
Top-k Item Identification on
Dynamic and Distributed Datasets

Alessio Guerrieri1, Alberto Montresor1, and Yannis Velegrakis1

University of Trento, via Sommarive 5, Trento (Italy)

Abstract. The problem of identifying the most frequent items across
multiple datasets has received considerable attention over the last few
years. When storage is a scarce resource, the topic is already a challenge;
yet, its complexity may be further exacerbated not only by the many in-
dependent data sources, but also by the dynamism of the data, i.e., the
fact that new items may appear and old ones disappear at any time. In
this work, we provide a novel approach to the problem by using an exist-
ing gossip-based algorithm for identifying the k most frequent items over
a distributed collection of datasets, in ways that deal with the dynamic
nature of the data. The algorithm has been thoroughly analyzed through
trace-based simulations and compared to state-of-the-art decentralized
solutions, showing better precision at reduced communication overhead.

1 Introduction

One of the classical problems in computer science is the development of efficient
algorithms to compute statistical functions over a dataset. Among these, identi-
fying the most frequent items has attracted considerable attention over the last
years. In particular, two challenging scenarios have been considered: very large
but static datasets [12] and continuous streams of data [15].

Recent advances in information and communication technology have dramat-
ically changed the computational landscape in which these problems are applied:
useful information is now often found across many physically distributed and in-
dependent sources. For retrieving the most frequent items, one needs to collect
and integrate information from multiple, dynamic datasets, posing challenges on
the computation of a global function over the data located at distant nodes.

Computing the most frequent items over a collection of dynamically changing
and independent data sets is part of the problem of continuous distributed mon-
itoring [9]. This problem finds application in many different scenarios, such as
computing the popularity of topics in social services like Twitter and Facebook,
discovering global security attacks in communication networks, or identifying
popular web pages for ranking search results.

The straightforward solution to this problem is to send all the information
to a central node, which can in turn compute the statistics. As this approach
is impractical for very large and dynamic datasets, a number of variations to
this idea have been proposed aiming to reduce both the traffic and the load on

the central node. One approach is to perform periodic polling or more sophisti-
cated random sampling [20] instead of continuous monitoring. Since the interest
is only on the k most popular elements, one can send information only when the
local set of top-k items changes, or when there is a number of changes above
a threshold [11]. An intermediate solution tries to predict the interesting items
and communicate them to the central node, using either knowledge of the data
distribution [5], entropy statistics [3] or sketches as a form of a compact data rep-
resentation [10]. This centralized approach can be applied when this information
must be gathered in a single location to use it as a reference when needed.

However, using a central node may not be preferable in all applications.
Individual sources may not be willing to send all their information to a central
node and allow it to acquire a global view of the entire system that goes well
beyond the original goal – identifying the most frequent items. If the number of
sources is really large, the central node may become a serious bottleneck, not
only in terms of communication but also in terms of computation. Finally, in
a highly distributed environment, individual sources may need to have always
available the information that the central node has computed and use it for their
own purposes.

We advocate here a completely decentralized approach for computing the top-
k most frequent items in a large collection of independent dynamically changing
datasets, based on the idea of gossip-based protocols for information propaga-
tion [13]. Intuitively, each source has an estimate of what are the most frequent
items globally. Initially, the only information a source has is the set of local
frequencies. Periodically, each source performs a random gossip exchange with
another source, sending and receiving their current estimates. Both sources then
update their estimates using the old local estimate and the estimate received
from the other source. This process is repeated until the estimates converge to
the actual top-k items.

This idea has been recently applied to the identification of top-k items [19] in
a collection of static datasets. The algorithm in [19] is shown to be very efficient,
converging to the correct top-k items in a logarithmic time with respect to
the size of the network. In this work we push this technique even further, by
considering dynamic datasets where new items may be added – while existing
items may be removed – at any time.

