
J Data Semant
DOI 10.1007/s13740-012-0015-8

ORIGINAL ARTICLE

On Generating Benchmark Data for Entity Matching

Ekaterini Ioannou · Nataliya Rassadko ·
Yannis Velegrakis

Received: 31 August 2011 / Revised: 14 October 2012 / Accepted: 25 October 2012
© Springer-Verlag Berlin Heidelberg 2012

Abstract Entity matching has been a fundamental task in
every major integration and data cleaning effort. It aims
at identifying whether two different pieces of informa-
tion are referring to the same real world object. It can
also form the basis of entity search by finding the enti-
ties in a repository that best match a user specification.
Despite the many different entity matching techniques that
have been developed over time, there is still no widely
accepted benchmark for evaluating and comparing them.
This paper introduces EMBench, a principled system for the
evaluation of entity matching systems. In contrast to existing
similar efforts, EMBench offers a unique test case generation
approach that combines different levels of types, complex-
ity, and scales, allowing a complete and accurate evaluation
of the different aspects of a matching system. After present-
ing the basic principles of EMBench and its functionality,
a comprehensive evaluation is performed on some existing
matching systems that showcases its discriminative power
in highlighting their capabilities and limitations. EMBench
has all the characteristics of a benchmark and can serve as a
standard evaluation methodology provided that it gains pop-
ularity and wide acceptance.

Keywords Data integration · Matching benchmark ·
Entity matching

E. Ioannou (B)
Technical University of Crete, Chania, Greece
e-mail: ioannou@softnet.tuc.gr

N. Rassadko · Y. Velegrakis
University of Trento, Trento, Italy
e-mail: rassadko@disi.unitn.it

Y. Velegrakis
e-mail: velgias@disi.unitn.eu

1 Introduction

A fundamental problem in every information integration and
data cleaning application is the ability to identify whether two
different data structures are modeling the same real world
object, i.e., an event, a location, a book, a conference, a per-
son, etc. The task is typically known as entity matching, but
is also found in the literature as record linkage, deduplication
[72], entity resolution [80], merge-purge [44], entity identifi-
cation [58], reference reconciliation [29], and entity linkage
[45,46]. What makes the task a challenge is the heterogene-
ity that naturally exists in the data because they have been
produced by different applications, because errors and
inconsistencies occur naturally in the data, or even because
the different data engineers that designed and developed
the respective systems did so having in mind different
requirements.

Matching has been used in many different aspects of data
management, such as ontology matching [40], and schema
matching [12]. Entity matching is a similar concept in which
the fundamental structure of the data model is an entity,
i.e., a structure that models a real world object. An entity
is different from schema structures, such as tuples or tables
whose design is often driven by performance or application
specific requirements. Due to this, they may only partially
describe a real world object or may represent a combina-
tion of more than one conceptually different objects in the
same structure, maybe in order to avoid costly operations
like joins. Furthermore, schemas describe the structures to
which a collection of data elements is supposed to conform,
while entities are the actual instances of these structures.
Entity matching is also different from ontology matching
since the ontology contains schema information, such as
classes, and isA relationships. Entity matching is what typi-
cally meant by the term instance matching, i.e., the matching

123

E. Ioannou et al.

at the individual (instance) level [60]. Entities have become
the fundamental structures in Semantic Web applications,
which has boosted the interest of the research and indus-
trial community on entity matching [25,47,79] for hetero-
geneous web data integration and for query answering. In
the latter, a structure describing the specifications set by a
user query is matched across the structures stored in a data-
base to identify those that best satisfy these specifications
[10,56,77]. Entity matching has also become important in
entity evolution [21], where the identification of similarities
across different data structures may signal that the two struc-
tures represent different phases of the lifespan of a single
entity [79].

Matching approaches are typically based on some simi-
larity function that measures syntactic and semantic prox-
imity of two structures. Depending on the results of this
comparison, it is decided whether the two structures are
matching or not. The similarity function may additionally
take into consideration auxiliary information, such as online
dictionaries, log files, co-reference, or other forms of exist-
ing knowledge. Apart from atomic similarity methods that
compare strings or sets of strings [23], other techniques that
have been proposed are collective matching [13,29], block-
ing [64,80], and solutions exploiting the schema structure in
general [35,40].

Unfortunately, despite the many different techniques for
entity matching, there is no evaluation methodology that is
widely accepted or used. Most matching techniques have
followed their own ad-hoc evaluation approach, tailored to
their own specific goals. Comparison among entity matching
systems and selection of the best system for a specific task
at hand is becoming a challenge. Developers cannot easily
test the new features of the products they develop against
competitors, practitioners cannot make informative choices
for the most suitable tool to use, and researchers can neither
compare the techniques they are developing against those
already existing, neither identify existing limitations that can
serve as potential research directions.

There have been efforts towards the creation of such an
evaluation methodology though. A large portion of these
efforts is based on the creation of test cases extracted from
real world situations. This has the advantage that the match-
ing system is tested against situations that are actually met in
practice, but suffers from three main limitations. The first is
that the extracted scenarios may have been created through
the convolution of more than one kind of heterogeneities to
a degree that it is not clear even to an expert user what these
heterogeneities are. Knowing that a system cannot support
such a scenario is not informative enough to pinpoint the
limitation of the under evaluation system, i.e., the kind of
heterogeneity it cannot handle. For this reason, it is impor-
tant for an evaluation methodology not only to report the
unsuccessful scenarios, but also the heterogeneity that each

such scenario was supposed to test. The second limitation is
that the testing scenarios are restrictive to only those that are
currently met in practice. Nowadays, we are all witnessing
an unprecedented rate of data generation, not only in terms
of size but also in terms of structural and semantic complex-
ity. As such, an evaluation methodology should be able to
create new test cases that may not be currently present in
existing data sets, yet are very likely to be found in the near
future through the integration or processing of the existing
datasets. The third limitation is that most of the test data
are static. The evaluation scenarios should include not only
cases of different heterogeneities, but also scenarios with
varying data sizes that can test how well the under evalua-
tion matching system can cope with data at different scales
[32].

