
Clio: Schema Mapping Creation and Data

Exchange

Ronald Fagin1, Laura M. Haas1, Mauricio Hernández1,
Renée J. Miller2, Lucian Popa1, and Yannis Velegrakis3

1 IBM Almaden Research Center, San Jose, CA 95120, USA
2 University of Toronto, Toronto ON M5S2E4, Canada

3 University of Trento, 38100 Trento, Italy
fagin@almaden.ibm.com, laura@almaden.ibm.com, mauricio@almaden.ibm.com,

miller@cs.toronto.edu, lucian@almaden.ibm.com, velgias@disi.unitn.eu

Abstract. The Clio project provides tools that vastly simplify infor-
mation integration. Information integration requires data conversions to
bring data in different representations into a common form. Key con-
tributions of Clio are the definition of non-procedural schema mappings
to describe the relationship between data in heterogeneous schemas, a
new paradigm in which we view the mapping creation process as one of
query discovery, and algorithms for automatically generating queries for
data transformation from the mappings. Clio provides algorithms to ad-
dress the needs of two major information integration problems, namely,
data integration and data exchange. In this chapter, we present our al-
gorithms for both schema mapping creation via query discovery, and for
query generation for data exchange. These algorithms can be used in
pure relational, pure XML, nested relational, or mixed relational and
nested contexts.

1 Introduction

We present a retrospective on key contributions of the Clio project, a joint
project between the IBM Almaden Research Center and the University of
Toronto begun in 1999. Clio’s goal is to radically simplify information inte-
gration, by providing tools that help in automating and managing one chal-
lenging piece of that problem: the conversion of data between representations.
Clio pioneered the use of schema mappings, specifications that describe the re-
lationship between data in two heterogeneous schemas. From this high-level,
non-procedural representation, it can automatically generate either a view, to
reformulate queries against one schema into queries on another for data integra-
tion, or code, to transform data from one representation to the other for data
exchange. In this chapter, we focus on two key components of Clio: the creation of
mappings between heterogeneous schemas, and their use for the implementation
of data exchange.

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 198–236, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Clio: Schema Mapping Creation and Data Exchange 199

1.1 Schema Mapping

Schema mappings are fundamental for a number of important information in-
tegration problems [9] including data integration, data exchange, peer-to-peer
data sharing, schema integration and schema evolution. Applications are typ-
ically limited to handling information with a specific schema, so they rely on
systems that can create and use mappings to transform data from one represen-
tation to another.

A fundamental requirement for Clio is that it make no assumption about the
relationship between the schemas or how they were created. In particular, we do
not assume that either of the schemas is a global or mediator schema, nor that
one schema is a view (global or otherwise) over the other. This implies that both
schemas may contain data not represented in the other, and that both may have
their own constraints.

This requirement to map independently created schemas has a strong impact
on our mapping language, as we need one that is more general than those used in
traditional schema integration [6] or in mediator systems such as TSIMMIS [16]
or Information Manifold [34].

A second requirement is that we be able to map between relational schemas
and nested schemas (for example, XML schemas). As XML emerged as a common
standard for exchanging data, an early motivating application for our work was
publishing legacy relational data in XML. This often requires relational data to
be placed into a predefined XML schema (defined, e.g., by a standards committee
to permit meaningful exchange within a specific domain). However, for other
applications including schema evolution, data warehousing, and data federation,
we also need to be able to map data between different relational schemas and
between any combination of nested and relational schemas.

A third requirement is that we be able to create and use mappings at different
levels of granularity. For some applications and some schemas, it may be sufficient
to create fine-grained mappings between individual components (for example,
between attributes or elements to translate gross salary in francs to net salary
in dollars). For others, mappings between broader concepts are required (for
example, between the order concept in one billing application with that used
by another). And for other applications, we may need to map full documents
(for example, map every company’s carbon emission data expressed in a schema
suitable for the European Union Emission Trading Scheme to a schema designed
for the Portable Emissions Measurement Systems standard).

Finally, we want our mapping creation algorithms to be incremental. There
are many motivations for this. First, for many tasks, complete mapping of one
entire schema to another is not the goal. It may suffice to map a single concept to
achieve the desired interoperability. Second, we want a tool that gives users (or
systems) with only partial knowledge of the schemas, or limited resources, useful
(and usable) mappings despite their incomplete knowledge or resources. We hope
that incomplete mappings can help them in understanding the schemas and
data better, and that the mappings can be refined over time as need arises, for
example, as new data appears, or the application needs change. This particular

200 R. Fagin et al.

aspect of our approach was explored in more detail in our work on data-driven
mapping refinement [51] and in work on mapping debugging [3], but will not be
emphasized in this chapter. This ability to evolve mappings incrementally has
more recently been coined pay-as-you-go [23].

Clio mappings assume that we are given two schemas and that we would like
to map data from the first to the second. We refer to the first schema as a source
schema, and the second as a target schema. In practice, this meets most appli-
cation needs, as most require only a uni-directional flow of data. For example,
one common use of mappings is in query reformulation, commonly referred to
as data integration [33], where queries on a target schema are reformulated, us-
ing the mappings, into queries on a source schema. For applications requiring
bi-directional mapping, mappings are created in both directions.

1.2 Implementing Data Exchange

Another common use of mappings is for data exchange where the goal is to create
a target instance that reflects the source instance as accurately as possible [19].
Since the target is materialized, queries on the target schema can be answered
directly without query reformulation. At the time we started Clio, data inte-
gration had been widely studied, but work on data exchange was quite dated.
Foundational systems like Express [46,47] did data exchange for mappings which
were much less expressive than those needed to map arbitrary schemas. There
were no systems that performed data exchange for the general mappings we
strove to create.

For independent schemas, because the schemas may represent overlapping
but distinct sets of concepts, a schema mapping may relate a source instance
with many possible target instances. As a result, we have a fundamentally new
problem: given a schema mapping, determine which possible target instance is
the best one to use for data exchange. At the time of our first results [38,43],
this problem had not yet been formalized. Hence, in Clio, we made some intu-
itive decisions that were later formalized into a theory for data exchange [19].
In this chapter, we discuss this intuition, and how it corresponds to the later
theory. We also discuss some important systems issues not covered by the the-
ory. Specifically, we consider how to create a data exchange program from a
schema mapping. Due to the requirements for schema mapping laid out above,
we choose to produce executable queries for data exchange. A schema mapping
is a declarative specification of how an instance of a source schema corresponds
to possibly (infinitely) many target instances, and from this we choose a best
target instance to materialize. Hence, our data exchange queries, when executed
on a source instance, will generate this one chosen target instance.

The origins of this chapter first appeared in Miller et al. [38] and Popa et
al. [43]. This chapter also includes details, originally from Velegrakis [48], of
our data exchange implementation. The requirements outlined above force us to
accommodate various runtime environments. In this chapter, we discuss how to
generate data exchange queries in SQL, XQuery or XSLT.

Clio: Schema Mapping Creation and Data Exchange 201

The chapter is organized as follows. Section 2 introduces a motivating example
and describes the problem of schema mapping generation and the problem of
data exchange. Section 3 presents the data model we will use for representing
both relational and nested relational schemas along with our schema mapping
formalism. Section 4 presents our algorithm for generating schema mappings.
Section 5 presents our algorithm for data exchange (mapping code generation).
We present a discussion and analysis of our algorithms in Section 6, describe the
related work in Section 7 and then conclude.

2 A Motivating Example

To motivate our approach, we first walk through an example explaining the
intuition behind our mapping creation algorithm, and highlighting some of its
features. We then extend our example to illustrate how schema mappings can
be used to generate queries for data exchange, and describe the key innovations
in that algorithm.

2.1 Schema Mapping Creation

Schema. Consider a data source with information about companies and grants.
The structure of its data is described by the Schema S, illustrated in Figure 1. It is
a relational schema containing three tables, companies, grants, and contacts,
presented in a nested relational representation that we use to model both rela-
tional and XML schemas. It contains a set of grants (grants), each consisting of
a grant identifier (gid), a recipient (recipient), its amount (amount), its super-
visor (supervisor) and its manager (manager). The recipient is actually the
name of the company that received the grant. For each company, the database
stores its name (name), address (address) and the year it was founded (year).
Similarly, the supervisor and manager are references to some contact informa-
tion, which consists of an identifier (cid), an email (email) and a phone number
(phone). The curved lines f1, f2 and f3 in the figure represent referential con-
straints specified as part of the schema. For example, f1 may be a foreign key, or
simply an inclusion dependency, stating that values in grants.recipient must
also appear in companies.name.

Consider a second schema T , as illustrated on the right-hand side of Fig-
ure 1. It records the funding (fundings) that an organization (organizations)
receives, nested within the organization record. The amount of each funding
(budget) is kept in the finances record along with a contact phone number
(phone). The target may be an XML schema containing a referential constraint
in the form of a keyref definition (f4).

Correspondences. To begin to understand the relationship between the
schemas, we may invoke a schema matcher to generate a set of element cor-
respondences (or matchings). Alternatively, we could ask a user (for example, a
data designer or administrator familiar with the schemas) to draw lines between

202 R. Fagin et al.

contacts: Set of Rcd

f2

grants: Set of Rcd

f1
gid
recipient
amount
supervisor
manager

cid
email
phone

f3

year

name
address

companies: Set of Rcd

v3

v4

v2

v1

f4

year
code

fundings: Set of Rcd

finances: Set of Rcd

organizations: Set of Rcd

finId
budget
phone

fid
finId

Schema T:Schema S:

Fig. 1. A source and a target schema in a mapping scenario

elements that should contain related data. In our example, the dashed arrows
between the elements of the two schemas in Figure 1 represent a set of match-
ings or correspondences. The line v1 indicates (informally) that what is called
a company name in the first schema, is referred to as an organization code in
the second. In contrast, both schemas have an element year, but the data ad-
ministrator (or matching tool) has specified no arrow between them. That may
be because there is reason to believe that these elements do not represent the
same concept. For instance, element year in the first schema may represent the
time the company was founded, while in the second it may represent the time
the company had its initial public offer (IPO).

Our approach is agnostic to how correspondences are created, whether man-
ually or (semi-)automatically, but is cognizant that matchings are often incom-
plete, and sometimes incorrect. Hence, we have developed techniques for in-
crementally modifying mappings as correspondences change [49]. To keep our
example simple, we assume that correspondences v1, v2, v3, v4 are correct.

Mappings. One way a correspondence can be interpreted is that the target
schema element should be populated with values from the source schema element.
This can be formally expressed using an inter-schema inclusion dependency or
more generally through a source-to-target tuple generating dependency, (tgd) [7].
A tgd representing correspondence v1 of Figure 1 is shown below (the nested set
fundings which is represented by the variable F inside organizations will be
explained below).

∀n, d, y, companies(n, d, y) → ∃y′, F organizations(n, y′, F) (1)

This simple mapping states that for each companies tuple, there must be
an organizations tuple whose code is the same as the companies.name; this is
represented by the shared variable n, which carries source data to the target. As a
convention, when writing tgds, we underline all the variables that appear in both
the left-hand side and the right-hand side of the implication. This target tuple

Clio: Schema Mapping Creation and Data Exchange 203

must have a value for the year attribute, but the mapping does not specify what
this value should be (this is represented by the existential variable y′). Similarly,
we could write simple tgds to express the other three correspondences.