The contributions of this work are the following: (i) we formally define the
problem of computing the top-k most frequent items in a distributed, dynamic
environment (Section 2); (ii) we extend the algorithm presented in [19] by con-
sidering the case in which the collection of data is not fixed but varies over
time (Section 3); (iii) we prove that our novel algorithm converges with very
high probability despite the modifications to the original one (Section 4); (iv)
we experimentally test our solution on trace-driven datasets, showing that, even
without a central node, our approach manages to achieve a very good precision
at the expense of a communication overhead which is shared among all sources
(Section 5). We conclude the paper by analyzing related work (Section 6) and
summarizing our results (Section 7).

2 Problem Statement

We consider a finite collection P of networked nodes. Each node can communi-
cate – if it chooses to do so – with any other node in P, provided they know
its identifier; process identifiers may be obtained either through a static list, or
through a peer sampling service [14]. We consider a universe I of items, a time
domain T and a function F : P × I × T → N, referred to as the local frequency
of an item i ∈ I in a node p ∈ P at a time t ∈ T , and denoted as F t

p(i) for
brevity. Intuitively, the function represents the number of times an item has been
observed in a node until a specific moment.

We define the global frequency of an item i at a time t, denoted as F t(i), to
be the cumulative frequency in all the nodes, i.e.,

F t(i) =
∑
p∈P

F t
p(i)

We are interested in finding the k most frequent items across the whole node
network. Let itk denote the k-th item in the sequence of all the items in the node
network sorted in decreasing order of global frequency at the time t. The set we
are interested in is the set MF t ⊆ I of the items with global frequency more
than or equal to F t(itk), i.e.,

MF t = {i | i ∈ I ∧ F t(i) ≥ F t(itk)}

Note that the cardinality of MF t may be larger than k since there may be
several items with the same global frequency as itk.

We consider two different cases of the problem. In the first we assume that
the frequency of the items can only increase in time. This finds application in
scenarios where one is interested in the number of times the items have appeared
in the nodes since the beginning of the operation of the system. We refer to this
case as the streaming scenario. In the second case, we are interested in counting
the appearances of items within a recent time window. This applies in scenarios
where one needs to ignore appearances of items that have occurred long time
ago and take into consideration only the recent appearances. This means that
the function F for an item may increase or decrease in time. We refer to this
case as the sliding window scenario.

3 Gossip-based top-k discovery

Since we assume no centralized authority or node with global knowledge, we
would like every node of the network to be able to provide an answer to the top-
k problem. Each node will estimate the average global frequency, i.e. the global
frequency of an item divided by the network size; given that the network size is
constant, this estimate can be used instead of global frequency to compute the
top-k set.

We adopt a solution that is based on a gossip-based aggregation protocol [13],
where the local knowledge of a node is expanded with knowledge collected from

Algorithm 1: Gossip algorithm executed by node p
Data: Nodes P,int k, int sleep, int s, int ∆round

Map estp ← ∅
Set old ← ∅
int rounds ← 0

function main()
repeat every ∆round time units

rounds ← rounds + 1
if extractTop(estp, k) 6= old then

rounds ← 0
old ← extractTop(estp, k)

if rounds ≤ sleep then
Node q ← random(P)
send 〈request, extractTop(estp, s)〉 to q

upon receive 〈request,Map estq〉 from q do
Map ∆← ∅
foreach i ∈ estq do

∆[i]← 1
2
(estp[i]− estq[i])

estp[i]← estp[i]−∆[i]

send 〈reply,∆〉 to q

upon receive 〈reply,Map ∆〉 do
foreach i ∈ ∆ do

estp[i]← estp[i] +∆[i]

function modifyLocalFrequency(Item i, int δFp(i))
estp[i]← estp[i] + δFp(i)

function updateWindow(list activeItems)
cutoff ← currentTime− windowSize
while activeItems.head().timestamp < cutoff do

modifyLocalFrequency(activeItems.head().timestamp,−1)
activeItems.removeHead()

other nodes in the network. The nodes try to estimate the average global fre-
quency of each item by updating any local estimate they may have to reflect
also the estimates of the other nodes. If this is repeated continuously in a gossip
fashion, then the information about the frequency of the most frequent items is
epidemically propagated to all the nodes in the system. Previous work [19] has
shown that not only this approach makes the frequencies of the various items
in the individual nodes to converge to the true average global frequencies of the
respective items, but also that they do so at an exponential rate [13].

