattern is considered, although the query trans-
lation module can handle joins of tree patterns). The tree pattern is matched against
each of the rule bodies in Σst ; this phase is called expansion. The tree pattern, possi-
bly augmented with dummy nodes at the end of the expansion, is translated against
the rules in Σst , leading to the translation phase. Several translated tree patterns
may be merged in the stitching phase, and dummy and redundant nodes may be
eliminated in the contraction phase.

6 Developments and Applications

In this chapter, we discuss the recent developments and applications of schema map-
ping. Schema mapping is widely known as the ’AI-complete‘ problem of data man-
agement, and, as such, exhibits strong theoretical foundations, as it has been high-
lighted in the previous sections. However, the question we ask ourselves is: what are
the real application scenarios in which schema mapping is used? is schema map-
ping an everyday life problem? All the scenarios that entail the access to multiple
heterogenous datasets represent natural applications of schema mapping (Halevy,
2010). For instance, executing a Web search leads to dispatch the request to sev-
eral web sites, that are differently structured and have possible overlapping content.
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Thus, providing a common semantic layer that lets obtain a uniform answer from
multiple sites, by means of explicit or implicit correspondences, is the common ob-
jective of schema mapping tools. There are several directions on which researchers
have focused their attention, and achieved promising results, namely: (i) extend-
ing the expressiveness of schema mappings to cover data-metadata conflicts (Boni-
fati et al, 2010, 2005; Hernández et al, 2008); (ii) extending them to complex data
models, such as XML (Arenas and Libkin, 2008; Amano et al, 2009) and ontolo-
gies (Calı̀ et al, 2009b,a); (iii) using mappings in large-scale distributed scenar-
ios (Bonifati et al, 2010, 2005; Ives et al, 2004); (iv) normalizing and optimizing
schema mappings (Gottlob et al, 2009; Fagin et al, 2008). We underline that all the
above achievements correspond to the need of addressing problems that arise in real
life applications. Indeed, if we focus on the first direction, we can easily think of
heterogeneus data management scenarios in which instances and schemas contain
the same content and need to be bridged (Bonifati et al, 2010, 2005; Hernández
et al, 2008). As an example, health care environments have typically the informa-
tion about patients, diseases and therapy. However, such information is structured
quite differently across the various health care databases. Whereas in one database,
the diseases are data instances, it may happen that such values become schema com-
ponents in another database. Such conflicts, known as data-metadata conflicts, may
arise in various other situations, such as multimedia databases, data-intensive web
sites, heterogeneous parallel and distributed databases. We illustrate the implica-
tions of dealing with data-metadata conflicts, and discuss the schema mapping tools
that support data-metadata mappings in Section 6.1. Whereas data integration and
exchange tasks have been extensively studied for relational schema mappings, only
recently a similar theory has been developed for XML schema mappings (Jiang
et al, 2007). Such mappings allow navigational queries with joins and tree patterns,
thus enlarging the scope of relational queries (Arenas and Libkin, 2008; Amano
et al, 2009). Along the same line, disparate data sources may be expressed by
means of ontological languages, which are more or less expressive fragments of
OWL-2 (OWL-Full, 2004). Such languages rely on expressive constructs, in which
sophisticate semantic relationships are better represented and goes far beyond the
expressive power of the relational and XML models. Notwithstanding the complex-
ity of handling such languages to express instances, they are becoming more and
more important in data modeling, information integration and development of the
Semantic Web. In particular, there has been in the latest years a paradigm shift from
decidability issues on ontologies to scalable query answering for suitable fragments,
such as Datalog+- (Calı̀ et al, 2009b,a). We discuss the issues behind the treatment
of both XML and ontological instances and schema mappings tailored to such in-
stances in Section 6.2. Third, we focus on the mapping scalability issues that arise
in real scenarios exhibiting distributed heterogeneous data. In such cases, not only
the semantic of mappings should be correctly interpreted, but also the efficiency of
data exchange and query answering should be guaranteed. Examples of such dis-
tributed architectures are numerous if we think of Internet-scale applications and
novel highly distributed peer-to-peer systems. In Section 6.3, we introduce the sys-
tems that so far have addressed this problem, discuss their differences and the future
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work in this area. Fourth, schema mappings expressed as source-to-target depen-
dencies may be redundant, due to the presence of unnecessary atoms, and unrelated
variables. Recent efforts have aimed at simplifying such dependencies, by obtaining
a normal form (Gottlob et al, 2009) and by identifying various classes of equiva-
lences (Fagin et al, 2008). These optimizations are very important in applications,
in which mappings are required to be minimal, for efficiency reasons. We discuss
the recent approaches (Gottlob et al, 2009; Fagin et al, 2008) in Section 6.4.