In this paper, we present a principled, systematic, and con-
sistent evaluation framework for entity matching systems and
its implementation in a tool called EMBench. We have stud-
ied many practical situations and many existing test scenarios
of entity matching, such as those offered from OAEI [60],
the largest entity matching evaluation initiative nowadays,
but instead of taking these examples as they are, we have
analyzed them and identified the actual heterogeneities that
characterize them. For each such heterogeneity, we allow the
creation of a test case that evaluates whether and to what
degree a matching tool can successfully perform its task in
the present of the respective form of heterogeneity. The char-
acteristics of each test case are fully configurable through a
set of parameters controlling aspects like size, distribution,
and complexity. The way the test case generation is achieved
is by exploiting a large set of raw real world data we have
collected. The data are first combined to form an initial col-
lection of entities Io. Some heterogeneity of interest is then
injected into this collection, leading to a modified collection
Ih. A test case is formed by an entity eo selected from the
original collection Io, its heterogeneity injected form eh in
the collection Ih and the collection Ih itself. For the evalua-
tion, the matching system is provided with the collection Ih,
and asked to find the entity that best matches eo. If successful,
the entity eh will be returned. EMBench can generate mul-
tiple test cases to provide a complete understanding of the
capabilities and limitations of the under evaluation matching
system. EMBench is designed in a way that different met-
rics can be plugged in to measure the success rate of the
matching system from different points of view. After pre-
senting the different features of EMBench and explaining its
design principles, we illustrate how these features can be used
for designing and performing evaluations of entity matching
tools.

We need to emphasize here that this work is not an eval-
uation study and our goal is not to designate the best entity
matching tool. Different tools perform better in different sit-
uations, so there is clearly no single winner as many simi-

123

On Generating Benchmark Data for Entity Matching

lar efforts have already demonstrated [30,31,51,53,81]. Our
goal is to illustrate the way EMBench works and its powers
in highlighting the capabilities and limitations of the entity
matching systems. An effort similar to ours is the SWING
benchmark [37], however, the examples generated with this
approach for testing are not as diverse as ours, neither the user
has the flexibility and the control that our approach is offer-
ing. The extensively used OAEI initiative [60] on the other
hand, is still lacking the dynamism and scaling capabilities
of EMBench, but the ideas proposed here can be easily incor-
porated into OAEI and strengthening it in the entity matching
evaluation arena.

Note that our evaluation framework has all the characteris-
tics of a benchmark. It is based on the same design principles,
e.g., TPC-H1, or STBenchmark [2]. Yet, we avoid calling it
a benchmark since it is original work and is not yet standard-
ized. Doing so is something that is outside our control and
orthogonal to the purpose of this work. It is expected that
if widely adopted, it can become a standard or implemented
into one.

The main contributions of the paper can be summarized
as the designed and implementation of a system for bench-
marking entity matching systems in a generic, complete, and
principled way. The system provides a series of test cases
that cover the majority of the matching situations that are
met in practice and which the existing matching systems are
expected to support. In contrast to other similar proposals,
even in different areas, our system is fully configurable and
allows the dynamic (i.e., on-the-fly) generation of the dif-
ferent test cases in terms of different sizes and complexities
both at the schema and at the instance level. The fact that the
entity matching scenarios are created in a principled way,
allows the identification of the actual type of heterogeneities
that the under evaluation matching system does not support.
To illustrate the functionalities and capabilities of our system,
we use it to evaluate some known entity matching systems
and describe our experience.

The remainder of the paper is organized as follows. Sec-
tion 2 provides an overview of the related work and explains
how our proposal differs from similar efforts. Section 3 mod-
els formally the entity matching problem, and Sect. 4 dis-
cusses the requirements of an entity matching evaluation
framework. Section 5 defines formally what an evaluation
scenario is and presents the types of evaluation scenarios
we consider. Section 6 presents the implementation of the
evaluation framework. Section 7 discusses the usage of our
evaluation framework, and Sect. 8 reports the results of our
experimental evaluation on a number of different aspects.
The current work concludes with Sect. 9 that wraps-up the
main contributions and possible extensions.

1 http://tpch.org.

2 Related Work

2.1 Entity Matching

To better understand the aspects of matching system that a
benchmark should evaluate, it is important to understand the
way entity matching operates [26,32,38,39]. Entity matching
techniques can be grouped into five main categories.

The first category consists of those approaches that use
similarity techniques at the atomic level to decide how close
two structures are. They handle cases like “John D. Smith”
versus “J. D. Smith”, and “Transactions on Knowledge and
Data Engineering” versus “IEEE Trans. Knowl. Data Eng.”.
Differences in strings are a typical consequence of mis-
spellings or naming variations due to the use of abbrevia-
tions, acronyms, etc. Matching is performed by detecting the
resemblance between the text values found in the entities.
There are already interesting surveys that cover in details the
majority of these techniques [15,23].

The second category contains techniques that view enti-
ties as a set of atomic values. A classical example is a rela-
tional record representing an entity. To reduce the problem
into the one of comparing atomic values, two of the very first
techniques proposed in the area [22,52] concatenate all the
atomic values of each entity into one string which is then used
in atomic value comparisons as a representative of the entity.
The approaches proposed in [75] and [27] aim at matching
entities by discovering possible mappings from one entity to
another. More specifically, in [75], a mapping is found by
applying a collection of transformations, such as abbrevia-
tion, stemming, and the use of initials. For the same purpose,
Doan et al. [27] apply profilers, which are described as prede-
fined rules with knowledge about specific concepts. Profilers
are created from domain experts, are learned from training
data, or are constructed from external data.