The results of previous works [13,19] are based on the assumption that the
local frequencies are not changing, i.e., that the input remain static while the

gossip algorithm is applied. We are interested in the case in which the local fre-
quencies of the items are continuously changing, making the global frequencies
continuously increase (in the case of the streaming scenario) or continuously fluc-
tuate (in the case of the sliding window scenario). Our gossip-based algorithm
is an extension of the one for the static case [19]. It propagates the changes that
occur in a distributed fashion all over the network, using the parallel partici-
pation of the nodes to obtain a very good approximation of the average global
frequencies.

The algorithm is shown in Algorithm 1. Each node p maintains a map struc-
ture estp : I → R that represents p’s estimate for the average global frequency
of each item i, i.e., an estimate for the value F t(i)/|P|. Since |P| is constant,
the top-k items in the map structure should coincide with the top-k among the
estimated global frequencies. The node does not need to keep the local frequen-
cies of the items in a different structure from the estimates. Whenever there is
a change in the local frequency of an item, it is enough to record it in estp by
changing the estimate for the respective item accordingly. This is implemented
by calling the function modifyLocalFrequency and providing to it the item and
the change in its local frequency. Furthermore, we consider a function extractTop
that given a map structure M and a number s, returns a new map structure
with only the entries of M with a frequency in the top s values.

Each node p works in periodic rounds, during which it may initiate a gos-
sip exchange with a random node q. A gossip exchange consists of a request
message sent from p to q, followed by a reply message sent by q to p. In the re-
quest message, the node p includes the s ≥ k items from estp with the s highest
frequencies, alongside their estimated frequencies. Sending more than k items in
the request results in faster convergence; this is a trade-off, however, as higher
values of s result in larger communication costs.

When the request is received by node q, q updates its own estimates by
subtracting ∆[i] = 1

2 (estq[i] − estp[i]) from the estimate estq[i] of every item i
that the received message contained. It then responds to the request by sending
a reply message to p containing a map with the value ∆[i] of every item i whose
estimate frequency was modified. Upon receipt of the response from q, for every
item i for which the value ∆[i] is contained in the response message, the value
estp is updated to the value estp +∆[i]. As a result, when the gossip exchange
between the two nodes is completed, both nodes will have their estimates for the
top-k items of p, updated to the average of the values that these two nodes had
before the gossip.

estq[i]← estq[i]−∆[i] =
1

2
(estq[i] + estp[i])

estp[i]← estp[i] +∆[i] =
1

2
(estq[i] + estp[i])

In other words, a gossip exchange between any two nodes p and q substitutes
the old values estp[i] and estq[i] with their average 1

2 (estq[i] + estp[i]).
Since it is possible that the global top-k items remain unchanged for poten-

tially long periods, our algorithm communicates only when nodes observe varia-

tions in their current top-k lists, thus using fewer messages and bandwidth. We
allow our nodes to be in one of two different states: active or dormant. Active
nodes periodically initiate gossip exchanges with other nodes. Dormants only
participate in exchanges initiated by other nodes. An active node becomes dor-
mant when the last sleep number of exchanges have not changed its set of top-k
items. A dormant node becomes active again whenever a variation in the set of
top-k items occurs, either because of information received from other nodes, or
because of variations in the local frequencies. The above approach ensures that
the number of exchanges is reduced whenever there are no important changes,
but can automatically and rapidly increase when needed.