If our application only requires information about organizations (and not
about fundings or finances), then we can stop the mapping generation here.
This simple element-to-element mapping can be used for data exchange or for
data integration [52]. However, if the user is interested in mapping more data,
we can continue the mapping generation using the other correspondences from
Figure 1 to map additional concepts.

Associations. Correspondences alone do not specify how individual data values
should be connected in the target. For example, in the target, funding informa-
tion is nested inside organizations. This nesting indicates that there is a seman-
tic association between organization and funding records. This may represent
organizations and the funding that the organization has received, or possibly or-
ganizations and the funding that they have given to others. The semantics is not
specified precisely in the schema, but it is clear that some real-world association
is being represented. Given this, we will look for associations between organiza-
tion information and funding information in the source to see if one of these can
be used to associate data in the target. For our example, organizations.code
corresponds to companies.name, while fundings.fid corresponds to grants.gid.
Hence, our algorithm will search for associations between these source elements
within the source schema. In our example, the referential constraint f1 indicates
that each grant is associated with a company, thus this constraint can be used
to associate each company with a set of grants. In general, there may be many
ways to associate elements within a schema. Our algorithm will use logical infer-
ence to find all associations represented by referential constraints and a schema’s
relational and nesting structure.

For our example, we have only one way of associating company names and
grant gids in the source, so we will use this association to associate fundings with
organizations in the target. A mapping reflecting this association is represented
by the following formula.

∀n, d, y, g, a, s, m companies(n, d, y), grants(g, n, a, s, m) →

∃y′, F, f organizations(n, y′, F), F(g, f) (2)

The variable F in formula (2) does not represent an atomic value, but rather a
set identifier, and is also used as a term in the formula. This variable represents
the set of fundings that an organizations tuple has.

Notice that Mapping (2) specifies what must be true of the target data, given
that a certain pattern holds in the source data. In this example, it says that if
a grant joins with a company in the source, then there must be an organization
in the target with the name of the company as its code, and with a fundings
record nested inside of the organization record that has the grant’s gid as its
fundings.fid. No other constraints are placed on what is in this set. So the

204 R. Fagin et al.

mapping is specifying that the association between grants and companies should
be preserved in the target.

Now let us consider the correspondence v3. Considered in isolation, this cor-
respondence could be represented by the following mapping.

∀g, r, a, s, m grants(g, r, a, s, m) → ∃f, p finances(f, a, p) (3)

However, this mapping does not recognize that grant amounts are asso-
ciated with specific grant gids (in the source) and that fundings.fid and
finances.budget are associated in the target (through the referential constraint
f4). If these two associations represent the same semantic association, then a
better mapping can be constructed by using the source and target associations.

∀n, d, y, g, a, s, m companies(n, d, y), grants(g, n, a, s, m) →

∃y′, F, f, p organizations(n, y′, F), F(g, f), finances(f, a, p), (4)

Notice that a company and grant tuple that join in the source will create three
tuples in the target: an organizations tuple, a fundings tuple (which is nested
inside the organizations tuple), and a finances tuple. The mapping specifies
that the fundings and finances tuples must share the same value (f) in their
finId attributes. It does not, however, specify what this value must be (that is,
the variable f is existentially quantified and is not bound to source data).

Now to complete our example, let us consider the final correspondence v4. In
the target, a phone is associated with a budget because they are represented
in the same relation finances. In the source, there are two ways to associate
a grants.amount (the source for finances.budget) and a contacts.phone (the
source for finances.phone). These are represented by the two referential con-
straints f2 (which associates a grant with its supervisor’s phone) and f3 (which
associates a grant with its manager’s phone).

It is not clear which, if either, of these associations should be used to create
finances tuples. Clio will create two mappings, one using f2 (Mapping (5))
which uses a join on supervisor, and one using f3 (Mapping (6)) which uses a
join on manager. To help a user decide which mapping to use, Clio provides a
data viewer which allows users to see (and compare) sample target data created
by each mapping [51].

∀n, d, y, g, a, s, m, e, p companies(n, d, y), grants(g, n, a, s, m), contacts(s, e, p)

→ ∃y′, F, f organizations(n, y′, F), F(g, f), finances(f, a, p) (5)

∀n, d, y, g, a, s, m, e, p companies(n, d, y), grants(g, n, a, s, m), contacts(m, e, p)

→ ∃y′, F, f organizations(n, y′, F), F(g, f), finances(f, a, p) (6)

We have illustrated a few of the issues involved with generating schema map-
pings. We now highlight some of the features of the Clio mapping algorithm.

Clio: Schema Mapping Creation and Data Exchange 205

Mapping Formalism. As our example illustrated, we use source-to-target tgds,
a generalization of the relational tgds of Fagin et al. [19] to the nested relational
model, to represent schema mappings. Our mappings are a form of what has
been called sound GLAV (global-and-local-as-view) mappings [33]. In general,
a GLAV mapping asserts a relationship between a query over the source and a
query over the target. We use sound mappings, where the relationship between
queries is a containment relationship (the result of the source query is contained
in the target query) as is common in data integration. Such mappings do not
restrict what data can be in the target; hence, we have the freedom to map
multiple sources into a single target.

Mapping Generation. Clio exploits the schema and its constraints to gener-
ate a set of alternative mappings. Our approach uses the chase technique [36]
to generate all possible associations between source elements (and all possible
associations between target elements). The mappings are formed using these
associations or other associations given by a user.

Multiple Mappings. As we create mappings, each query may omit information
that the user may have wanted included. Consider Mapping (2). This mapping
takes grants that have an associated company and creates target data from this
information. Notice, however, that companies that have no grants would not
be included in the mapping. We may want to include all companies, not just
companies with grants, in the target. To allow for this, Clio generates a set
of mappings that would map all source data (in this example, both companies
with and without grants). A user can then choose among these mappings. If she
only wishes to map a subset of the source data, she can do so by selecting an
appropriate subset of the mappings Clio generates.

2.2 Query Generation for Data Exchange

For data exchange, Clio can generate code that, given a source instance, will
produce an instance of the target schema that satisfies the mapping and that
represents the source data as accurately as possible. In general, given a source
instance there may be many target instances that satisfy the mapping (or many
solutions in data exchange parlance [19]). Hence, to perform data exchange, we
must choose a single “best” target instance, i.e., a single solution to materialize.

Let us assume, for example, that the instance of the source schema of Figure 1
is the one illustrated in Figure 2, and that a user has indicated that Mapping (5)
is correct and would like to create a target instance. For each companies tuple
that joins with grants and contacts, the mapping indicates that there should
be an organizations tuple containing as organization code the company name.
Furthermore, there must also be a nested fundings element containing the gid
of the grant from the source. Finally, a finances element must also exist with
the same value for its finId as the value of finId in this fundings record.
Moreover, the finances element must contain the grant amount in the budget
element and the supervisor phone number as phone. An instance that satisfies

206 R. Fagin et al.

Companies
name address year
MS Redmond, SA 1975
AT&T Dallas, TX 1983
IBM Armonk, NY 1911

Grants
gid recipient amount supervisor manager
g1 MS 1M Rice Gates
g2 MS 2M Bama Gates
g4 AT&T 3M Greer Dorman

Contacts
cid email phone
Rice rice@microsoft 7062838
Gates gates@microsoft 7069273
Bama bama@microsoft 7066252
Greer rxga@att 3607270
Dorman dorman@att 3600102

Fig. 2. An instance for the source schema in Figure 1

the mapping, i.e., a solution, can be seen in Figure 3. In this solution, fundings
tuple g1 can correctly be joined with the first finances tuple to associate it with
its correct budget (1M). However, in Figure 3 all fundings tuples are associated
with all finances tuples, which was not true in the source. In data exchange,
we would like the target instance to represent only the data associations in the
source. Clearly the instance of Figure 3 does not fullfill that desire. Furthermore,
the last tuple in the Finances table does not correspond to any source data, yet
its inclusion in the instance does not violate Mapping (5). So while this instance
is a solution, it is not minimal.

Fagin et al. [19] proposed the use of universal solutions for data exchange. A uni-
versal solution is an instance of the target schema that contains no more and no
less than what the mapping specification requires. A universal solution for Map-
ping (5) is given in Figure 4. Note that the values of the finId attribute have
been created to associate each fundings with all and only the finances tuples
that contain the correct budget amount. The instance is also minimal in that it
does not contain any tuples that were not required to be in the target. To compute
a universal solution, Fagin et al. [19] present an algorithm based on the chase [36].
However, in Clio, we use queries to perform the data exchange. Here we present
algorithms that, given a schema mapping, generate a set of executable queries to
perform the desired data exchange. The queries can be in SQL, XQuery or XSLT
depending on the desired runtime environment. In the case of a pure relational
setting (relational source and target schemas), these queries generate a universal
solution. In our algorithm, we make use of Skolem functions (one-to-one func-
tions) that generate values based on a set of source values. We will discuss later
how to determine the correct arguments for these Skolem functions and when one
Skolem function should be reused in different schema elements. For example, in
Section 5, we show why the Skolem function for finId needs to depend on four
source attributes (name, gid, amount, and phone).

In the case of a nested target schema, Clio applies additional grouping
and nesting to produce a target instance that is in PNF (Partitioned Normal

Clio: Schema Mapping Creation and Data Exchange 207

Organizations
code year
MS

Fundings
fid finId
g1 10
g2 10

code year
AT&T

Fundings
fid finId
g4 10

Finances
finId budget phone
10 1M 7062838
10 2M 7069273
10 3M 3607270
10 5M 2609479

Fig. 3. A non-universal solution target instance for Mapping (5)

Form) [1]. This is done to minimize the redundancy in the target instance.
Consider the universal solution given in Figure 4 which contains a different
organizations tuple with a singleton fundings set for each companies and
grants pair in the source, even if multiple pairs share the same company name.
Clio avoids this redundancy, by producing a single organizations tuple for each
source name and grouping all the fundings that belong to the same organiza-
tion together under one single organization element (Figure 5). As shown in the
figure, we use Skolem functions to represent set identifiers for each fundings
set. Our algorithms determine the correct arguments for these Skolem functions
to achieve PNF grouping. In more recent work which will not be covered in this
chapter [24], we have considered how to declaratively represent PNF grouping
semantics in the mapping specification along with other types of grouping. In
this chapter, we will assume PNF is the desired semantics, and we present our
solutions for generating PNF target instances.

There are two main innovations in our data exchange algorithm. The first is
a new technique for generating Skolem terms to represent existential values and
for achieving grouping in the target instance. Second, our algorithm can identify
and merge data that are generated by different mappings, but represent the
same target entities. Assume, for instance, that the user wanted to populate the
target with all the companies, independently of whether they have funding or not.
Mapping (5) can generate only companies with grants (i.e., funding), due to the
join it performs on the source data. Mapping (1) on the other hand, generates all
the companies, but without their potential funding. The desired target instance
can be achieved by using both mappings (5) and (1). The resulting instance
would be the same as Figure 5 but with an additional organizations element
for IBM having an empty fundings subelement. The MS and AT&T tuples
would not be impacted, even though they are produced by both mappings.