The third category focuses on collective matching. Instead
of using the information from two entities only, the collec-
tive matching suggests the exploitation of the information
about the matched entities between two sets. As an exam-
ple, consider co-authorship in publications. By knowing that
a publication has α, β, and γ as authors, and another pub-
lication has β ′, and γ as authors, one can say with higher
confidence that β describes the same author as β ′. Such
information is captured by existing relationships between
entities. The approach in [4] uses dimensional hierarchies to
model the collection of entities, while the approaches intro-
duced in [13] and [50] use graphs. Ananthakrishna et al. [4]
exploit dimensional hierarchies to detect fuzzy duplicates in
dimensional tables. The hierarchies are built by following the
links between the data from one table to the data from other
tables. Entities are matched when the information across the
generated hierarchies is found similar. Another well-known
algorithm is the Reference Reconciliation [29] where one

123

http://tpch.org

E. Ioannou et al.

starts by identifying possible relationships between entities
by comparing their entity literals. The information encoded in
the matches between the literals is propagated to the rest of
the parent entities which in turn increases the confident for
the matching of the children. The approach introduced in [46]
models the data into a Bayesian network, and uses probabilis-
tic inference for computing the probabilities of entity matches
and for propagating the information between matches.

Blocking based methods form the fourth category. The
idea of blocking is that instead of comparing each entity
with all other entities, the entities are separated into blocks
and each entity is compared only with the entities inside
the same block. The challenge is to create blocks of entities
that are most likely to refer to the same real world objects.
Many techniques are typically associating each entity with a
value summarizing the values of selected attributes and then
operate exclusively on it. For instance, the canopy cluster-
ing [55] employs a string similarity metric for building high-
dimensional overlapping blocks, whereas the suffix arrays
approach [1] considers the suffixes of the block value. More
recent blocking methods focus not only on scaling the match-
ing process to large datasets, but also on capturing additional
issues related to entity matching. For instance, [62,64] inves-
tigate how to apply the blocking mechanism on heteroge-
neous semi-structured data with loose schema binding. They
introduced an attribute-agnostic mechanism for generating
the blocks and explained how efficiency can be improved
through scheduling the order of block processing and identi-
fying when to stop the processing. The approach introduced
in [80] processes iteratively blocks in order to use the results
of one block in the processing step of another block. The
idea of iteratively block processing was also studied in [67].
It provided a principled framework with message passing
algorithms for generating a global solution for the entity res-
olution over the complete collection.

The last category contains techniques that exploit schema
information. Entity matching highly overlaps with schema
[40] and ontology matching [35], yet it is not the same. In
schema matching, the goal is to identify correspondences
between attributes or structures of the schema that model the
same concept. This means that the correspondences gener-
ated by the schema matching task do not necessarily connect
entities. This is actually one of the main reasons why schema
matching is not enough for query answering or data exchange
and needs to be followed by a schema mapping task [36]. The
same applies also to ontology matching. Although ontologies
are much closer to the concept model of entities [73] than
schemas, an ontology may model additional concepts that
are not necessarily stand alone real world objects. An ontol-
ogy, for instance, may contain a vocabulary of concepts, or
some terminologies, and the results of an entity matching
task may be correspondences among attributes that simply
describe characteristics.

2.2 Benchmarking Data

[Static Datasets] A common approach that many match-
ing proposals have followed in order to evaluate their tech-
niques is to use some test dataset and measure the degree of
success of their system on it. Cora2 is one of these testing
datasets and was used for evaluating various algorithms, such
as [5,14,24,29,46,55,65]. The dataset contains 1,295 scien-
tific publications from the Cora Computer Science Research
Paper Engine, and more specifically it includes around 9,700
descriptions for 2,800 real world author entities. Accuracy
is typically measured in terms of precision and recall based
on the given mappings between the different author descrip-
tions. Since Cora is a small size dataset, it has not been used
for scalability experiments. Scientific publications are popu-
lar datasets for evaluating matching algorithms [49,50]. The
datasets are generated by capturing a fraction of the data from
an existing application, such as Citeseer3 or DBLP4. Other
types of datasets that have been used are products [7], such
as CDs or DVDs extracted from Yahoo! Shopping services,
travel data from various travel web sites, and movies [45]
extracted mainly from IMDB5. Another interesting kind of
scenarios [57] is those derived from Personal Information
Management (PIM) systems. There are examples with data
describing up to 3,000 people [29,46]. Other well known
collection is the one provided by the University of Texas6.
Unfortunately, this pluralism of datasets is naturally leading
to a number of issues related to the repeatability of the exper-
imental evaluation and the direct comparison among match-
ing systems, unless the exact datasets that were used in the
evaluation are available and applicable to other systems, and
there is a common agreement on the steps to follow for the
evaluation procedure.

Having in mind this limitation, among others, the OAEI
[60] initiative has been founded. It is a global effort of eval-
uation campaigns from many researchers in the ontology
matching community. In each campaign, a set of test cases
is provided to the participants that use their matching tools
to generate matching results and then report them back into
some specific format. Then, the results are evaluated based
on some metrics, which are typically the precision and recall.
The testing sets provided by OAEI are very rich and cover
many cases, yet, they are static, in the sense, that an evaluator
does not have the capability to create her own test cases.

[Benchmarking Systems] Several systems have been
developed to generate benchmarking data in many different
fields, with TPC-H query engine benchmark being probably

2 http://www.cs.umass.edu/~mccallum/data.html.
3 http://citeseer.ist.psu.edu/.
4 http://www.informatik.uni-trier.de/~ley/db/.
5 http://www.imdb.com/.
6 http://www.cs.utexas.edu/users/ml/riddle/data.html.