For the case of a sliding window scenario each node keeps in a list the sequence
of items it has received. When the topmost item in the list is out of the window,
it is removed from the queue and its frequency in the local frequency table is
decreased by 1. The sum of the local frequencies for that item is thus kept equal
to the number of its active instances in the network. If this approach requires
too much memory, we can divide the window into smaller time chunks and keep,
for each of these chunks, the frequencies of all items the node has received in
that time chunk. The window will not move continuously, but in chunk-steps:
each time a chunk has become obsolete all its contents will be thrown away.
In our experiments we assume that each node has enough memory to store the
sequence of items it has received during the window and will update the local
frequency table every time an item has become obsolete.

4 Protocol convergence analysis

Previous work [19] has computed a probabilistic upper bound on the number
of rounds in the static case, showing that the convergence time grows loga-
rithmically with the network size. If we assume that the local frequencies of
the items do not change, then our problem is reduced to the case of [19].

 0

 1e-300

 1e-250

 1e-200

 1e-150

 1e-100

 1e-50

 1

 0 20 40 60 80 100 120 140

P
ro

b
a
b
ili

ty
 (

lo
g
s
c
a
le

)

Size of minority cluster

sleep=2
sleep=3
sleep=4
sleep=5

Fig. 1: Probability of convergence to a
wrong answer, with different values of
sleep (n = 1000).

In our case, the presence of the
sleep parameter plays an important
role. When the top-k of a node has not
changed for sleep consecutive rounds,
it will become dormant and will stop
initiating exchanges until either it
meets a node with a different top-k
set, or its local top-k changes because
of the arrival of new local data. The
introduction of the sleep parameter
creates the possibility, however low,
that part of the network might con-
verge to a wrong answer.

To study the probability of such a situation, we devised the following scenario.
Let C be the set of nodes containing a wrong top-k; furthermore, consider the

case where all top-k sets maintained by nodes in C are equal. Let n = |P| and
c = |C|. If, for sleep rounds of the protocol, nodes only contact nodes of their kind
(nodes in nodes in C only contact those in C, and those in P − C only contact
those in P − C), the entire network might become dormant before a common
answer is reached. The probability of this event to occur in a complete graph is
the following: (

c− 1

n− 1

)c·sleep

·
(
n− c− 1

n− 1

)(n−c)·sleep

As shown in Figure 1, the probability of the network becoming dormant
while a group of nodes still contain a wrong answer get exponentially small with
the size of the disagreeing group. Since nodes are also prone to exit from their
dormant state whenever the arrival of new data changes the composition of the
local top-k, we can conclude that the network will converge to the correct top-k
with very high probability.

5 Results

We performed extensive simulations of our algorithm using PeerSim [18], a peer-
to-peer simulator written in Java. If not stated otherwise, each experiment is
repeated 20 times.

Our objective is to design a protocol that identifies the items in MF t as
accurately as possible. Unfortunately, it is impossible to guarantee that the out-
put of our protocol corresponds exactly to MF t at each time t, because of the
delay occurring between the arrival of an item and the discovery of this fact by
all nodes in the network. We will therefore measure the quality of a proposed
protocol by checking for each node in the network, at each time t, the number of
items that appear both in its output and in MF t. We then compute the average
across the entire network and, when needed, average across all time instants to
get the average precision of the network across the entire experiment.
Evaluation framework We tested the algorithm on two different scenarios.
The wcup dataset contains timestamped URL requests to the 1998 World Cup
servers across 90 days, covering a timeframe starting from a month before the
first match to a few days after the final [4]. The last.fm dataset records the
playing history of users across an entire year on the Last.fm website, a music
discovery service that provides personalized recommendations based on the lis-
tening habits [1]. Our protocol computes the top-k most accessed pages in wcup
and the top-k most listened artists in last.fm. Each single data item is deliv-
ered to a node chosen uniformly at random. Different policies have been studied,
without any impact on the quality of the solution.

The distributions of the frequencies of our chosen datasets follow a power
law, the few top ranked items having very large frequency while all the many
lower ranked items have very small frequency. This property guarantees a certain
degree of separation between the top-k items and all the lesser frequent items.