208 R. Fagin et al.

Organizations
code year
MS

Fundings
fid finId
g1 Sk2(MS,g1,1M,7062838)

code year
MS

Fundings
fid finId
g2 Sk2(MS,g2,2M,7066252)

code year
AT&T

Fundings
fid finId
g4 Sk2(AT&T,g4,3M,3607270)

Finances
finId budget phone
Sk2(MS,g1,1M,7062838) 1M 7062838
Sk2(MS,g2,2M,7066252) 2M 7069273
Sk2(AT&T,g4,3M,3607270) 3M 3607270

Fig. 4. A universal solution target instance for Mapping (5)

3 Mapping Language and Schema Constraints

Schemas and Types. We use a nested relational model to model both relational
and XML Schemas. In general, a schema is a sequence of labels (called roots),
each with an associated type τ , defined by the grammar:

τ ::= String | Integer | Set of τ |Rcd[l1 : τ1,. . ., ln : τn] | Choice[l1 : τ1,. . ., ln : τn]

Types Integer and String are called atomic types, Set of is a set type, and Rcd
and Choice are complex types. With respect to XML Schema, we use Set of to
model repeatable elements (or repeatable groups of elements), while Rcd and
Choice are used to represent the “all” and “choice” model-groups. For each set
type Set of τ , τ must be an atomic (String or Integer) type or a Rcd type. We do
not consider order, that is, Set of represents unordered sets. “Sequence” model-
groups of XML Schema are also represented as (unordered) Rcd types.

Instances. An instance of a schema associates each schema root l of type τ with
a value v of type τ . For the atomic types, the allowed values are the expected ones
(i.e., strings, integers). A value of type Rcd[l1 : τ1, . . . , ln : τn] is an unordered
tuple of pairs [l1 : v1, . . . , ln : vn] where vi is a value of type τi with 1 ≤ i ≤ n.
A value of type Choice[l1 : τ1, . . . , ln : τn] on the other hand, is a pair 〈li : vi〉
where vi is a value of type τi with 1 ≤ i ≤n. With respect to XML, the labels
l1, . . . , ln model element names or attribute names, while the values v1, . . . , vn

represent the associated contents or value. In our model, we do not distinguish
between XML elements and attributes.

Clio: Schema Mapping Creation and Data Exchange 209

Organizations Sk0()
code year
MS

Fundings Sk1(MS)
fid finId
g1 Sk2(MS,g1,1M,7062838)
g2 Sk2(MS,g2,2M,7066252)

code year
AT&T

Fundings Sk1(AT&T)
fid finId
g4 Sk2(AT&T,g4,3M,3607270)

Finances Sk3()
finId budget phone
Sk2(MS,g1,1M,7062838) 1M 7062838
Sk2(MS,g2,2M,7066252) 2M 7069273
Sk2(AT&T,g4,3M,3607270) 3M 3607270

Fig. 5. A target instances for Mapping (5) in PNF

A value of type Set of τ is actually an identifier (set ID). This identifier
is associated to an unordered set {v1, v2, . . . , vn} of values, each being of type
τ .1 This id-based representation of sets faithfully captures the graph-based data
models of XML. In a constraint or expression in general, we shall always interpret
the equality of two expressions of set type to mean the equality of their set ids.

Mapping Language. Our mapping language is based on the source-to-target
tgds [19], extended to support nested relations. When restricted to the relational
model, our mapping formulas coincide with source-to-target tgds. However, we
permit variables occurring inside atoms in a tgd to represent relations as well as
atomic values to allow the representation of nested sets.

In this paper, as in other Clio work [43,49,52], we will use a more verbose form
of the mapping language to make the algorithms and ideas easier to follow. Let
an expression be defined by the grammar e ::= S | x | e.l, where x is a variable,
S is a schema root, l is a label, and e.l is record projection. Then a mapping is
a statement (constraint) of the form:

M ::= foreach x1 in g1, . . . , xn in gn

where B1

exists y1 in g′1, . . . , ym in g′m
where B2

with e1 = e′1 and . . . and ek = e′k

where each xi in gi (yj in g′j) is called a generator and each gi (g′j) is one of the
following two cases:

1. An expression e with type Set of τ ; in this case, the variable xi (yj) binds
to individual elements of the set e.

1 The reason will become clear when we talk about how data generated by different
mappings is merged to form one single instance of the target schema.

210 R. Fagin et al.

2. A choice selection e → l (where e is an expression with a type Choice [. . . , l :
τ, . . .]) representing the selection of attribute l of the expression e; in this
case, the variable xi (yj) will bind to the element of type τ under the choice
l of e.

The mapping is well-formed if the variable (if any) used in gi (g′j) is defined
by a previous generator within the same clause. Every schema root used in the
foreach must be a root of the source schema. Similarly, every schema root used
in the exists clause must be a target schema root. The two where clauses (B1

and B2) are conjunctions of equalities between expressions over x1, . . . , xn, or
y1, . . . , ym, respectively. They can also include equalities with constants (i.e.,
selections). Finally, each equality ei = e′i in the with clause involves a source
expression ei (over x1, . . . , xn) and a target expression e′i (over y1, . . . , ym), with
the requirement that ei and e′i are of the same atomic type.

For simplicity of presentation, we shall ignore for the remainder of this paper
the Choice types and their associated expressions. We note, however, that these
are an important part of XML Schema and XML mappings, and they are fully
supported in the Clio system.

Example 1. Recall the schemas in Figure 1. The following mapping is an inter-
pretation of the correspondences v1, v2, v3, given the structure of the schemas
and the constraints. It is equivalent to the tgd for Mapping (4) in Section 2.

foreach c in companies, g in grants
where c.name = g.recipient

exists o in organizations, f in fundings, f ′ in finances
where f .finId = f ′.finId

with c.name = o.code and g.gid = f .fid and g.amount = f ′.budget

Each mapping is, essentially, a source-to-target constraint of the form QS � QT ,
where QS (the foreach clause and its associated where clause) is a query over the
source and QT (the exists clause and its associated where clause) is a query
over the target. The mapping specifies a containment assertion: for each tuple
returned by QS , there must exist a corresponding tuple in QT . The with clause
makes explicit how the values selected by QS relate to the values in QT .

Schema Constraints (NRIs). Before defining the schema constraints that we
use in our mapping generation algorithm, we need to introduce primary paths
and relative paths.

Definition 1. A primary path with respect to a schema root R is a well-formed
sequence P of generators x1 in g1, . . . , xn in gn where the first generator g1 is an
expression that depends only on R and where each generator gi with i ≥ 2 is an
expression that depends only on the variable xi−1. Given a variable x of type τ ,
a relative path with respect to x is a well-formed sequence P (x) of generators
x1 in g1, . . . , xn in gn where the first generator g1 is an expression that depends
only on x and where each generator gi with i ≥ 2 is an expression that depends
only on xi−1.

Clio: Schema Mapping Creation and Data Exchange 211

The following are examples of primary paths and relative paths:

PS
1 : c in companies

PT
1 : o in organizations

PT
2 : o in organizations, f in o.fundings

PT
r : f in o.fundings

The first two paths, PS
1 and PT

1 , are primary paths corresponding to top-level
tables in the two schemas in our example. The third one is a primary path
corresponding to the nested set of fundings under the top-level organizations.
Finally, the fourth one is a relative path with respect to o : τ where τ is the
record type under organizations.

Primary paths will play an important role in the algorithm for mapping gener-
ation, as they will be the building blocks for larger associations between data el-
ements. Primary paths, together with relative paths, are also useful in definining
the schema constraints that we support in our nested relational model. Schema
constraints use a similar formalism as mappings, but they are defined within
a single schema. Hence, variables in both the foreach and the exists clauses are
defined on the same schema.

Definition 2. A nested referential integrity constraint (NRI) on a schema is
an expression of the form

foreach P1 exists P2 where B,

with the following requirements: (1) P1 is a primary path of the schema, (2) P2

is either a primary path of the schema or a relative path with respect to one of
the variables of P1, and (3) B is a conjunction of equalities of the form e1 = e2

where e1 is an expression depending on one of the variables of P1 and e2 is an
expression depending on one of the variables of P2.

As an example, the following NRI captures the constraint f4 informally described
in Section 2:

foreach o in organizations, f in o.fundings
exists f ′ in finances

where f .finId = f ′.finId

Note that NRIs, which capture relational foreign key and referential con-
straints as well as XML keyref constraints, are a special case of (intra-schema)
tgds and moreover such that the foreach and the exists clauses form paths. In
general, the source-to-target tgds expressing our mappings may join paths in
various ways, by using equalities in the where clause on the source and/or the
target side. As an example, the mapping in Example 1 in this section joins the
primary path for companies with the primary path for grants in the source,
and joins the primary path for fundings with the primary path for finances
in the target. The next section is focused on deriving such mappings.

212 R. Fagin et al.

4 Schema Mapping

Our mapping generation algorithm makes use of associations between atomic
elements within the source and target schemas. To describe our approach, we
first present an algorithm for finding natural associations within a schema. We
then present an algorithm that given a set of correspondences, and a set of source
and target associations, creates a set of schema mappings.

4.1 Associations

We begin by considering how the atomic elements within a schema can be related
to each other. We define the notion of association to describe a set of associated
atomic type schema elements. Formally, an association is a form of query (with
no return or select clause) over a single schema; intuitively, all the atomic type el-
ements reachable from the query variables (without using additional generators)
are considered to be “associated”.

Definition 3 (Association). An association is a statement of the form:

from x1 in g1, . . . , xn in gn

where B

where each xi in gi is a generator (as defined above). We require that the variable
(if any) used in gi is defined by a previous generator within the same clause.
The where clause (B) is a conjunction of equalities between expressions over
x1, . . . , xn. This clause may also include equalities with constants (i.e., selection
conditions).

An association implicitly defines a relationship among all the atomic elements
defined by expressions over the variables x1, . . . , xn. As a very simple example,
consider the following association:

from c in contacts

The atomic type elements that are implicitly part of this association are c.cid,
c.email and c.phone.

To understand and reason about mappings and rewritings of mappings, we
must understand (and be able to represent) relationships between associations.
We use renamings (1-1 functions) to express a form of subsumption between
associations.

Definition 4. An association A1 is dominated by an association A2 (denoted
as A1

.
	A2) if there is a renaming function h from the variables of A1 to the

variables of A2 such that the from and where clauses of h(A1) are subsets, re-
spectively, of the from and where clauses of A2. (Here we assume that the where

clause of A2 is closed under transitivity of equality.)

Clio: Schema Mapping Creation and Data Exchange 213

Definition 5. The union of two associations A1 and A2 (denoted as A1
A2)
is an association whose from and where clause consist of the contents of the
respective clauses of A1 and A2 taken together (with an appropriate renaming of
variables if they overlap).

If B is a set of equalities e=e′, we will abuse notation a bit and use A
B to
denote the association A with the equalities in B appended to its where clause.

Structural Associations. An important way to specify semantically meaning-
ful relationships between schema elements is through the structural organization
of the schema elements. Associations that are based on this kind of relationship
will be referred to as structural associations.

Definition 6 (Structural Association). A structural association is an
association defined by a primary path P and having no where clause: from P .

Example 2. Figure 6 indicates all the primary paths of the two schemas of Fig-
ure 1. There is one structural association for each primary path. Note that where
more than one relation is used, the relations are related through nesting. For ex-
ample, P T

2 represents fundings (which will each necessarily have an associated
organization).

PS
1 : p in companies

PS
2 : g in grants

PS
3 : c in contacts

P T
1 : o in organizations

P T
2 : o in organizations, f in o.fundings

P T
3 : f in finances

Fig. 6. Source and target primary paths

All primary paths (and therefore all structural associations) in a schema can
be computed by a one time traversal over the schema [43].

User Associations. The semantic relationships between atomic elements de-
scribed by structural associations are relationships that the data administrators
have encoded in the schema during schema design. However, there are rela-
tionships that can exist between schema elements, that are not encoded in the
schema, but can be either explicitly specified by a user, or identified through
other means such as examining the queries in a given query workload. Associa-
tions of this kind are referred to as user associations.