123

http://www.cs.umass.edu/~mccallum/data.html
http://citeseer.ist.psu.edu/
http://www.informatik.uni-trier.de/~ley/db/
http://www.imdb.com/
http://www.cs.utexas.edu/users/ml/riddle/data.html

On Generating Benchmark Data for Entity Matching

the most well known. In contrast to query answering engines
that benefit from the format semantics of the query language
in describing the expected correct answer, benchmarks on
schema, ontology and entity matching are more challeng-
ing since the semantics involved in the process may cause a
number of issues regarding what the actual correct answer is.
For this reasons, test cases in these benchmarks are coming
with some expected answer used as the ground truth. Eval-
uation techniques for schema mapping systems have been
studied and described in some of our own previous work in
books [6,17] and tutorials [18,42]. Furthermore, many of the
design principles of our benchmark are based on the design
principles of the TPC-H and STBenchmark [2,3] mapping
evaluation system that we have previously developed. For the
area of schema and ontology matching [74], there is already
a plethora of evaluation efforts [30,31,70,78,81] which can
serve as the basis for a benchmark. A comprehensive descrip-
tion of what such a benchmark should contain can be found in
a dedicated to the topic recently published book chapter [35].

[Synthetic Data Generation] The schema and ontology
matching systems operate on data that are mostly for the
schema level [34]. However, the entities, on which the entity
matching systems operate, are at the instance level, and, due
to the heterogeneity they have, they may not even conform
to some schema. Thus, it is important to be able to gen-
erate test data containing entities, i.e., instance level data.
As of 2009, the OAEI campaign included a special track on
instance matching. In this track, the participants were asked
to apply various transformations to over 4,000 individual
entities retrieved from Freebase, and to match around 10,000
RDF entities (i.e., people, organizations, locations) with data
integrated from different external sources, such as the New
York Times. The limitation of this approach is that the evalua-
tor does not have the ability to control the structure and format
of the entities that are created, rather she will have to accept
them the way they have been extracted from the sources. Our
evaluation framework, instead, generates the entities syn-
thetically, in which the evaluator has the flexibility to select
the attributes that she is wishing the generated entities to
have, their domains, and the distribution of the values of the
attributes within the generated dataset. This way, the evalua-
tor has the ability to test the under evaluation entity matching
systems in different situations that best fit those with which
the matching system is intended to be used in practice.

In schema matching, performance may not be a critical
factor since the schemas are typically small related to the size
of the instances. However, in entity matching that is mostly
about instances, performance is becoming an important fac-
tor, especially given the exponential growth on the size of the
data that we nowadays observe. As already explained, entity
matching may be used for run-time integration of web data,
or for query answering in an entity repository. Thus, the size
of the data will largely affect the entity matching task. For this

reason, evaluating the matching tools with data of different
sizes is of major importance in order to understand how they
scale in terms of time. In this context, the OAEI [33] instance
matching track has also this limitation since its dataset is prac-
tically static.7 Instead, in our tool, we have the possibility to
control the size of the dataset we generate. This is in line with
other benchmarks, such as TPC-H and STBenchmark [2], and
stress test tools, such as Siege8. The latter is an HTTP load
testing and benchmarking utility, but these are benchmarks
for application domains different to entity matching.

The only other work very close to ours that we are aware of
and is synthetically generating data for benchmarking entity
matching systems is the SWING system9 [37], which focuses
on providing an infrastructure for evaluation of semantic
technologies and has been used for evaluating the techniques
in the recent OAEI campaigns. Data acquisition is based on
retrieving data from existing linked data repositories that
are then transformed to serve as test data. Similar to our
approach, the designer specifies the transformation that needs
to take place and the system is then generating the trans-
formed data to serve for testing. One difference between
SWING and EMBench is that SWING is based on Descrip-
tion Logics, thus the expressive power of the transforma-
tion specification is the one of the Description Logics used.
Instead, our tool uses datalog extended with operation such
as aggregation and grouping. The second difference is that
SWING does not offer any control on the distribution of the
attribute values. In particular, the distributions of the values
in an attribute will typically follow the one in the sources,
and the distribution in the transformed data will depend only
on the original distribution and the transformation that was
applied to it. However, SWING, similar to us, offers the abil-
ity to create datasets of different sizes. In short, despite the
fact that the SWING design principles and goals are simi-
lar to EMBench, EMBench has more expressive power and
offers more flexibility in the specification of the testing data.
Finally, the LINQS group at the University of Maryland pro-
vides a data generation tool10 for entity matching but it is
aiming noisy references with co-occurrence relationships.

Very recently, the importance of dynamically generated
data for the OAEI was presented [71]. However, the method
was used to regenerate the dataset that OAEI is using for
testing (called Benchmark) and not to allow evaluators of
matching systems to tune at run-time the test cases and the
data they want to run. In that sense, although the specific
effort is heading towards the right direction, it is still gener-
ating a static dataset.

7 The dataset can be downloaded as is from the OAEI web site.
8 http://www.joedog.org/siege-home/.
9 http://code.google.com/p/swing-generator/wiki/
OntologyGenerator/.
10 http://www.cs.umd.edu/projects/linqs/projects/er/index.html.

123

http://www.joedog.org/siege-home/
http://code.google.com/p/swing-generator/wiki/OntologyGenerator/
http://code.google.com/p/swing-generator/wiki/OntologyGenerator/
http://www.cs.umd.edu/projects/linqs/projects/er/index.html

E. Ioannou et al.

Entity e Entity e Entity e
name: Albert name: Marie name: Pierre

surname: Einstein surname: Skłodowska-Curie surname: Curie
fields: Physics nationality: Polish nationality: French

advisor: Alfred Kleiner award: Nobel Prize in Physics award: Nobel Prize in Physics
award: Nobel Prize in Physics award: Nobel Prize in Chemistry spouse: Marie Curie
award: Matteucci Medal institution: University of Paris fields: Physics
award: Max Planck Medal advisor: Henri Becquerel

Entity e Entity e New Entity e
name: A. name: Hans Albert name: Marie

surname: Einstein surname: Einstein surname: Curie
area: Physics award: Albert Einstein father: Nobel Prize in Physics

advisor: Alfred Kleiner
award: Nobel Prize in Physics

Fig. 1 A fraction of the entity collection of an entity system (entities e1, . . . , e5), and an entity en modeling the query given by a user

3 Entity Matching Systems

Our work is based on the concept model [25], a model that
is gaining popularity in many different areas, including the
Semantic Web [19] and dataspaces [28], and is reinforced
by the recent trends towards a Web of data [16,25,41,43].
Its basic data unit is the entity. An entity is a data artifact
that models a real world object. It consists of a unique iden-
tifier and a set of attributes. Each attribute has a name and
a value and describes some characteristic of the real world
object. The value of an attribute can be an atomic value or an
entity identifier. The latter allows the modeling of relation-
ships among entities.