Table 1 contains all the default parameters for the experiments listed in the
current section. In our experiments, the d nodes that form the neighbor set of
each node are chosen uniformly at random, property that could be achieved by
using a peer sampling protocol. The amount of data items s sent per round is
set to 2k. Such value has been experimentally valitated in a previous paper [19]
as a good compromise between convergence speed and bandwidth. Larger values
for s do not induce a very large improvement in convergence speed (and thus
precision), but have a much steeper cost in terms of message size.

N number of nodes in the network 100
d degree of nodes in the network 20
k number of most frequent items 40
s amount of data items per round per node 2k

∆round length of each round 1 hour
sleep sleeping factor 5
W size of the sliding window 1 day

Table 1: Default values of our parameters, where not explicitly stated otherwise

Streaming results We first analyze how does our algorithm behave in the
streaming model, when it has to compute the top-k over all the items that have
arrived since the start of the experiment. To measure precision, in each instant
t we compare the top-k of each node in that instant against the global top-k
computed using all data delivered from instant 0 to instant t.

 96

 96.5

 97

 97.5

 98

 98.5

 99

 99.5

 100

 100 200 300 400 500 600 700 800 900 1000

P
re

c
is

io
n
 (

%
)

Network Size

World Cup
Last.fm

Fig. 2: Algorithm precision using vari-
able network size

In Figure 2 we show the precision
of our algorithm against the size of the
network, using a round length of one
hour. The larger the system, the more
time is needed for information to reach
all nodes; consequently, a slightly lower
precision is obtained. Still, since an in-
crease from 100 to 1000 nodes causes a
decrease in just 0.5% in precision, the
algorithm remains highly scalable.

The sleep parameter is very influ-
ential in decreasing both the amount
of messages and the workload of each
node. Figure 3a shows that a small
value for sleep can decrease the amount of messages sent by a huge margin across
the entire experiment. Figure 3b instead shows that the highest the value for
sleep, the slower the nodes will become dormant. If sleep is too low, the nodes
will quickly become dormant and the algorithm will be slower to react to changes
to the global top-k. By choosing the value for this parameter it is possible to
achieve the desired trade-off between precision and bandwidth.

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20

M
e
s
s
a
g
e
s
 s

e
n
t
p
e
r

ro
u
n
d

Sleep parameter

WorldCup
Last.fm

(a) Average number of messages sent on
average by a single node per round against
sleep

 97

 97.5

 98

 98.5

 99

 99.5

 100

 100.5

 101

 0 5 10 15 20

P
re

c
is

io
n
 (

%
)

Sleep parameter

WorldCup
Last.fm

(b) Average precision across the entire ex-
periment against sleep

Fig. 3: Analysis of the sleep parameter in the two datasets.

Sliding window results This second group of experiments illustrate the per-
formance and behavior of our approach in a sliding window scenario, when each
occurrence of a data item is deleted afterW rounds have passed. We assume that
each node has enough memory to store all the local items that are still within
the time window and updates the local frequency table whenever one local item
expires.

Figure 4 shows how the algorithm behaves with a sliding window 1-day long.
By decreasing the round length of the protocol we can achieve almost perfect
precision while using low bandwidth. Since each node will send around 1KB of
data during each round, even with a round length of one minute the amount of
bandwidth used is extremely small.

Real world scenario Since the wcup dataset also contains the identification
number of the server that served each page request, we can test our algorithm
in a real world scenario by simulating the network of 20 servers that managed
the web site during the 1998 World Cup. Figure 5 shows the precision of our
algorithm when replicating the exact same setting, with a window length of 1
day and k equal to 40. Again, with a small round length the algorithm achieves
almost perfect precision.

Comparison To our knowledge, there are no other decentralized top-k algo-
rithm that work on sliding windows. We therefore compare our approach with
another decentralized top-k algorithm in the basic, streaming scenario.