Definition 7. A user association is any association specified explicitly by a
user or implicitly though user actions.

214 R. Fagin et al.

Example 3. If the grants.gid contains as its first five letters, the name of the
company who gave a grant, then we may find in the workload queries that
perform this join frequently. Hence, we may define the following user association:

from g in grants, c in companies
where Substr(g.gid,1,5) = c.name

Logical Associations. Apart from the schema structure or a user query, an
additional way database designers may specify semantic relationships between
schema elements is by using constraints.

Example 4. Every record in grants in an instance of the source schema of Fig-
ure 1 is related to one or more records in companies through the referential
constraint f1 from the recipient element to name. From that, it is natural to
conclude that the elements of a grant are semantically related to the elements
of a company. Thus, they can be combined together to form an association.
Similarly, we can conclude that the elements of a grant are also related to the
elements of contacts through both of the referential constraints on supervisor
and manager. Formally, the resulting association is:

from g in grants , c in companies, s in contacts, m in contacts
where g.recipient = c.name and g.supervisor = s.cid

and g.manager = m.cid

There are no other schema elements that can be added to the association by fol-
lowing the same reasoning (based on constraints). In that sense, the association
that has just been formed is maximal.

Associations that are maximal like the one described in the previous example
are called logical associations. Logical associations play an important role in
the current work, since they specify possible join paths, encoded by constraints,
through which schema elements in different relations or different primary paths
can be related. We shall make use of this information in order to understand
whether (and how) two correspondences in a schema mapping scenario should
be considered together when forming a mapping.

Logical associations are computed by using the chase [36]. The chase is a
classical method that was originally introduced to test the implication of func-
tional dependencies. The chase was introduced for the relational model and later
extended [42] so that it can be applied on schemas with nested structures.

The chase consists of a series of chase steps. A chase step of association A
with an NRI f : foreach X exists Y with B, can be applied if, by definition,
the association A contains the path X (up to a renaming α of the variables in
X) but does not satisfy the constraint, that is, A does not contain the path Y
(up to a renaming β of the variables in Y) such that B is satisfied (under the
corresponding renamings α and β). The result of the chase step is an association
A′ with the Y clause and the B conditions (under the respective renamings)
added to it. The chase can be used to enumerate logical join paths, based on

Clio: Schema Mapping Creation and Data Exchange 215

the set of referential constraints in a schema. We use an extension of a nested
chase [42] that can handle choice types and NRIs [48].

Let Σ denote a set of NRIs, and A an association. We denote by ChaseΣ(A)
the final association that is produced by a sequence of chase steps starting
from A as follows. In the case where no constraints in Σ can be applied to
A, then ChaseΣ(A) is A. If there are constraints that can be applied to A, then
ChaseΣ(A) is constructed as follows: a first step is applied on A; each subse-
quent step is applied on the output of the previous one; each step uses an NRI
from the set Σ; and the sequence of chase steps continues until no more can be
applied using NRIs from Σ. In general, if the constraints are cyclic, the chase
process may not terminate. However, if we restrict Σ to certain classes of con-
straints such as weakly-acyclic sets of NRIs, termination is guaranteed. (See also
the later discussion in Section 6.) Furthermore, it is known (see [19] for exam-
ple) that when the chase terminates, then it terminates with a unique result
(up to homomorphic equivalence2). Thus, the result ChaseΣ(A) is independent,
logically, of the particular order in which the constraints are applied.

Of particular interest to us is the chase applied to structural associations,
which is used to compute logical relationships that exist in the schema. A logical
association can then be formally defined as the result of such chase.

Definition 8 (Logical Association). A logical association is an association
ChaseΣ(A), where A is a structural association or a user association, and Σ is
the set of NRIs defined on the schema.

Example 5. Consider the structural association defined using PS
1 shown in Fig-

ure 6. A chase step with the referential constraint

f1 : foreach g in grants exists c in companies where g.recipient = c.name

cannot be applied since f1 uses grants in its foreach clause. A chase step with
f1 can, however, be applied on the association defined by PS

2 , since there is a
renaming function (in this case the identity mapping) from the variables in the
foreach clause of the constraint to the variables of the association. Applying the
chase step will lead to an association that is augmented with the exists and where

clauses of the constraint. Thus, the association becomes:

from g in grants, c in companies
where g.recipient = c.name

Performing a subsequent chase step with the referential constraint f2 creates the
association:

from g in grants , c in companies, s in contacts
where g.recipient = c.name and g.supervisor = s.cid

2 In our context, two associations are homomorphic equivalent if there are homo-
morphisms in both directions; this also implies that the associations have a unique
minimal form.

216 R. Fagin et al.

A subsequent chase step with constraint f3 will create the association:

from g in grants , c in companies, s in contacts, m in contacts
where g.recipient = c.name and g.supervisor = s.cid

and g.manager = m.cid

No additional chase steps can be applied to this association, since all the con-
straints are “satisfied” by it. Thus, the last association is maximal, and it is a
logical association. Note how in this logical association the relation contacts
appears twice. This is due to the fact that there are two different join paths
through which one can reach contacts from grants. One is through the refer-
ential constraint f2 and one through f3.

Figure 7 indicates the logical associations that can be generated using all the
structural associations of our two example schemas of Figure 1.

AS
1 : from c in companies

AS
2 : from g in grants , c in companies, s in contacts, m in contacts

where g.recipient = c.name and g.supervisor = s.cid and g.manager = m.cid
AS

3 : from c in contacts

AT
1 : from o in organizations

AT
2 : from o in organizations, f in o.fundings, i in finances

where f .finId = i.finId
AT

3 : from f in finances

Fig. 7. Source and target logical associations

4.2 Mapping Generation

Logical associations provide a way to meaningfully combine correspondences.
Intuitively, a set of correspondences whose source elements all occur in the same
source logical association, and whose target elements all occur in the same target
logical association can be interpreted together. Such a set of correspondences
maps a set of related elements in the source to a set of related elements in the
target data.

The algorithm for generating schema mappings finds maximal sets of corre-
spondences that can be interpreted together by testing whether the elements
they match belong in the same logical association, in the source and in the
target schema. As seen in the previous section, logical associations are not nec-
essarily disjoint. For example, AS

1 and AS
2 of Figure 7 both include elements

of companies, although AS
2 also includes elements of grants and contacts.

Thus, a correspondence can use elements that may occur in several logical as-
sociations (in both source and target). Rather than looking at each individual
correspondence, the mapping algorithm looks at each pair of source and target
logical associations. For each such pair, we can compute a candidate mapping

Clio: Schema Mapping Creation and Data Exchange 217

that includes all correspondences that use only elements within these logical as-
sociations. (As we shall see, not all candidate mappings are actually generated,
since some are subsumed by other mappings).

We begin by formally defining correspondences as mappings. First, we define
an intensional notion of a schema element that we shall use in the subsequent
definitions and algorithm.

Definition 9. Given a schema, a schema element is a pair 〈P ; e〉 where P is a
primary path in the schema and e is an expression depending on the last variable
of P .

Intuitively, the pair 〈P ; e〉 encodes the navigation pattern needed to “reach” all
instances of the schema element of interest. Note that a pair 〈P ; e〉 can be turned
into a query select e from P that actually retrieves all such instances.

For our example, 〈c in companies; c.name〉 represents the schema el-
ement name in the companies table of our source schema, while
〈o in organizations, f in o.fundings; f.fid〉 identifies the schema element fid
under fundings of organizations in our target schema.

Definition 10 (Correspondence). A correspondence from an element
〈PS ; eS〉 of a source schema to an element 〈PT ; eT 〉 of a target schema is defined
by the mapping:

v ::= foreach PSexists PT with eS = eT

In practice, a correspondence need not be restricted to an exact equality; we
may allow the application of a function f to eS . In such case the with clause
would be f(eS) = eT . Clio does not discover such functions, but does provide
a library of common type conversion functions that a user may specify on a
correspondence. The system also permits the use of user-defined functions. Sim-
ilarly, we could have a function applied to several source elements to generate a
single target element (for example, concat(fname,lname) = name). This type
of N:1 correspondence could be created by some matchers [11] and used by Clio
in mapping generation. To keep the notation for our algorithms simple, we will
assume that correspondences are of the form given in Definition 10.

Given a pair of source and target logical associations, we would like to define
when (and how) a correspondence v is relevant to this pair. In general, a corre-
spondence may be used in multiple ways with a pair of logical associations. For
example, a correspondence for the phone element under contacts can be used in
two ways with the pair of associations AS

2 and AT
2 in Figure 7 (to map either the

supervisor or manager phone). In our algorithm, we identify all possible ways
of using a correspondence. The following definition formalizes the notion of a
single use (which we call coverage) of a correspondence by a pair of associations.

Definition 11. A correspondence v : foreach PS exists PT with eS = eT is cov-
ered by a pair of associations <AS , AT > if PS

.
	 AS (with some renaming

function h) and PT
.
	 AT (with some renaming function h′). We say in this

case that there is a coverage of v by <AS , AT > via <h, h′>. We also say that
the result of the coverage is the expression h(eS)=h′(eT).

218 R. Fagin et al.

Our algorithm will consider each pair of source and target associations that cover
at least one correspondence. For each such pair, we will consider all correspon-
dences that are covered and pick one coverage for each. For each such choice (of
coverage), the algorithm will then construct what we call a Clio mapping.

Definition 12. Let S and T be a pair of source and target schemas and C a
set of correspondences between them. A Clio mapping is a mapping foreach AS

exists AT with E, where AS and AT are logical associations in the source and the
target schema, respectively, and E is a conjunction of equalities constructed as
follows. For each correspondence v in C that is covered by <AS , AT >, we choose
one coverage of v by <AS , AT > via <h, h′> and add the equality h(eS) = h′(eT)
that is the result of this coverage.

Note that, in the above definition, only one coverage for each correspondence
is considered when constructing a Clio mapping. Different coverages will yield
different Clio mappings. The following two examples illustrate the process for
two different pairs of associations.

Example 6. Consider the pair of logical associations <AS
1 , AT

1 >. We check
each of the correspondences in {v1, v2, v3, v4} to see if it is covered by
these associations. It is easy to see that the correspondence v1, which re-
lates the source element 〈c in companies; c.name〉 with the target element
〈o in organizations; o.code〉, is covered by our pair of associations. There is
only one coverage in this case, given by the identity renaming functions. Since
no other correspondence is covered, we can form a Clio mapping based on AS

1

and AT
1 , with the sole equality that results from v1 added to the with clause:

mv1: foreach c in companies
exists o in organizations
with c.name = o.code

In this simple example, the mapping happens to be the same as the original
correspondence. This is because both of the primary paths of this correspondence
are logical associations themselves, and also no other correspondence is covered;
hence, mapping mv1 is v1. (Notice that this is the same as Mapping (1) from
Section (2), where it was represented in traditional s-t tgd notation).