6.1 Bridging Data and Metadata

HePToX (Bonifati et al, 2010, 2005) has been the first system to introduce data-
metadata correspondences, that drive the trasformation from the schema compo-
nents in the source schema to the instance values in the target schema and vice-
versa. Such novel correspondences enrich the semantics of the transformation, while
at the same time posing new research challenges. HePToX uses a Datalog-based
mapping language called TreeLog; being an extension of SchemaLog, it is capable
of handling schema and data at par. TreeLog expressions have been inferred from
arrows and boxes between elements in the source schema and instances in the tar-
get schema, that rely on an ad-hoc graphical notation. By virtue of a bidirectional
semantics for query answering, correspondences also involving data-metadata con-
flicts can be traversed by collecting the necessary components to answer the queries.
Queries are expressed in XQuery and the underlying data is expressed in XML to
maintain the connection with TreeLog expressions, which are intrinsically nested.

Recently, MAD (MetadatA-Data) mappings (Hernández et al, 2008) have been
studied as useful extensions in Clio (Popa et al, 2002), that extend the basic map-
pings expressed as s-t tgds. Contrarily to HePToX, such mappings are used for data
exchange. To this purpose, output dynamic schemas are defined, since the result of
data exchange cannot be determined a priori whenever it depends of the instances.
MAD mappings in Clio are also generated from visual specifications, similarly to
HePToX and then translated to executable trasformations. The translation algorithm
is a two-step algorithm in which the first step ‘shreds’ the source data into views that
offer a relational partitioning of the target schema, and the second step restructures
the result of the previous step by also taking into account user-defined grouping in
target schema with nested sets.

To summarize, Clio derives a set of MAD mappings from a set of lines between a
source schema and a target schema. Applying these transformations computes a tar-
get instance that adheres to the target schema and to the correspondences. Similarly,
HePToX derives a set of TreeLog mapping rules from element correspondences (i.e.,
boxes and arrows) between two schemas. TreeLog rules are similar in spirit to s-t
tgds, although TreeLog has a second-order syntax. However, the problems solved by
Clio and HePToX are different. In Clio, the goal is data exchange, while in HePToX
turns to be query reformulation in an highly distributed setting, as we will further
discuss in Section 6.3.
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6.2 Extending schema mappings to complex data models

We have recently seen research aiming to study the extensions needed to handle
the XML data model for schema mapping (Arenas and Libkin, 2008; Amano et al,
2009), data transformation (Jiang et al, 2007) and query rewriting (Yu and Popa,
2004). The latter (Yu and Popa, 2004) starts from proposing novel algorithms to
reformulate target queries against the source schemas, based on the mappings and
on target constraints. Given that the data is at the sources, such queries need to be
efficiently evaluated and this work considers for the first time both relational and
XML schemas. The presence of the target constraints make the problem ways more
complicated by the fact that the data transformed according to the mapping needs
to be ‘merged’ afterwards. A further complication bears from the fact that the target
constraints can enable each other in a recursive way and interact with the mappings
as well. A canonical target instance is defined that takes into account the presence
of target constraints and mappings, and the semantics of query answering is de-
cided upon this target instance. Moreover, a basic query rewriting algorithm focuses
on only mappings first, and extends to XML queries and XML mappings the re-
lational techniques for query rewriting using views. The target constraints, namely
the nested equality-generating dependencies (NEGDS), covering XML schema key
constraints among the others, are then considered in a query resolution algorithm.
Schema mapping for XML data has been studied in (Jiang et al, 2007), as an exten-
sion of the Clio system. In particular, data transformations involving such a complex
data model requires more complex transformation primitives, than previously rela-
tional efforts. For instance, a key challenge arises with XML-to-XML data transfor-
mation if the target data is generated as a hierarchy with multiple levels of grouping
(as in 4.b in Section 3 ). In such a case, a deep union operator must be natively
implemented in the transformation engine (and this is done in Clio), as XML query
languages, such as XQuery, XSLT and SQL/XML, are not yet suitable for such task
of hierarchically merging XML trees. Reasoning about the full structure of XML
documents and developing a theory of expressive XML schema mapping has been
only recently tackled (Arenas and Libkin, 2008; Amano et al, 2009). In particu-
lar, (Arenas and Libkin, 2008) focuses on extending the theory of data exchange to
XML, and introduced the XML tree patterns as XML schema mappings. Along the
same lines, (Amano et al, 2009) presents an analog of source-to-target dependencies
for XML schema mappings, discusses their properties, including their complexity,
and presents static analysis techniques for determining the ‘consistency’ between
source schemas and target schemas. The problem of consistency was also dealt with
in (Arenas and Libkin, 2008), and in (Amano et al, 2009) it is extended to consider
all forms of navigational axes and joins for XML query languages.