In Figure 6 we compare our approach with the gossip-based decentralized
sampling approach in [16]. Since both approaches use gossip, it is possible to di-
rectly compare their performance by using the same round length and measuring
the amount of bandwidth used. Figure 6 shows that our approach obtains better
results using only a very small fraction of the bandwidth. When compared on
the last.fm dataset, the larger difference is caused by the larger dataset.

 75

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60 70

P
re

c
is

io
n
 (

%
)

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350

P
re

c
is

io
n
 (

%
)

Time (d)

Round = 1m
Round = 10m

Round = 1h

Fig. 4: Precision across time, using dif-
ferent window sizes (wcup on top,
last.fm on the bottom)

 90
 92
 94
 96
 98

 100

P
re

c
is

io
n
 (

%
)

Round = 1m

 90
 92
 94
 96
 98

 100

P
re

c
is

io
n
 (

%
)

Round = 10m

 90
 92
 94
 96
 98

 100

 0 10 20 30 40 50 60 70 80

P
re

c
is

io
n
 (

%
)

Time (d)

Round = 1h

Fig. 5: Precision in the realistic wcup
scenario with k = 40, using different
round lengths.

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n

 (
%

)

Time (d)

Our approach
 1x bandwidth

 10x bandwidth
100x bandwidth

(a) wcup dataset

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400

P
re

c
is

io
n

 (
%

)

Time (d)

Our approach
 10x bandwidth

100x bandwidth
1000x bandwidth

(b) last.fm dataset

Fig. 6: Comparison of our algorithm with the gossiping sampling approach

6 Related work

Finding the most frequent items is a classic problem with applications in many
different fields. According to the specific application and the properties of the
dataset, wildly different requirements need to be satisfied. In the most basic
case, where the dataset is stored in a single machine and the amount of memory
available is enough to store the frequencies of each item, the problem becomes
quite trivial. If the amount of memory is not large enough, the problem moves
into the streaming scenario. Theoretical work [2] proved that it is possible to
estimate items frequency to a constant factor in logarithmic space. The most
common approach is to define compressed data structures to store the approxi-
mated frequency of the interesting items, the items that may be part of the top-k
set. Among the many synopsis in the literature [12], the “count sketch” data
structure [7] allows a single pass algorithm that is able to compute an arbitrarily
close approximation of the top-k in logarithmic space. Other algorithms [8] can
also work in a sliding window scenario, by keeping track of both frequent items

and items that might become frequent in the future, with different degrees of
precision. These algorithm cannot be directly applied when the dataset itself is
distributed across different machines.

A common approach to the distributed computing of top-k sets is having a
number of slave nodes that analyze their data and a master node that collects
the partial findings and computes the final solution. The main drawbacks of this
approach are clear: the system has a single point of failure and may cause an
excessive amount of computation on the master node. Cao and Wang’s algo-
rithm [6] is an example of this type of solutions. Each slave computes its own
top-k, all of which are collected by the master node to compute a lower bound
on the frequency of the k-most frequent item. This information is given to the
slaves, that recompute their solution to include only those items that have lo-
cal frequencies above the threshold. Babcock and Olston’s approach [5] instead
computes a starting approximation of the top-k set in each slave node and in
the master node. The temporary solution is then sent back to each slave, that
starts analyzing the entirety of its data as it arrives. When a slave sees that its
own solution is “different enough” from the global solution, it sends an update to
the master node. It will be the master node’s job to then notify all slave nodes
if the global solution has changed.

One possible approach to avoid putting too much stress on the master node
is using an hierarchical structure. There still is a root node that computes the
final solution, but the costs of aggregation of temporary solution are spread
between all the inner nodes of the topology. The construction and maintenance
of the topology creates additional overhead on the system. Manjhi presents an
interesting algorithm [17] based on compressed synopsis. This data structure
offers an approximation of the frequencies of a datasets. Synopsises can be joined
together at the different level of the hierarchical topology to obtain in the root
node an estimate of the top-k set. This simple approach is then enhanced by the
idea of a precision gradient. The level of compression of the synopsis is not kept
constant in the system, but is adapted at each different level of the topology to
minimize the communication costs.