Example 7. As a more complex example of mapping generation, consider the
association pair <AS

2 , AT
2 >. Following the same steps, we can determine that

the correspondences v1, v2 and v3 are covered, and the following mapping using
only these three correspondences can be generated:

foreach g in grants, c in companies, s in contacts, m in contacts
where g.recipient = c.name and g.supervisor = s.cid

and g.manager = m.cid
exists o in organizations, f in o.fundings, i in finances

where f .finId = i.finId
with c.name = o.code and g.gid = f.fid and g.amount = i.budget

Clio: Schema Mapping Creation and Data Exchange 219

Consider now our final correspondence:

v4: foreach c in contacts
exists f in finances
with c.phone = f.phone

which is also covered by the above two associations. However, since contacts
appears twice in AS

2 , there are two different renaming functions for the foreach

clause of v4; hence, there are two different coverages. In the first, the variable c
(of v4) maps to s, while in the second, the variable c maps to m. This will lead
to the generation of the following two mappings.

M1:
foreach g in grants , c in companies, s in contacts, m in contacts

where g.recipient = c.name and g.supervisor = s.cid
and g.manager = m.cid

exists o in organizations, f in o.fundings, i in finances
where f .finId = i.finId

with c.name = o.code and g.gid = f.fid and g.amount = i.budget
and s.phone = i.phone

M2:
foreach g in grants , c in companies, s in contacts, m in contacts

where g.recipient = c.name and g.supervisor = s.cid
and g.manager = m.cid

exists o in organizations, f in o.fundings, i in finances
where f .finId = i.finId

with c.name = o.code and g.gid = f.fid and g.amount = i.budget
and m.phone = i.phone

Notice that M1 and M2 have two copies of contacts in their source query, only
one of which is used in the target query. A minimization algorithm (similar to
tableau minimization [2]) can be applied to remove the occurrence of contacts
that is not used in the target. So Mapping M1 is equivalent to the Mapping (5)
of Section 2 which is written in the more common s-t tgd notation, and M2 is
equivalent to Mapping (6) of the same section.

Our mapping generation algorithm is summarized in Algorithm 1. If the
source schema has N logical associations and the target schema has M logical
associations, there will be N×M pairs of associations that have to be considered
by the algorithm. However, not all of these pairs will generate actual mappings.
Some pairs may not cover any correspondences and are discarded. Additionally,
some pairs of associations are subsumed by other pairs and they are also
discarded. More precisely, a pair <AS , AT > of associations is subsumed by
another pair <X, Y > of associations if: (1) X

.
	 AS or Y

.
	 AT , and at least one

of these two dominances is strict (i.e., X or Y have strictly smaller number of vari-
ables), and (2) the set of correspondences covered by <X, Y > is the same as the set
of correspondences coveredby<AS , AT >. Intuitively, all the correspondences that

220 R. Fagin et al.

Algorithm 1: Schema Mapping Generation
Input: A source schema S

A target schema T
A set of correspondences C

Output:The set of all Clio mappingsM

GenerateMappings(S , T , C)
(1) M ← ∅
(2) AS ← Logical Associations of S
(3) AT ← Logical Associations of T
(4) foreach pair <AS , AT > of AS×AT

(5) V ← {v | v ∈ V ∧ v is covered by <AS , AT > }
(6) // If no correspondences are covered
(7) if V = ∅
(8) continue;
(9) // Check if subsumed

(10) if ∃ <X,Y > with X
.
�AS or Y

.
�AT , and at least one

dominance is strict
(11) V ′ ← {v | v ∈ C ∧ v covered by <X, Y > }
(12) if V ′ = V
(13) continue;
(14) let V be {v1, . . . , vm}
(15) for every vi: let Δvi be {<h, h′>| vi covered by

<AS , AT > via <h, h′>}
(16) // For every combination of correspondence coverages
(17) foreach (δ1, . . . , δm) ∈ Δv1 × . . .×Δvm

(18) W ← ∅
(19) foreach vi ∈ V
(20) let e = e′ be the equality in vi

(21) let δi be <h, h′>
(22) add equality h(e) = h′(e′) to W
(23) form Clio mapping M : foreach AS exists AT with W
(24) M←M ∪ {M}
(25) return M

are covered by <AS , AT > are also covered by a “strictly smaller” pair of associ-
ations. The heuristic that we apply is to discard the “larger” mapping (based on
AS and AT) since it does not make use of the “extra” schema components. This
heuristic can eliminate a large number of unlikely mappings in practice and is a key
ingredient for the efficiency of the algorithm. Additional details regarding the data
structures needed to efficiently implement this heuristic are given inHaas et al. [27].

5 Query Generation for Data Exchange

The schema mappings we generate specify how the data of the two schemas
relate to each other. For data exchange, a source instance must be restructured

Clio: Schema Mapping Creation and Data Exchange 221

and transformed into an instance of the target schema. Fagin et al. [19] have
defined the problem as follows:

Definition 13. Given a source schema S, a target schema T , a set Σst of
source-to-target constraints (i.e., the mappings), and a set Σt of target con-
straints, the data exchange problem is the following problem: given a finite source
instance I, find a finite target instance J such that (I,J) satisfies Σst and
J satisfies Σt. Such an instance J is called a solution to the data exchange
problem.

This section will describe one approach to finding such a solution. We will discuss
in Section 6 how this solution relates to the universal solution of Fagin et al. [19].

Notice that a schema mapping (1) does not specify all target values and
(2) does not specify the grouping or nesting semantics for target data. Thus,
in generating a solution we will have to address these issues. Furthermore, in
generating a target instance, we will typically be using many mappings, as we
may have one or more mappings per concept in the schemas. Hence, we will need
to merge data produced from multiple mappings.

5.1 Intuition: What Are the Challenges

To begin, we will explore a bit further the challenges we face in building our
data exchange queries, building up intuition for the algorithm itself.

Creation of New Values in the Target. Consider the simple mapping sce-
nario of Figure 8(a). The source (Emps) and the target (Emps′) are sets containing
employee records. An employee record in the source has atomic elements A, B and
C, while an employee record in the target has elements A′, B′, C′ along with an
extra atomic element E′. For the purpose of this discussion, we choose to use the
abstract names A, etc., so that we can associate several different semantics with
these elements for illustration. In the mapping, the two source elements A and B
are mapped into the target elements A′ and B′, while C′ and E′ in the target are
left unmapped. Consider the following schema mapping which does not specify
any value for C′ or E′.

foreach e in Emps
exists e′ in Emps′

with e′.A′ = e.A and e′.B′ = e.B

To populate the target we need to decide what values (if any) to use for
unmapped elements. A frequent case in practice is one in which an unmapped
element does not play a crucial role for the integrity of the target. For example,
A and B could be employee name and salary, while C and E could be spouse
and date of birth, respectively, where neither is used in any schema constraint.
Creating a null value for C′ and E′ is then sufficient. If the unmapped element is
optional in a target XML schema, then we can omit this element in the exchange.

222 R. Fagin et al.

(b)(a)

A’
B’

A
B
C
D

A’
B’
C’
E’

A
B
C E’

Spouses’: Set of Rcd

Emps : Set of Rcd Emps’: Set of Rcd Emps : Set of Rcd

E’’

Emps’: Set of Rcd

C’

Fig. 8. Creation of new values in the target

Alternatively, the element E′ may be a key in the target relation, e.g., E′ could
be employee id. The intention of the mapping would be, in this case, to copy
employee data from the source, and assign a new id for each employee in the
target. Thus, a non-null (and distinct) value for E′ is needed for the integrity
of the target. In general, a target element is needed if it is (part of) a key or
referential constraint (such as a foreign key) or is both not nullable and not
optional.

If E′ is a key, we create a different but unique value for E′, for each combi-
nation of the source values for A and B using a one-to-one Skolem function. In
this example, values for E′ are created using the function SkE′(A, B). We can
then augment the schema mapping with explicit conditions in the with clause to
provide an appropriate value for all unmapped attributes.

foreach e in Emps
exists e′ in Emps′

with e′.A′ = e.A and e′.B′ = e.B and e′.C′ = null and e′.E′ = SkE′(e.A, e.B)

Notice that we choose to make E′ depend only on A and B, not on the (unmapped)
source element C. Thus, even if in the source there may exist two tuples with
the same combination for A and B, but with two different values for C (e.g., if C
is spouse as above, and an employee has two spouses), in the target there will
be only one tuple for the given combination of A and B (with one, unknown,
spouse). Thus, the semantics of the target is given solely by the values of the
source elements that are mapped. Of course, a new correspondence from C to C′

will change the mapping: an employee with two spouses will appear twice in the
target and the value for E′ will be SkE′(A, B, C).

Now consider an unmapped target element that is used in a referential con-
straint. In Figure 8(b), the (mapped) target element C′ is stored in a different
location (the set Spouses) than that of elements A′ and B′. However, the associ-
ation between A′, B′ values and C′ values is meant to be preserved by a referential
constraint (E′ plays the role of a reference in this case). The schema mapping
created by Clio is the following.

foreach e in Emps
exists e′ in Emps′, s′ in Spouses′

where e′.E′ = s′.E′′

with e′.A′ = e.A and e′.B′ = e.B and s′.C′ = e.C

Clio: Schema Mapping Creation and Data Exchange 223

Note that this mapping does not give a value for the required element Emps′.E′

or Spouses′.E′′. We can provide values for these two unmapped elements using
a Skolem function SkE′(A, B, C) to create values for E′ and E′′.

foreach e in Emps
exists e′ in Emps′, s′ in Spouses′

where e′.E′ = s′.E′′

with e′.A′ = e.A and e′.B′ = e.B and s′.C′ = e.C and e′.E′ = SkE′(e.A, e.B, e.C)

In the above example, the same Skolem function will populate both E′ and E′′,
since E′ and E′′ are required to be equal by the where clause of the mapping. In
general, however, different target attributes will use different Skolem functions.

Note also that if duplicate [a, b, c] triples occur in the source (perhaps with
different D values, where D is some other attribute) only one element is gener-
ated in each of Emps′ and Spouses′. Thus, we eliminate duplicates in the target
based on the mapped source data.

Grouping of Nested Elements. Consider now Figure 9(a), in which the target
schema contains two levels of nesting: elements A′ and C′ are at the top level,
while there are multiple B′ elements (Bs′ is of set type). Elements A, B, and C of
the source Emps are mapped, via correspondences, into the respective elements
of the target Emps′. The mapping that Clio generates:

foreach e in Emps
exists e′ in Emps′, b′ in e′.Bs′

with e′.A′ = e.A and b′.B′ = e.B and e′.C′ = e.C

requires that all (A, B, C) values found in the source appear in the target. In
addition, a natural interpretation of the target schema is that all B values sharing
the same A and C be grouped together in one set. For illustration, if A, B, and
C are employee, child, and spouse names, respectively, Clio will choose to group
all children with the same employee and spouse in a single set. Note that this
behavior is not part of the mapping specification itself. (A solution of the above
mapping can be obtained by creating a target tuple with a singleton Bs′-set for
each source tuple.) However, for data exchange, we choose to add this grouping

(b)(a)

A’
Bs’: Set of Rcd

C’

A
B
C

Emps’ : Set of RcdEmps : Set of Rcd
A’

E’

A
B
C

Spouses’: Set of Rcd

Bs’: Set of Rcd
B’

Emps’: Set of Rcd Emps : Set of Rcd

E’’
C’

B’

Fig. 9. Grouping of elements in the target

224 R. Fagin et al.

semantics that is implicitly specified by the target schema, and produce a target
instance that is in Partitioned Normal Form (PNF) [1].

PNF: In any target nested relation, there cannot exist two distinct tuples that
coincide on all the atomic elements but have different set-valued elements.