Recently, database vendors are extending their products to support ontological
reasoning capabilities. Following this direction, research on schema mapping and
query rewriting (Calı̀ et al, 2009b,a) is focusing on the extension of classical logical
formalisms, such as Datalog, to support query answering over ontologies. Datalog+

enriches Datalog with existential quantifiers in the rule head, and allows a set of re-
strictions to guarantee efficient ontology querying. In particular, the tractable frag-
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ment of Description Logics, namely DL-Lite[15] can be represented with Datalog+

by filling the gap between databases and the Semantic Web. Suitable fragments of
Datalog+ are embodied by: (i) guarded TGDs (GTGDs); (ii) linear TGDs (LTGDs);
(iii) (i) or (ii) with equation-generating dependencies and negative constraints. A
TGD σ is guarded iff it contains an atom in its body that has all universally quan-
tified variables of σ . A subset of guarded TGDs is represented by linear TGDs, iff
it contains only a singleton body atom. If we look at the source-to-target TGDs il-
lustrated in Section 2, then m1, m3 and m4 are linear TGDs (and, thus, guarded) and
m2 is a non-guarded TGD. The main result of (Calı̀ et al, 2009b) is that query an-
swering with (iii) that do not conflict with the TGDs is feasible in polynomial time
in the data complexity and thus is first-order rewritable.

6.3 Distributing Schema Mappings across several sites

We are currently witnessing a substantial interest in distributed database manage-
ment systems, called PDMS, that are based on highly decentralized P2P infrastruc-
tures. Such PDMSs might share heterogeneous data and exchange such data in a
seamless fashion.

In Piazza (Ives et al, 2004), each peer stores semantic mappings and storage
descriptions. Semantic mappings are equalities or subsumptions between query ex-
pressions, provided in XQuery. Storage descriptions are equalities or subsumptions
between a query and one or more relations stored on a peer. In Piazza, semantic
mappings are first used to do query rewriting using the MiniCon algorithm (Pot-
tinger and Halevy, 2001). When semantic mappings cannot be applied further, stor-
age descriptions are used to do query reformulation. The result of this phase is a
reformulation of peer relations into stored relations, which can be either in GAV or
LAV style. Query routing in Piazza requires a centralized index that stores all the
mappings at a global level.

In HePToX (Bonifati et al, 2005, 2010), the exact mapping rules are derived
automatically from correspondences, which are intuitively displayed in a peer-based
GUI. In contrast to Piazza, HePToX is totally decentralized and its scalability is less
than linear (i.e., logarithmic, as in DHT-based systems). Thus, mappings are locally
stored on each peer and used at need when doing query reformulation.

HePToX query rewriting can be done in both directions, along and against
the mappings, leading to forward and backward query translations. The seman-
tics of HePToX’s forward query translation is similar to answering queries using
views (Levy et al, 1995). However, HePToX can leverage Skolem functions and
the form of the mapping rules to perform forward translation efficiently. Backward
query translation is totally new and was never defined in other systems.

Orchestra (Ives et al, 2008) extends PDMSs for life scientists. It focuses on
provenance, trust, and updates. While it can be extended to XML, it uses the rela-
tional model. Orchestra’s mapping rules translate from tgds to Datalog, rather than
HePToX’s mapping rules which translate from a visual language to TreeLog. Unlike
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HePToX, which supports the user in easily creating the mapping between schemas,
Orchestra relies on other systems to create the initial mappings. Moreover, the Q
system, which is the query module in Orchestra, focuses on keywords queries rather
than on XQuery queries.

Calvanese et al. (Calvanese et al, 2004) address data interoperability in P2P sys-
tems using expressive schema mappings, also following the GAV/LAV paradigm,
and show that the problem is in PTIME only when mapping rules are expressed in
epistemic logic.