A completely decentralized algorithm is inherently more robust and should
guarantee better subdivision of work between the nodes. Lahiri and Tirtha-
pura [16] presented a gossip algorithm based on uniform random sampling. The
intuition behind this algorithm is that the top-k of a dataset should be similar
to a large enough random sampling of the dataset. The algorithm thus computes
a random sampling of all the data in the distributed system via repeated aggre-
gation. Since the entire sample must be sent around, the amount of data sent is
much bigger than in our algorithm.

7 Conclusions

In this work we have extended an existing approach to find the k most frequent
items across a distributed collection of datasets, without relying on a central node
that collects global knowledge about the data. The method we discussed is based

on a gossip protocol that allows local information in a node to be epidemically
propagated to other sources. The algorithm presented has special features to
deal with continuously changing data. Trace driven experiments illustrate that
despite the dynamic changes in the global frequencies, the system is able to react
quickly and provide a good approximation from any node of the network.

References

1. Last.fm. http: // www. lastfm. com .
2. N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the

frequency moments. In Proc. of STOC’96, pages 20–29. ACM, 1996.
3. C. Arackaparambil, J. Brody, and A. Chakrabarti. Functional monitoring without

monotonicity. In ICALP (1), pages 95–106, 2009.
4. M. Arlitt and T. Jin. 1998 World Cup web site access logs, Aug. 1998. Available

at http://www.acm.org/sigcomm/ITA/.
5. B. Babcock and C. Olston. Distributed top-k monitoring. In Proc. of SIGMOD’03,

pages 28–39, 2003.
6. P. Cao and Z. Wang. Efficient top-k query calculation in distributed networks. In

Proc. of PODC’04, pages 206–215. ACM, 2004.
7. M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data

streams. Theoretical Computer Science, 312(1):3–15, 2004.
8. Y. Chi, H. Wang, P. Yu, and R. Muntz. Moment: Maintaining closed frequent

itemsets over a stream sliding window. In Proc. of ICDM’04. IEEE, 2004.
9. G. Cormode. Continuous distributed monitoring: a short survey. In Proc. of

AlMoDEP’11, pages 1–10. ACM, 2011.
10. G. Cormode and M. N. Garofalakis. Sketching probabilistic data streams. In Proc.

of SIGMOD’07, pages 281–292, 2007.
11. G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for distributed functional

monitoring. ACM Transactions on Algorithms, 7(2):21, 2011.
12. P. B. Gibbons and Y. Matias. Synopsis data structures for massive data sets. In

External memory algorithms, pages 39–70. American Mathematical Society, 1999.
13. M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-based aggregation in large

dynamic networks. ACM TOCS, 23(3):219–252, 2005.
14. M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van Steen.

Gossip-based peer sampling. ACM TOCS, 25(3), Aug. 2007.
15. R. Karp, S. Shenker, and C. Papadimitriou. A simple algorithm for finding frequent

elements in streams and bags. ACM Trans. Database Syst., 28(1):51–55, Mar. 2003.
16. B. Lahiri and S. Tirthapura. Identifying frequent items in a network using gossip.

J. Parallel Distrib. Computing, 70(12):1241–1253, Dec. 2010.
17. A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding (recently)

frequent items in distributed data streams. In Proc. of ICDE’05. IEEE, 2005.
18. A. Montresor and M. Jelasity. PeerSim: A scalable P2P simulator. In Proc. of

P2P’09, pages 99–100, Sept. 2009.
19. J. Sacha and A. Montresor. Identifying frequent items in distributed data sets.

Computing, 95(4):289–307, 2013.
20. S. Tirthapura and D. P. Woodruff. Optimal random sampling from distributed

streams revisited. In Proc. of DISC’11, pages 283–297, 2011.

http://www.lastfm.com
http://www.acm.org/sigcomm/ITA/

	Top-k Item Identification onDynamic and Distributed Datasets