To achieve this grouping behavior, we use Skolemization as well. If a target
element has a set type, then its identifier (recall that each set is identified in
the data model by a set id) is created via a Skolem function. This function does
not depend on any of the atomic elements that are mapped under (in terms
of nesting) the respective set type, in the schema hierarchy. Instead it depends
on all the atomic elements at the same level or above (up to the root of the
schema). The same Skolem function (for a given set type of the target schema)
is used across all mappings. Intuitively, we perform a deep union of all data
in the target independently of their source. For the example of Figure 9(a), we
modify the schema mapping with a Skolem function for Bs.

foreach e in Emps
exists e′ in Emps′, b′ in e′.Bs′

with e′.A′ = e.A and b′.B′ = e.B and e′.C′ = e.C and e′.Bs′ = SkBs′(e.A, e.C)

The meaning of the above rule is the following: for each (a, b, c) triple of
values from the source, create a record in Emps′, with the appropriate A′ and C′

attributes, and also a Bs′ attribute, the value of which is the set id SkBs′(a, c).
Thus, the Skolem function SkBs′ is used here to create a set type element. Also,
we create an element B′, with value b, under SkBs′(a, c). Another tuple (a, b′, c)
will lead to the value b′ being nested in the same set as b.

Hence, we achieve desired grouping of B′ elements for fixed A′ and C′ values.

Value Creation Interacts with Grouping. To create a nested target in-
stance, we will need to consider referential constraints together with our desired
PNF grouping. We again explain our technique with an example. Consider Fig-
ure 9(b), where the elements A′ and C′ are stored in separate target sets. The
association between A′ (e.g., employee name) and C′ (e.g., spouse name) is pre-
served via the foreign key E′ (e.g., spouse id). Thus, E′ is a required element and
must be created. However, in this case, it is rather intuitive that the value of
E′ should not depend on the value of B′, but only on the A′ and C′ value. This,
combined with the PNF requirement, means that all the B′ (child) values are
grouped together if the employee and spouse names are the same. We achieve
therefore the same effect that the mapping of Figure 9(a) achieves. In contrast,
if E′ were to be assigned a different value for different B′ values, then each child
will end up in its own singleton set. For data exchange, we choose the first alter-
native, because we believe that this is the more practical interpretation. Thus,
we adjust the earlier Skolemization scheme for atomic type elements as follows.

The function used for creation of an atomic element E does not depend on
any of the atomic elements that occur at a lower level of nesting in the target
schema.

Clio: Schema Mapping Creation and Data Exchange 225

For the example of Figure 9(b) we create the rule:

foreach e in Emps
exists e′ in Emps′, b′ in e′.Bs′, s′ in Spouses′

where e′.E′ = s′.E′′

with e′.A′ = e.A and b′.B′ = e.B and s′.C′ = e.C and

e′.E′ = SkE′(e.A, e.C) and e′.Bs′ = SkBs′(e.A, SkE′(e.A, e.C))

Note that in this case, the Skolem function for Bs′ is (as before) a function
that depends on all the atomic type elements that are at the same level or above
it (in the schema hierarchy). Thus, it is a function of the values that are assigned
to A′ and E′ (the latter being a Skolem function itself, in this case).

As an extreme but instructive case, suppose that in Figure 9(b) we remove
the correspondences that involve A′ and C′, but keep the one that involves B′.
If the target elements A′ and C′ are not optional, then they will be created
by (unique) Skolem functions with no arguments. This is the same as saying
that they will each be assigned a single (distinct) null. Consequently, the two
target sets Emps′ and Spouses′ will each contain a single element: some unknown
employee, and some unknown spouse, respectively. In contrast, the nested set Bs′

will contain all the B values (all the children listed in Emps). Thus, the top-level
part of the schema plays only a structural role: it is minimally created in order to
satisfy the schema requirements, but the respective values are irrelevant. Later
on, as correspondences may be added that involve A′ and C′, the children will be
separated into different sets, depending on the mapped values.

We now describe in some detail the algorithm for generating the data exchange
queries. The algorithm is applied to every Clio mapping that has been generated,
and works in three steps. First, given a Clio mapping, we construct a graph that
represents the key portions of the query to be generated. Second, we annotate
that graph to generate the Skolem terms for the query. These two steps are
discussed in the next section. Finally, we walk the graph, producing the actual
query, as described in Section 5.3.

5.2 The Query Graph

Given a mapping m, a graph is constructed, called the query graph. The graph
will include a node for each target expression that can be constructed over the
variables in the exists clause of the mapping. Source expressions that provide
values for the target will also have nodes. Furthermore, the graph will include
links between nodes to reflect parent-child relationships and equality predicates,
respectively. This structure is then further refined to support Skolem function
generation; at that point, it contains all the information needed to generate the
query.

In the query generation algorithm, all the variables that appear in the input
mapping are assumed to be named consistently as: x0, x1, . . . for the source side,
and y0, y1, . . . for the target side. Let us revisit one of our earlier mappings (M1

in Section 4.2), using the above naming convention:

226 R. Fagin et al.

foreach x0 in companies, x1 in grants , x2 in contacts, x3 in contacts
where x0.name = x1.recipient and x1.supervisor = x2.cid

and x1.manager = x3.cid
exists y0 in organizations, y1 in y0.fundings, y2 in finances

where y1.finId = y2.finId
with x0.name = y0.code and x1.gid = y1.fid and x1.amount = y2.budget

and x2.phone = y2.phone

The query graph for this mapping is illustrated in Figure 10. The query graph
is constructed by adding a node for each variable (and its generator) in the exists

clause of the mapping. There are three such nodes in our example query graph.
Furthermore, we add nodes for all the atomic type elements that can be reached
from the above variables via record projection. For our example, we include
nodes for y0.code, y0.year, and so on. (If we have multiple levels of records,
then there will be several intermediate nodes that have to be introduced.) We
then add structural edges (the directed full arcs in the figure) to reflect the
obvious relationships between nodes. Moreover, we add source nodes for all the
source expressions that are actually used in the with clause of the mapping.
For our example, we add nodes for x0.name, x1.gid, and the other two source
expressions. We then attach these source nodes to the target nodes to which
they are “equal”. This is illustrated via the dotted, directed arcs in the figure
(e.g., the arc from y0.code to x0.name).

Finally, we use the equalities in the where clause on the target side and add
“equality” edges between target nodes. For our example, we add the dotted,
undirected, edge connecting the node for y1.finId and the node for y2.finId.

Next, we annotate each node in the query graph to facilitate the subsequent
generation of Skolem functions. Each node in the graph will be annotated with
a set of source expressions. These expressions will represent the arguments of
a potential Skolem function for that node. However, only the nodes that are

y0 (organizations)

y1 (fundings) y0.code y0. year

y1.fid y1.finId

x1.gid

x0.name

y2 (finances)

y2.budget y2.phoney2.finId

x1.amount x2.phone

x1.amount x2.phone

x1.gid

x0.name x0.name

x1.amount, x2.phone,
x1.gid, x0.name

x1.amount, x2.phone,
x1.gid, x0.name

x1.amount, x2.phone,
x1.gid, x0.name

x1.amount, x2.phone,
x1.gid, x0.name

x0.name

Fig. 10. An annotated query graph

Clio: Schema Mapping Creation and Data Exchange 227

not mapped from the source and that are needed (as discussed in the previous
section) will receive an actual Skolem function.

The annotations are computed by a propagation algorithm. First, every target
node that is adjacent to a source schema node through an “equality” (dotted)
edge, is annotated with the expression of that source schema node and only
that. Next, we start propagating these expressions through the rest of the graph
according to the following rules.

– Upward propagation: Every expression that a node acquires is propagated
to its parent node, unless the (aquiring) node is a variable.

– Downward propagation: Every expression that a node acquires is propa-
gated to its children if they do not already have it and if they are not equal
to any of the source nodes.

– Eq propagation: Every expression that a node acquires is propagated to
the nodes related to it through equality edges.

The propagation rules are applied repeatedly until no more rules can be ap-
plied. Figure 10 illustrates the result of propagation for our example. The re-
sulting annotated graph is now ready for use to generate a data exchange query.

5.3 Generation of Transformation Queries

Once the query graph of a mapping has been generated, it can be converted to
an actual query. The language of the query depends on the model of the source
and target. When both source and target are relational schemas, the query will
be a relational SQL query. When one schema is XML, Clio can generate a data
exchange query in XQuery or XSLT. We describe here how to generate a data
exchange query in XQuery. The XSLT and SQL approaches are similar, though
for SQL, the query will not have nested elements.

The complete XQuery that is generated for our mapping M1 is shown in
Figure 11. An XSLT version of such query can be generated in a similar way,
with only syntactic differences.

To begin, the foreach clause of the mapping is converted to a query fragment
on the source schema. This is straightforward: Clio simply binds one variable to
each term of the mapping and adds the respective conditions in the where clause.
For instance, for our mapping M1, we create the following XQuery fragment:

FOR $x0 IN $doc0/companies, $x1 IN $doc0/grants,
$x2 IN $doc0/contacts, $x3 IN $doc0/contacts,

WHERE $x0.name=$x1.recipient and $x1.supervisor=$x2.cid
and $x1.manager=$x3.cid

Let us denote this query fragment by QS
M1

. Note that this is not a complete
query since it does not have a result yet. This query fragment will be used
(repeatedly) in a larger query that we generate based on the query graph. The
algorithm starts at the target schema root in the query graph and performs a
depth-first traversal.

228 R. Fagin et al.

– If the node being visited corresponds to a complex type schema element,
then a complex element is generated by visiting the children and enclosing
their corresponding elements.

– If a node corresponding to an atomic type element is visited, then: (i) if the
node is linked to a source node (directly, or via any number of equality edges),
then a simple element is generated with the value equal to the expression
represented by the source node, or (ii) if the node corresponds to an optional
element, nothing is generated, or (iii) if the node corresponds to a nullable
schema element, the null value is generated; or finally, (iv) if none of the
above applies, a value must be generated for that element via a Skolem
function. In this case, we generate a fresh new Skolem function name and
add all arguments that annotate the node. We take care so that all the nodes
that are “equal” to the current node will receive the same Skolem function
name.

– If the node visited is a variable, then a FOR-WHERE-RETURN query is pro-
duced, by first taking a “copy” of the source query fragment (e.g., QS

M1
)

(where we rename, in a consistent way, all the variables in the query frag-
ment). In addition, we inspect the expressions that annotate the node and
compare with its parent variable (if any). For each common expression e, we
then add an extra equality condition that equates the expression e at the
parent query with (the renaming of) e in the current query. This creates a
correlated subquery.

For our example, the subquery that is generated for the node y1 in our
query graph is based on a copy of the query fragment QS

M1
, with an extra

equality requiring that (the renaming of) x0.name in the subquery is equal to
to x0.name in the parent (e.g., ”$x0L1/name/text() = $x0/name/text()”).

The traversal continues and any new elements, generated based on the
descendants of the current node (variable), will be placed inside the return
clause of the subquery that has just been created.

One issue that we need to address in the actual implementation is the fact that
Skolem functions are not first-class citizens in typical query languages, including
XQuery. However, this issue can be dealt with in practice by simulating a Skolem
function as a string that concatenates the name of the Skolem function with the
string representations of the values of the arguments.

The above query generation algorithm, as presented, is not complete in the
sense that it may not generate a PNF instance. If we consider each Clio mapping
individually, then the generated query does produce a data fragment that is in
PNF. However, in the case of multiple mappings, we still need to merge the
multiple fragments into one PNF instance.