6.4 Normalizing schema mappings

Schema mappings, as high-level specifications describing the relationships between
two database schemas, are subject to optimization. (Fagin et al, 2008) lays the
foundations of schema mapping optimization, by introducing three kinds of equiva-
lence: (i) logical equivalence, stating that two schema mappings M = (S,T,Σ) and
M ′ = (S,T,Σ ′) 3, are logically equivalent if for every source instance I and target
instance J, we have that (I, J) |= Σ if and only if (I, J) |= Σ ′; (ii) data-exchange
equivalence, if for every source instance I, the set of universal solutions for I under
M coincides with the set of universal solutions for I under M ′; (iii) conjunctive-
query equivalence, if for every target conjounctive query Q and for every source
instance I, the set of solutions for I under M is empty if and only if the set of solu-
tions for I under M ′ is empty, and, whenever they are not empty, the set of certain
answers of Q on I under M coincides with the set of certain answers of Q on I un-
der M ′. Equivalences (ii) and (iii) coincide with equivalence (i) when Σ = Σst , but
differ on richer classes of equivalences, such as second-order tgds and sets of both
Σst and Σt . The assumption of logical equivalence has also been done in (Gottlob
et al, 2009), which focuses on the normalization of schema mappings with respect
to four optimality criteria, precisely cardinality-minimality, antecedent-minimality,
conclusion-minimality and variable-minimality. Following these criteria, given a set
of st-tgds in Σ , the total number of st-tgds in this set, the total number of atoms in
the antecedent and conclusion of each st-tgd shall be minimal, along with the to-
tal number of existentially quantified variables in the conclusion. The presence of
egds is not considered in (Gottlob et al, 2009) and represents a natural extension.
Other than that, much work remains to be done towards defining new heuristics for
schema mapping optimization, extending the above criteria to larger classes of rules,
and considering the impact of all the equivalences discussed above.

3 We do not distinguish here between Σst and Σt and consider Σ as a set of generic constraints.
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7 Conclusions and Future Work

In this chapter, we have discussed the state of the art of schema mapping algorithms,
along with their most recent developments and applications.

We believe that there are quite a lot of open problems in this area, which we
attempt to briefly discuss below.

First of all, within the data exchange theory the core has been studied only for
relational settings, to date there is not a formal definition of core solutions for nested
scenarios. We believe such a notion is needed in many practical scenarios.

Post-processing algorithms (Fagin et al, 2005b; Gottlob and Nash, 2008; Savenkov
and Pichler, 2008; Marnette, 2009) can handle scenarios with arbitrary target con-
straints, while by using the rewriting algorithms in (Mecca et al, 2009a; ten Cate
et al, 2009), the best we can achieve is to generate a solution that does not consider
target tgds and edgs. This is especially unsatisfactory for egds, since the obtained
solution violates the required key constraints and it is not even a legal instance for
the target. As shown in (Marnette et al, 2010), this may lead to a high level of redun-
dancy, that can seriously impair both the efficiency of the translation and the quality
of answering queries over the target database.

In fact, handling egds is a complicate task. As conjectured in (ten Cate et al,
2009), it has recently been shown (Marnette et al, 2010) that it is not possible, in
general, to get an universal solution that enforces a set of egds using a first-order lan-
guage as SQL. For the class of target egds that correspond to functional dependen-
cies, the most common in practical settings, (Marnette et al, 2010) introduced a best-
effort rewriting algorithm that takes as input a scenario with s-t tgds and egds and,
whenever this is possible, it rewrites it into a new scenario without egds. Moreover,
this algorithm can be combined with existing mapping rewriting algorithms (Mecca
et al, 2009a; ten Cate et al, 2009) to obtain SQL scripts that generate core solutions.
The paper shows that handling target egds efficiently is possible in many practical
cases. This is particularly important in real-world applications of mappings, where
key constraints are often present and play an important role.

Another important open problem concerns the expressibility of the GUI of a
schema mapping tool. Indeed, many GUIs are limited in the set of primitives they
use to specify the mapping scenarios and need to be enriched in several ways. For
instance, it would be useful to be able to duplicate sets in the source and in the target
and, thus, handle tgds that contain duplicate tables. To a further extent, full control
over joins in the two data sources becomes a crucial requirement of schema mapping
GUIs, in addition to those corresponding to foreign key constraints; by using this
feature, users can specify arbitrary join paths, like self-joins themselves.

This richer set of primitives poses some challenges with respect to the mapping
generation and rewriting algorithms as well. In particular, duplications in the target
correspond to different ways of contributing tuples to the same set. As we discussed
above, this makes the generation of core solutions more delicate, since there exist
tgds that write more than one tuple at a time in the same target table, and therefore
redundancy can be generated not only across different tgds, but also by firing a
single tgd (Mecca et al, 2009a; ten Cate et al, 2009).
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Second generation mapping systems have certainly enlarged the class of map-
pings scenarios that can be handled using a GUI, but a formal characterization of
the exact class of mappings that can be expressed with them is still missing. For
instance, it is still unclear if every mapping made of conjunctive queries can be
expressed by existing GUIs.

Finally, another important problem is the use of mappings in practical user sce-
narios and applications, thus making them the building blocks of general-purpose
data transformation tools. Although previous attempts have been done in this direc-
tion (as explained in Section 6), more work is still left to fill this gap.
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