More formally, we assume the existence of an infinite set
of entity identifiers O, an infinite set of names N , and an
infinite set of atomic values V .

Definition 1 An attribute is a pair 〈n, v〉, with n in N and
v ∈ V ∪ O. Attributes for which v in O are specifically
referred to as associations. Let A = N × {V ∪ O} be the
set of all the possible attributes. An entity is a tuple 〈id, A〉
where A ⊆ A is finite set of attributes, and idinO. The latter
is referred to as the entity identifier. The set of all possible
entities is denoted by E and a finite subset of it E ⊂ E that is
closed in terms of associations and contains no two entities
with the same identifier is an entity collection.

Since each entity in an entity collection is uniquely iden-
tified by its identifier, we will often use the terms entity and
entity identifier equivalently.

Note that an entity is an instance level artifact. It describes
some instance level structure and should not be confused with
schemas that describe the structure of a collection of objects.
The term “attribute” used in the entity definition is similar to
the term attribute used in instance objects in object oriented
databases, attributes of XML elements and properties of
RDF data.

Entity matching is the task of determining whether two
entities e1 and e2 can be linked one to the other to represent the
fact that they refer to the same real world object. If this is the
case, the two entities are said to match, denoted as e1 ≡ e2.
Deciding whether two entities match is a challenging task
mainly due to the heterogeneity that may be present among
them. Another reason is that different representations may be
used for the same fact or the same fact may be represented
in different forms. Entity matching systems are using the
degree of similarity of the two entities to guide their decision
on whether they match or not. For the similarity, they exploit
various techniques such as syntactic comparison, semantic
equivalence, lexical variations, etc. Using this information,
they compute a score that indicates their belief that the two
entities match.

An entity matching system is a system that given a collec-
tions of entities and an entity e, finds the entity in the collec-
tion that best matches the entity e or produces a ranked list
of entities based on the matching score with entity e. Entity
matching systems can be used for many different purposes.
One is deduplication, i.e., detecting in an entity collection
different representations of the same real world object and
merging these representations in one. To do so, the system
finds the matching score of each entity with every other entity
in the repository. It can then consider as matches those with
a score higher than a specific threshold, or produce a ranked
list of entity pairs in a decreasing order of their score and let
the end user decide how to use that information [45]. Another
application is to find structures in two different databases that
model the same real world object and use this information
for database merging or data exchange [18].

Example 1 Consider a repository containing an entity col-
lection, a portion of which is illustrated in Fig. 1 (ignore for
the moment the entity en) and assume that some deduplica-
tion process needs to be run on it. Considering first entity e1,
it computes the similarity score with all the other entities.

123

On Generating Benchmark Data for Entity Matching

As explained before, the similarity is not only structural but
also semantic, syntactic, or may involve any other form of
complex reasoning and auxiliary information support. In the
specific case, the system will see that entities e1 and e2 are dif-
ferent enough and will produce a low score for that pair, while
e1 and e4 are very similar since they have many attributes in
common and will assign to that pair a high score. Entity e1

is also similar to entity e5 but the similarity is not that high,
thus, a score less than the latter but higher than the first will be
produced. Having the scores, it may be decided that only the
score between e1 and e4 is high enough to indicate a duplicate
representation and perform a merge of the two entities e1 and
e4 into a single representation to eliminate the redundancy.

A third application of entity matching is query answering.
A user query is a list of specifications describing the desired
characteristics of the entity(ies) that the user is looking for
in the form of attribute name–value pairs. Of course, it is not
always sure that all these characteristics can be found in one
entity in the database. Given the fact that users may not have
a complete knowledge of the data in the database, or may not
be sure of what exactly they are looking for, their queries are
often under or over specified [8]. As such, an entity that only
partially satisfies the query conditions can be in the answer
set, with a score indicating the belief that the specific entity is
the one that the user is actually looking for. The answer set is
then a ranked list of entities in decreasing order based on the
computed score [9,11]. In some sense, this is based on the
foundations of information retrieval, where the user specifies
a set of keywords and the system returns the documents that
contain as many of these keywords as possible. Despite the
many similarities, entity matching cannot be handled as an
information retrieval problem. Documents are related to a
topic and the keywords are indications of what the topic is.
Attributes, on the other hand, cannot be handled as a flat
list of keywords. Each attribute has some specific semantic
(specified by the attribute name) and a role in specifying
the entity it belongs. This means that a different handling is
required.

To use entity matching for query answering, we need to be
able to reduce the query answering problem into it. The next
corollary states that this is possible and its proof explains
how.

Corollary 1 Approximate entity search is reduced to an
entity matching problem.

Proof Let I be an entity collection and s1, . . . , sn be a set
of specifications included in a query q given by the user. A
dummy entity en is created that contains an attribute ai for
each specification si , with i = 1, . . . , n. The entity is then
matched against the entities in the collection I generating a
ranked list of entities in decreasing order of their matching
score, which reflects the belief that they represent the same

real worlds entity as en , which actually means the belief that
the entities model the real world object the user is looking
for. Thus, the results of the entity matching can serve as an
answer to the user query.
�

Due to this equivalent representation of a query as an
entity, in the rest of the paper we may use the term entity
or entity request to refer to a user query. Note that this form
of query answering on entity systems is what is already in
place in the Syntice Semantic Search Engine [77] and various
other applications, e.g., [56].