The merging required by PNF can be achieved either via post-processing,
or by generating a more complex, two-phase query as follows. The first query
transforms the source data, based on the mappings, into a set of “flat” views
that encode (in a relational way) the nested target instance in PNF. Nested
sets are encoded in this flat view by using Skolem functions (as described in
Section 5.1). These Skolem functions represent the identifiers of sets, and each

Clio: Schema Mapping Creation and Data Exchange 229

LET $doc0 := document("input XML file goes here")

RETURN

<T>

{distinct-values (

FOR $x0 IN $doc0/companies, $x1 IN $doc0/grants,

$x2 IN $doc0/contacts, $x3 IN $doc0/contacts

WHERE

$x0/name/text() = $x1/recipient/text() AND $x1/supervisor/text() = $x2/cid/text() AND

$x1/manager/text() = $x3/cid/text()

RETURN

<organization>

<code> { $x0/name/text() } </code>

<year> { "Sk3(", $x0/name/text(), ")" } </year>

{distinct-values (

FOR $x0L1 IN $doc0/companies, $x1L1 IN $doc0/grants,

$x2L1 IN $doc0/contacts, $x3L1 IN $doc0/contacts

WHERE

$x0L1/name/text() = $x1L1/recipient/text() AND $x1L1/supervisor/text() = $x2L1/cid/text()

AND $x1L1/manager/text() = $x3L1/cid/text() AND $x0L1/name/text() = $x0/name/text()

RETURN

<funding>

<fid> {$x0L1/gid/text()} </fid>

<finId>{"Sk5(", $x0L1/name/text(), ", ", $x2L1/phone/text(), ", ",

$x1L1/amount/text(), ", ", $x1L1/gid/text(), ")"}</finId>

</funding>) }

</organization>) }

{distinct-values (

FOR $x0 IN $doc0/companies, $x1 IN $doc0/grants,

$x2 IN $doc0/contacts, $x3 IN $doc0/contacts

WHERE

$x0/name/text() = $x1/recipient/text() AND $x1/supervisor/text() = $x2/cid/text() AND

$x1/manager/text() = $x3/cid/text()

RETURN

<financial>

<finId>{"Sk5(", $x0/name/text(), ", ", $x2/phone/text(), ", ",

$x1/amount/text(), ", ", $x1/gid/text(), ")"}</finId>

<budget> { $x1/amount/text() } </budget>

<phone> { $x2/phone/text() } </budget>

</financial>) }

</T>

Fig. 11. The data exchange XQuery for Mapping M1

tuple records the id of the set where it belongs. The second query can then take
this result and merge the data into the right hierarchy, by joining on the set
identifier information produced by the first query. The resulting instance is then
guaranteed to be in PNF.

The full details for the two-phase query generation can be found in [27] and
in [24].

6 Analysis

In this section we discuss the general conditions under which our method for map-
ping generation is applicable, and we make precise the connection between our
query generation algorithm and the data exchange framework of Fagin et al. [19].

6.1 Complexity and Termination of the Chase

The chase is the main process used to construct logical associations. In gen-
eral, it is known that the chase with general dependencies may not terminate.

230 R. Fagin et al.

The chase that we use is a special case in which the dependencies (the schema
constraints) are NRIs. Even in this special case, the chase may not terminate:
one can construct simple examples of cyclic inclusion dependencies (even for the
relational model) for which the chase does not terminate.

To guarantee termination, we restrict the NRIs within each schema to form
a weakly-acyclic set. The notion of a weakly-acyclic set of tgds has been stud-
ied [19] and, with a slight variation, in [17]; it was shown that weakly-acyclic
sets of tgds strictly generalize the previous notions of acyclic dependencies and it
was proven that the chase with a weakly-acyclic set of tgds always terminates in
polynomially many chase steps. The definition of weak-acyclicity and the argu-
ment for termination apply immediately when we consider tgds over the nested
relational model. Hence they apply to our NRIs.

While the number of chase steps required to complete the chase is polynomial
(in the weak-acyclic case), a chase step itself (of an association with an NRI)
can take an exponential amount of time in the worst case. This is due to the fact
that the paths in an NRI require matching (on the association) to determine the
applicability of the NRI. In general, there could be multiple ways of matching a
variable in the path with a variable in an association. Hence, matching a path
means exploring an exponential number of assignments of path variables in the
worst case. However, the exponential is in the size of the path (i.e., the number
of variables), which in practice is often small. Furthermore, in most cases, a
variable in a path has only one way of matching due to schema restrictions
(e.g., a variable required to be in companies can only match with a variable in
companies). Thus, the exponential worst case rarely materializes.

Another challenge that is often found in XML schemas is type recursion. Type
recursion occurs when a complex type is used in its own definition. Type recur-
sion leads to infinitely many structural associations that may result in infinitely

Fig. 12. Unlimited candidate mappings due to recursive types

Clio: Schema Mapping Creation and Data Exchange 231

many possible interpretations of a given set of correspondences. Figure 12 illus-
trates how type recursion can lead to an infinite number of mappings. In this
figure, the element Father is of type Persons. In order to partially cope with
this limitation we allow recursive types but we require the user to specify the
recursion level, or we choose a specific constant value as a bound. For example,
in the mapping scenario of Figure 12, if we bind the recursion level to one, then
only the first two mappings shown in the figure will be generated by the system,
and the user will be left to select the one that better describes the intended
semantics of the correspondences.

6.2 Characterization of Data Exchange

Consider a data exchange setting, that is, a source schema S, a target schema T ,
a set of mappings M from S to T , a set of target constraints ΣT , and an instance
I of schema S. The problem in data exchange is to find a solution, i.e., an instance
J of the target schema T that is consistent with the mappings in M. If we assume
that we are in the relational model, this allows us to use some of the existing
results in the research literature. In a data exchange setting, there may be more
than one solution. Fagin et al. [19] have provided an algebraic specification that
selects among all solutions of a data exchange setting, a special solution that is
referred to as a universal solution. A universal solution intuitively has no more
and no less data than required for data exchange, and represents the entire space
of possible solutions. A universal solution Ju is a solution for which there is a
homomorphism h to every other solution J . Fagin et al. provided an algorithm,
based on the chase, for computing a universal solution. That algorithm starts
with the source instance I and chases it with the mappings, and also with the
target schema constraints. The result of the chase gives a target instance that is
a universal solution.

There are two main differences in our approach. First, the process of generat-
ing logical associations compiles the schema constraints (NRIs) into the associa-
tions and, hence, into the mappings we generate. As a consequence, the resulting
set of mappings M “includes” the effect of the source and target schema con-
straints. Since in the algorithms presented in this chapter, we do not consider
other target constraints (e.g., key constraints or functional dependencies), we
reduce the data exchange problem to one based on M alone.

The other main difference is that we perform data exchange by generating
queries that “implement” M. The main property of our query generation al-
gorithm is that for relational schemas the instance Ju generated by our data
exchange queries is always a universal solution. Indeed, any other solution J will
agree with the instance Ju on the elements for which correspondences have been
defined (the elements determined by the mapping). For all the other elements,
the data exchange queries have generated Skolem values that can be mapped to
the corresponding values of instance J . Thus, there is a homomorphism from Ju

to any other solution J , which means that Ju is a universal solution.
For nested relational schemas, we additionally took the view that the map-

ping M also specifies some implicit grouping conditions on the target data. In

232 R. Fagin et al.

particular, we required that the target instance must be in partitioned normal
form (PNF): in any set we cannot have two distinct tuples that agree on all
the atomic valued components but do not agree on the set-valued elements. Our
query generation algorithm has then the property that the data exchange queries
we produce will always generate a target instance that is a PNF version of a uni-
versal solution. Alternatively, the generated target instance is a PNF solution
that is universal with respect to all PNF solutions.

7 Related Work

Declarative schema mapping formalisms have been used to provide formal
semantics for data exchange [19], data integration [33], peer data manage-
ment [28,13,25], pay-as-you-go integration systems [45], and model management
operators [8]. A whole area of model management has focused on such issues as
mapping composition [35,21,40] and mapping inverse [18,22].

Schema mappings are so important in information integration that many map-
ping formalisms have been proposed for different tasks. Here we mention only a
few. The important role of Skolem functions for merging data has been recognized
in a number of approaches [30,41]. HePToX [13] uses a datalog-like language that
supports nested data and allows Skolem functions. Extensions to the languages
used for schema mapping include nested mappings [24], which permit the declar-
ative specification of correlations between mappings and grouping semantics, in-
cluding the PNF grouping semantics used in Clio. Clip [44] provides a powerful vi-
sual language for specifying mappings between nested schemas. And second-order
tgds [21] provide a mapping language that is closed under composition.

Perhaps the only work on mapping discovery that predates Clio is the
TranSem system [39] which used matching to select among a pre-specified set
of local schema transformations that could help transform one schema into an-
other. Work on mapping discovery has certainly continued. Fuxman et al. [24]
consider how to create nested mappings. An et al. [5] consider how to use concep-
tual schemas to further automate mapping discovery. Yan et al. [51] and Alexe
et al. [3] consider how to use data examples to help a user interactively design
and refine mappings for relational and nested schemas respectively. Hernández
et al. [29] consider the generation of mappings that use data-metadata trans-
lations [50]. Also, Bohannon et al. [12] consider the generation of information
preserving mappings (based on path mappings).

Analysis of mappings has become an important new topic with work on verifi-
cation of mappings [14], mapping quality [15,32], and mapping optimization [20],
to name just a few.

Many industry tools such as BizTalk Mapper, IBM WebSphere Data Stage TX,
and Stylus Studio’s XML Mapper support the development (by a programmer) of
mappings. Although these tools do not automate the mapping discovery process,
they do provide useful programming environments for developing mappings. The
Clio algorithms for mapping discovery are used in several IBM products, including
IBM Rational Data Architect, and IBM InfoSphere FastTrack. STBenchmark [4]
presents a new benchmark for schema mapping systems.

Clio: Schema Mapping Creation and Data Exchange 233

Clio was the first system to generate code (in our case queries) for data ex-
change. The generation of efficient queries for data exchange is not considered
in work like Piazza [28] and HePToX [13] which instead focus on query genera-
tion for data integration. More recently, in model management [37,10], query or
code generation for data exchange has been considered for embedded dependen-
cies. Hernández et al. [29] generate data exchange queries for richer mappings
that include data to metadata conversion. And specialized engines for efficiently
executing data exchange queries have been proposed [31].

8 Conclusions

We have presented a retrospective on key contributions of the Clio schema map-
ping system. These innovations include a new paradigm, in which we view the
mapping creation process as one of query discovery. Clio provides a principled
algorithm for discovering queries over the source, queries over the target, and a
precise specification of their relationship. In Clio, we pioneered the use of schema
mapping queries to capture the relationship between data in two heterogeneous
schemas. Many uses have been found for such schema mappings, but Clio was the
first system to exploit them to perform data exchange between independently
created schemas, leading to a new theory of data exchange. In this chapter, we
have presented our algorithms for both schema mapping creation via query dis-
covery, and for query generation for data exchange. Our algorithms apply equally
in pure relational, pure XML (or any nested relational), and mixed relational
and nested contexts.

Clio set out to radically simplify information integration, by providing tools
that help users convert data between representations – a core capability for
integration. Today, most information integration systems, whether federation
engines that do data integration, or ETL engines that enable data exchange, in-
clude a suite of tools to help users understand their data and to create mappings,
though only a few leverage the power of Clio’s algorithms. In the next genera-
tion of integration tools, we need to leverage data and semantic metadata more
effectively in the integration process, combining data-driven, metadata-driven
and schema-driven reasoning. Further, we need to provide users with a higher
level of abstraction for the entire integration process, from identification of the
data of interest through returning the results. Ideally, users would not have to
decide a priori whether they wanted data integration or data exchange; instead,
the system should understand the user’s intentions and construct the integration
plan accordingly [26]. These challenges are natural next steps along the trail of
increased automation and radical simplification blazed by Clio.

References

1. Abiteboul, S., Bidoit, N.: Non-first Normal Form Relations: An Algebra Allowing
Data Restructuring. J. Comput. Syst. Sci. 33, 361–393 (1986)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

234 R. Fagin et al.

3. Alexe, B., Chiticariu, L., Miller, R.J., Tan, W.-C.: Muse: Mapping understand-
ing and design by example. In: Proceedings of International Conference on Data
Engineering (ICDE), pp. 10–19 (2008)

4. Alexe, B., Tan, W.-C., Velegrakis, Y.: STBenchmark: towards a benchmark for
mapping systems. In: Proceedings of the VLDB Endowment, vol. 1(1), pp. 230–
244 (2008)

5. An, Y., Borgida, A., Miller, R.J., Mylopoulos, J.: A Semantic Approach to Discov-
ering Schema Mapping Expressions. In: Proceedings of International Conference
on Data Engineering (ICDE), pp. 206–215 (2007)

6. Batini, C., Lenzerini, M., Navathe, S.B.: A Comparative Analysis of Methodologies
for Database Schema Integration. ACM Computing Surveys 18(4), 323–364 (1986)

7. Beeri, C., Vardi, M.Y.: A proof procedure for data dependencies. J. ACM 31(4),
718–741 (1984)

8. Bernstein, P., Halevy, A., Pottinger, R.: A Vision for Management of Complex
Models. SIGMOD Record 29(4), 55–63 (2000)

9. Bernstein, P.A., Haas, L.M.: Information Integration in the Enterprise. Commun.
ACM 51(9), 72–79 (2008)

10. Bernstein, P.A., Melnik, S., Mork, P.: Interactive Schema Translation with
Instance-Level Mapping. In: Proceedings of the International Conference on Very
Large Data Bases (VLDB), pp. 1283–1286 (2005)

11. Bohannon, P., Elnahrawy, E., Fan, W., Flaster, M.: Putting Context into Schema
Matching. In: Proceedings of the International Conference on Very Large Data
Bases (VLDB), pp. 307–318 (2006)

12. Bohannon, P., Fan, W., Flaster, M., Narayan, P.P.S.: Information Preserving XML
Schema Embedding. In: Proceedings of the International Conference on Very Large
Data Bases (VLDB), pp. 85–96 (2005)

13. Bonifati, A., Chang, E.Q., Ho, T., Lakshmanan, V.S., Pottinger, R.: HePToX:
Marrying XML and Heterogeneity in Your P2P Databases. In: Proceedings of the
International Conference on Very Large Data Bases (VLDB), pp. 1267–1270 (2005)

14. Bonifati, A., Mecca, G., Pappalardo, A., Raunich, S., Summa, G.: Schema mapping
verification: the spicy way. In: International Conference on Extending Database
Technology (EDBT), pp. 85–96 (2008)

15. Bonifati, A., Mecca, G., Pappalardo, A., Raunich, S., Summa, G.: The spicy sys-
tem: towards a notion of mapping quality. In: ACM SIGMOD Conference, pp.
1289–1294 (2008)

16. Chawathe, S., GarciaMolina, H., Hammer, J., Ireland, K., Papakonstantinou, Y.,
Ullman, J., Widom, J.: The TSIMMIS Project: Integration of Heterogeneous In-
formation Sources. In: Proc. of the 100th Anniversary Meeting of the Information
Processing Society of Japan (IPSJ), Tokyo, Japan, pp. 7–18 (1994)

17. Deutsch, A., Tannen, V.: XML queries and constraints, containment and reformu-
lation. Theoretical Comput. Sci. 336(1), 57–87 (2005)

18. Fagin, R.: Inverting schema mappings. ACM Transactions on Database Systems
(TODS) 32(4), 25 (2007)

19. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data Exchange: Semantics and
Query Answering. Theoretical Comput. Sci. 336(1), 89–124 (2005)

20. Fagin, R., Kolaitis, P.G., Nash, A., Popa, L.: Towards a theory of schema-mapping
optimization. In: Proceedings of the ACM Symposium on Principles of Database
Systems (PODS), pp. 33–42 (2008)

21. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.: Composing schema mappings:
Second-order dependencies to the rescue. ACM Transactions on Database Systems
(TODS) 30(4), 994–1055 (2005)

Clio: Schema Mapping Creation and Data Exchange 235

22. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.-C.: Quasi-inverses of schema mappings.
ACM Transactions on Database Systems (TODS) 33(2), 1–52 (2008)

23. Franklin, M.J., Halevy, A.Y., Maier, D.: From databases to dataspaces: a new
abstraction for information management. SIGMOD Record 34(4), 27–33 (2005)

24. Fuxman, A., Hernández, M.A., Ho, H., Miller, R.J., Papotti, P., Popa, L.: Nested
Mappings: Schema Mapping Reloaded. In: Proceedings of the International Con-
ference on Very Large Data Bases (VLDB), pp. 67–78 (2006)

25. Fuxman, A., Kolaitis, P.G., Miller, R., Tan, W.-C.: Peer Data Exchange. ACM
Transactions on Database Systems (TODS) 31(4), 1454–1498 (2006)

26. Haas, L.: Beauty and the beast: The theory and practice of information integra-
tion. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 28–43.
Springer, Heidelberg (2006)

27. Haas, L.M., Hernández, M.A., Ho, H., Popa, L., Tork Roth, M.: Clio grows up:
From research prototype to industrial tool. In: ACM SIGMOD Conference, pp.
805–810 (2005)

28. Halevy, A.Y., Ives, Z.G., Madhavan, J., Mork, P., Suciu, D., Tatarinov, I.: The
piazza peer data management system. IEEE Transactions On Knowledge and Data
Engineering 16(7), 787–798 (2004)

29. Hernández, M.A., Papotti, P., Tan, W.-C.: Data exchange with data-metadata
translations. Proceedings of the VLDB Endowment 1(1), 260–273 (2008)

30. Hull, R., Yoshikawa, M.: ILOG: Declarative Creation and Manipulation of Object
Identifiers. In: Proceedings of the International Conference on Very Large Data
Bases (VLDB), pp. 455–468 (1990)

31. Jiang, H., Ho, H., Popa, L., Han, W.-S.: Mapping-driven XML transformation. In:
Proceedings of the International WWW Conference, pp. 1063–1072 (2007)

32. Jiang, L., Borgida, A., Mylopoulos, J.: Towards a compositional semantic account
of data quality attributes. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER
2008. LNCS, vol. 5231, pp. 55–68. Springer, Heidelberg (2008)

33. Lenzerini, M.: Data Integration: A Theoretical Perspective. In: Proceedings of the
ACM Symposium on Principles of Database Systems (PODS), pp. 233–246 (2002)

34. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying Heterogeneous Information
Sources Using Source Descriptions. In: Proceedings of the International Conference
on Very Large Data Bases (VLDB), pp. 251–262 (1996)

35. Madhavan, J., Halevy, A.Y.: Composing Mappings Among Data Sources. In: Pro-
ceedings of the International Conference on Very Large Data Bases (VLDB), pp.
572–583 (2003)

36. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing Implications of Data Dependencies.
ACM Transactions on Database Systems (TODS) 4(4), 455–469 (1979)

37. Melnik, S., Bernstein, P.A., Halevy, A., Rahm, E.: Applying model management
to executable mappings. In: ACM SIGMOD Conference, pp. 167–178 (2005)

38. Miller, R.J., Haas, L.M., Hernández, M.: Schema Mapping as Query Discovery. In:
Proceedings of the International Conference on Very Large Data Bases (VLDB),
pp. 77–88 (2000)

39. Milo, T., Zohar, S.: Using Schema Matching to Simplify Heterogeneous Data Trans-
lation. In: Proceedings of the International Conference on Very Large Data Bases
(VLDB), pp. 122–133 (1998)

40. Nash, A., Bernstein, P.A., Melnik, S.: Composition of mappings given by embedded
dependencies. In: Proceedings of the ACM Symposium on Principles of Database
Systems (PODS), pp. 172–183 (2005)

236 R. Fagin et al.

41. Papakonstantinou, Y., Abiteboul, S., Garcia-Molina, H.: Object fusion in mediator
systems. In: Proceedings of the International Conference on Very Large Data Bases
(VLDB), pp. 413–424 (1996)

42. Popa, L., Tannen, V.: An Equational Chase for Path-Conjunctive Queries, Con-
straints, and Views. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540,
pp. 39–57. Springer, Heidelberg (1998)

43. Popa, L., Velegrakis, Y., Miller, R.J., Hernández, M.A., Fagin, R.: Translating Web
Data. In: Proceedings of the International Conference on Very Large Data Bases
(VLDB), pp. 598–609 (2002)

44. Raffio, A., Braga, D., Ceri, S., Papotti, P., Hernández, M.A.: Clip: a Visual Lan-
guage for Explicit Schema Mappings. In: Proceedings of International Conference
on Data Engineering (ICDE), pp. 30–39 (2008)

45. Salles, M.A.V., Dittrich, J.-P., Karakashian, S.K., Girard, O.R., Blunschi, L.:
iTrails: Pay-as-you-go information integration in dataspaces. In: Proceedings of the
International Conference on Very Large Data Bases (VLDB), pp. 663–674 (2007)

46. Shu, N.C., Housel, B.C., Lum, V.Y.: Convert: A high level translation definition
language for data conversion. Commun. ACM 18(10), 557–567 (1975)

47. Shu, N.C., Housel, B.C., Taylor, R.W., Ghosh, S.P., Lum, V.Y.: EXPRESS: A
Data EXtraction, Processing and REstructuring System. ACM Transactions on
Database Systems (TODS) 2(2), 134–174 (1977)

48. Velegrakis, Y.: Managing Schema Mappings in Highly Heterogeneous Environ-
ments. PhD thesis, Department of Computer Science, University of Toronto (2004)

49. Velegrakis, Y., Miller, R.J., Popa, L.: On Preserving Mapping Consistency under
Schema Changes. International Journal on Very Large Data Bases 13(3), 274–293
(2004)

50. Wyss, C.M., Robertson, E.L.: Relational languages for metadata integration. ACM
Transactions on Database Systems (TODS) 30(2), 624–660 (2005)

51. Yan, L.-L., Miller, R.J., Haas, L., Fagin, R.: Data-Driven Understanding and Re-
finement of Schema Mappings. ACM SIGMOD Conference 30(2), 485–496 (2001)

52. Yu, C., Popa, L.: Constraint-Based XML Query Rewriting For Data Integration.
ACM SIGMOD Conference 33(2), 371–382 (2004)

	Clio: Schema Mapping Creation and Data Exchange
	Introduction
	Schema Mapping
	Implementing Data Exchange

	A Motivating Example
	Schema Mapping Creation
	Query Generation for Data Exchange

	Mapping Language and Schema Constraints
	Schema Mapping
	Associations
	Mapping Generation

	Query Generation for Data Exchange
	Intuition: What Are the Challenges
	The Query Graph
	Generation of Transformation Queries

	Analysis
	Complexity and Termination of the Chase
	Characterization of Data Exchange

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