Example 2 Consider a user posing the query {〈name,
“Marie”〉, 〈surname, “Curie”〉, 〈award, “Nobel Prize in
Physics”〉}. To answer this query the entity en indicated in
gray in Fig. 1 is created and matched against the entities
e1, . . . , e5 that are already in the system. The matching task
finds that entity e2, although not exactly the same as en ,
looks very similar to it and most likely represents the same
real world as the one en represents, thus, e2 gets the highest
matching score among the other entities already in the sys-
tem. Since en models the user requirements expressed in the
query, e2 is returned to the user as an answer.

4 Entity Matching Evaluation Requirements

A benchmark is defined as “a standardized problem set, or
tests that serve as a basis for evaluation or comparison11.”
Thus, a first step towards the creation of a benchmark for
entity matching systems is the creation of a series of test cases
that could be used to evaluate and compare the these systems.
To understand what these test cases should be, it is important
to carefully consider the matching task. According to the pre-
vious section, the matching of an entity towards a collection
of entities returns a ranked list of matches (or simply the top
one). When a matching is performed, the right (expected)
answer should be known in advance so that the results pro-
duced by the matching system can be evaluated based on how
successfully that expected answer was returned. Thus, a test
case for a matching system should consist of the input to be
provided to the matching tool and the ground truth, i.e., the
expected correct answer. If the right response is returned, it
means that the matching system is capable of dealing with
the heterogeneities that exists between the entities in the col-
lection and the entity that it was asked to match.

The more heterogeneities a matching system can success-
fully handle, the better. Hence, the set of test cases should be
rich enough to allow the evaluator of the matcher to under-
stand the heterogeneities the under entity matching system
can handle, and discriminate it from other similar matching
systems.

11 Merriam-Webster Dictionary

123

E. Ioannou et al.

Of course the test cases should also be correct, i.e., the
ground truth that is accompanying them should correctly
include the matching entities.

The set of test cases should have no redundancy. There is
no reason of having multiple tests for the same heterogeneity.
One is enough to identify whether the entity matching system
can successfully deal with it. On the other hand, the test cases
should be well-justified, meaning that no test case should be
present unless it is for testing some specific entity matching
situation.

Furthermore, the series of test cases should be as complete
as possible. Definitely, there are countless cases that may be
met in practice, and a system cannot cover them all. This is
the same like a good query language, which although cannot
cover all the possible queries that one may want to ask, it is
important that its expressive power is such that it covers the
majority of the queries of interest.

The test cases should allow the evaluator not only to realize
the heterogeneities that the matcher can handle, but also to
comprehend in what degree of heterogeneity this handling is
possible. Thus, it should be able to configure and scale up
the various test cases.

Finally, in order to be able to compare different systems,
it is natural to require that they are all tested on the same
test cases. This is not an issue if the test cases are static.
However, when the test cases are dynamically generated, it
is important that they are the same independently of the time
they were generated or the hardware that was used to generate
them, assuming of course that the configuration parameters,
if any, are the same. This guarantees a fair comparison among
entity matching systems that have been evaluated in different
architectures, at different times and by different persons. We
refer to this desired property as consistency.

5 Entity Matching Scenarios

To generate in a systematic way test cases with the properties
mentioned in the previous section, we introduce the notion
of a scenario. A scenario consists of some input to an entity
matching tool alongside the ground truth. Recall that given
a collection of entities, and an entity er, an entity matching
system can find the entity in the collection of entities that is
best matching er.

We have decided to keep the information in a scenario
to the minimum, i.e., not to include any additional meta-
information in order to increase the discriminating power of
our evaluation mechanism. Consider, for instance, a scenario
in which the best match for an entity er is requested among
the entities in a collection I . Let ec be one of the entities in
the collection with the attribute values of ec being synonyms
of the attribute values of er. Clearly ec is a good match for
er, and is the ground truth for the scenario. Assume that the
collection and the entity er are provided as input to two differ-

ent matching systems, one that has the ability to use WordNet
as auxiliary information and another that has not. The first
will successfully recognize the match, while the second will
not, indicating the higher capabilities of the first regarding
synonyms. If the synonym information had been provided as
part of the input, the second system would have been able to
exploit it and also successfully identify ec as a match.

Definition 2 An entity matching scenario is a tuple 〈I, er, ec〉
where I is an entity collection, er is an entity and ec in I
referred to as the ground truth. The scenario is said to be
successfully executed by an entity matching system if the
system returns the entity ec as a response when provided as
input the pair 〈I, er〉, i.e., returns ec as the best match of er

in the entity collection I .

To guarantee the correctness property of the scenarios we
consider, i.e., to make sure that the entities er and ec are
indeed representing the same real world object, we are creat-
ing the scenarios by starting with an entity collection, select
an entity, introduce some form of heterogeneity in the entity
collection and then test whether the entity matching system
can identify as the best match to the entity we had initially
selected, its modified version. Of course, we are not stopping
with one entity only but we do the above modification to a
large part of the entity collection. To implement the above
task, we introduce the notion of a modifier. A modifier is
a transformation function f |E → E , which is typically an
implementation of a certain form of heterogeneity. By apply-
ing a modifier on an entity e, we know for sure that e should
match f (e), and that any entity matching system that suc-
cessfully matches them, supports the type of heterogeneity
the modifier f introduced.

Driven by this, our proposal for generating an entity
matching scenario is to first generate an entity collection,
select one (or more entities), and consider it as an entity
request. Then apply a number of modifiers to the data such
that the structure of the entities is modified. Then consider as
an entity collection the modified one and as an answer to the
entity request the entity produced by applying the modifiers
on the one that was initially selected as an entity request.

Let Io be an entity collection of an entity system. A mod-
ified entity collection is a collection Im = f (Io). In other
words, the modified entity collection is the set of entities
generated if a modifier f is applied on the entities on Io.

This operation is denoted as Io
f→ Im. Note that we made

no assumption that the modifier f is a total function. This
means that there may be entities in Im that are exactly the
same as in Io. We say that an entity eo in Io is the origin of

the entity em ∈ Im, and denote it by eo
f→ em, if em= f (eo).

Since the result of a modifier is also an entity collection,
it can also be used as an input to another modifier. Thus,
a modified entity collection may be the result of a series of

123

On Generating Benchmark Data for Entity Matching

different modifiers applied on an original collection. The idea
of the origin of a modified entity is extended accordingly.

All the above lead to the following steps for generating an
entity matching scenario:

1. Consider an entity collection Io.
2. Select an entity er ∈ Io.
3. Select a series of modifiers f1, f2, . . . , fn .
4. Generate the modified entity collection using the modi-

fiers In = fn(fn−1(. . . f2(f1(Io)))).

5. Select the entity en ∈ In such that er
f1→ e1,

f2→ . . .
fn→ en .

6. Generate as a scenario the triple 〈Im, er, en〉.

As previously mentioned, not all the test cases can be
considered since they are infinite, but only those that have
some particular importance. Thus, we focus our attention
to those modifiers describing heterogeneities that are com-
monly used in practice and for which the research community
has expressed interest. To do so, we studied the related liter-
ature on schema matching [66], mapping [36], information
integration [54] investigated in many real applications, and
we studied various benchmarks from different areas, such
as TPC-H,12 XBenchMatch [31], and most importantly our
own STBenchmark [2]. From all these cases that we found in
our study, we selected a set in a way that we did not choose
the same heterogeneity twice, neither heterogeneity that is
not met in practice, and at the same time we tried not to
leave any common type of heterogeneity out. As a result, we
guarantee that out test scenarios have no redundancy, are all
well-justified, and are as complete as possible. Specifically,
the fact that we tried to include as many modifiers as possible
has also helped in boosting further the discriminating power
of our evaluation methodology.

To ensure that the scenarios are highly configurable, we
have identified for each scenario as many as possible critical
parameters that an evaluator may be interested in control-
ling and in the implementation, and although they have some
default values, we allow them to be modified. This applies
also to the creation of the original entity collection. To ensure
higher flexibility on the datasets and the scenarios we will
generate, we assume the existence of a set of domains D,
with each domain D ∈ D associated to a name n ∈ N ,
where N is an infinite set of names. The entity collection Io

is then created by considering a set of entities E such that
for each attribute (n, v) ∈ A of an entity 〈 id,A〉 ∈ E , the
v ∈ D and D ∈ D with n being the name of the domain
D. The values and the attribute names are selected randomly
through a random selection function, but according to some
distribution (explained in Sect. 6.2).

12 http://www.tpc.org/tpch/

Finally, to guarantee the consistency of the scenarios
generated dynamically by the system, since the generation
algorithms are deterministic, we have to make sure that any
random selection will generate the same random sequence if
run on different machines and/or at different times, provided
of course that the configuration parameters are the same. This
is achieved in the implementation by using random genera-
tion functions that are known to generate the same random
sequence (given the same seed).

5.1 Entity Modifiers

For the heterogeneities we have identified in our study, we
have created the respective modifiers. We present next the
types of heterogeneities that the modifiers implement.

A. Syntactic Variations. This category includes varia-
tions in the syntax of the actual value of an attribute or the
attribute name. They are a consequence of the different ways
that a value can be written in real life, without any alteration
of its meaning, or a result of human errors. In particular, the
category includes:

1. Misspellings. A common situation met in practice, espe-
cially when humans have manually entered the data, for
instance, in the case of web forms.

2. Word permutations. When a value consists of more than
one words and the order of the words is not critical for the
meaning of the value, the words can be found in different
order. A classical example is the last/first name values,
e.g., “Barack Obama” versus “Obama Barack”.

3. Aliases and Different Standards. Different standards in
the way values are represented, is causing this large
group of variations. For instance, “George Bush” versus
“George W. Bush”, or “2005 - 30 Charles Str.” versus
“30 Charles Str., Apt 2005”.

4. Acronyms, Initials, and Abbreviations. The modern user
is overwhelmed with information both in his professional
and in his private life. Acronyms, initials, and abbre-
viations are a convenient mechanism to speed up the
data communication process. The examples are count-
less. Conference names are a classical one, e.g., “ISWC”
instead of “International Semantic Web Conference”.

5. Homonymity. A very different problem is this of
homonymy. An attribute may have the same name or
value but this does not necessarily mean that they are
the same. Thus, in entity matching, the system should be
able to see through these similarities and distinguish the
two entities. As an example, drawn from DBLP, there are
many authors with an identical name, and the available
attributes about the authors in DBLP are not enough to
distinguish between then. Often, exploiting their collabo-

123

http://www.tpc.org/tpch/

E. Ioannou et al.

ration network is an alternative that would allow their dis-
junction (i.e., collective matching, discussed in Sect. 2.1).

B. Structural Variations. Variations may also exist
among the attributes of the entity. This makes two entities
that represent the same real world object to vary significantly.
Reasons for variations are:

1. Use of multiple attributes. Some entities may use a set of
attributes to describe some information while others use
one attribute. Classical examples are the human names,
that may be split into first name and last name, or may
not, and the addresses that may be stored as one string, or
may have the street, city, zip and country code as separate
attributes.

2. Missing values. In certain cases, the users may want to
specify that an entity has some characteristic but the value
of this characteristic is not known or important, and vice-
versa. This is usually done by having attributes with no
value or no name. For instance, one may know that an
entity representing a person has a husband attribute, but
is not known who that husband is. Similarly, we may
know that a person John is related to a person Mary, but
the exactly relationship is not known. In that case, the
entities representing the two persons will be associated
through an attribute (on John) that has a value (Mary) but
no name.

3. Underspecified entities. Due to lack of information or any
other reason, certain entities may have very few attributes
to a point that it is hard to identify them, since they have
no attributes to satisfy the entity request attributes.

4. Overspecified entities. In entity matching, it is important
to choose the entity that best matches the expectations as
described in the entity request given by the user. How-
ever, it may be the case that more than one entity satisfy
the request conditions, maybe all of them. In this case,
the entity matching technique should be able to choose
the entity that most likely is the one that the user is look-
ing for.

C. Semantic Variations. Even if the values of the
attributes are the same, their meaning may not be. This is
happening because the same word is often used to repre-
sent different things. The same applies in the opposite direc-
tion. Different words may represent the same concept. More
specifically, we consider the following:

1. Synonyms. Synonyms are inherently present in every text.
The size and popularity of WordNet13 is a clear testimony
of the pervasiveness of synonyms in real life.

13 http://wordnet.princeton.edu

2. Multilingualism. The globalization has reached unprece-
dented levels and people of different cultures and lan-
guages are often required to collaborate or communicate.
Unavoidably, their backgrounds leads to the use of differ-
ent words (i.e., from different languages) for describing
the same thing [76]. For example, it is not rare the case
of finding some product over the Internet where part of
the vendors describe its color as “black” while others as
“noir”.

D. Evolution of entities. Entities do not remain static in
general. They do evolve. The evolution may involve changes
in their attribute values, elimination of attributes, addition of
new attributes, etc. As explained in [61,63], Web 2.0. appli-
cations especially focus on enabling and encouraging users
to constantly contribute and to modify existing content. An
analysis of DBPedia revealed that the data describing the enti-
ties were modified in time, with only some of the data remain-
ing the same. Furthermore, they may also split or merge with
other, a form of semantic evolution [69].

E. Association Network Variance. Entities are connected
to each other forming a network of associations. To identify
(and distinguish) one entity from another, their network plays
an important role. There are already numerous studies of this
kind [29,46,49].

When this method is used simply as described, it will not
take into consideration real world knowledge. This means
that algorithms that take real world knowledge into consid-
eration will not have a special advantage when compared
with the goal of testing other features. However, when the
evaluator wants to test how a matching algorithm performs
with respect to real world knowledge, she has the ability to
do so by adjusting the entity generation rules accordingly.

6 The EMBench System

We have built a system, called EMBench, that implements
the ideas of the previous section. It accepts as an input a set
of configuration parameters and generates a series of test-
cases for evaluating an entity matching system. The general
architecture of the system is illustrated in Fig. 2. It consists
of three main components: (i) a data repository to be used
in the construction of the entity collections of the scenarios,
alongside the components (called shredders) that populate
this repository from various sources of known importance
and quality; (ii) an entity generation engine that composes
the data in the repositories to formulate an entity collection;
(iii) a set of modifiers that modify in various ways the data
in the entity collection and construct a new entity collection
with a high degree of heterogeneity.

123

http://wordnet.princeton.edu

On Generating Benchmark Data for Entity Matching

Column Tables
Disease 4,003 Company 96,609
Software 7,768 Band 2,888
Film 52,979 FeminineName 49,350
Mountain 9,811 MasculineName 74,161
Song 110,434 Surname 325,809
University 11,817 Newspaper 3,338
Derived Tables
FirstName = $FeminineName
FirstName = $MasculineName
Name = $FirstName + “ ” + $Surname

Fig. 2 The general architecture of EMBench alongside the flow of the data among the various components (left), and part of the data in the column
tables alongside some derived table definitions as found in its current implementation (right)

6.1 Repository

The first part of EMBench is the part dealing with the col-
lection of the data. We do not want the synthetic data we are
generating to be completely random strings but we want them
to be real world values. For this reason, we have introduce the
so called shredders. A shredder is a software component that
takes a database (i.e., relational, XML) and shreds it into a
series of column tables. There are general purpose shredders
for relational or XML databases, but there are also shred-
ders specifically designed for many popular database that are
freely available, like Wikipedia14, DBPedia15, Amazon16,
IMdb17, DBLP18, OKKAM19 and Lyrics. The evaluator has
the ability to select what databases to be shredded, and add
additional databases if desired by supplying the respective
shredder, or by using the general purpose that comes with
the system. The outcome of the shredding process is a set
of column tables that are actually representing the attribute
domains (ref. Sect. 5).

The column tables may have repetitive, overlapping, or
complementary information, thus, there is a need for some
cleaning or management. For instance, it is possible that two
different sources have city names information. Through the
different shredders, they will end up into the creation and
population of two different column tables. However, it is
desired that we have only one domain for city names, thus, it
is desired that these two column tables be merged (union) into
one. This will also eliminate duplicate values that may exist
among them. It is also possible that the values of one column
table are separated into different tables, e.g., in the case of the
name that is stored as a concatenation of the first and the last,
one may want to extract the first name into one new column
table and the last name into another. To deal with these issues,

14 http://www.wikipedia.org/
15 http://dbpedia.org/About
16 http://www.amazon.com/
17 http://www.imdb.com/
18 http://www.informatik.uni-trier.de/~ley/db/
19 http://www.okkam.org/

EMBench is equipped with a set of predefined rules that can
be further extended by the user. These rules specify how the
values of the column tables are to be combined together or
modified and guide the creation of a new set of column tables,
referred to as the derived column tables. Note that a derived
column table may be created through an identify function
rule, meaning that it is considered a derived table without
any modification.

Of course, there is no need to shred the original sources, or
to create the derived column tables every time the benchmark
needs to be run. Once they are created, they remain in the
repository until deleted or overwritten. In Sect. 8, we provide
a list of some of the column tables that are included by default
in the current version of the EMBench.

Example 3 Entities describing people are frequently main-
tained in systems. For generating such entities, we need to
populate our repository with related data. This is achieved
using the shredders. The result is a set of column tables
with individual atomic values related to people, such as
First Name, Surname, Occupation, etc. According to a
set of predefined combination rules, EMBench then pop-
ulates the derived tables. For instance, rule Name =
$First Name+“ ”+$Surname populates table Name by
concatenating values from First Name with values from
Surname. Value selection is explained in the following para-
graphs.

6.2 Entity Generator

Having the domains created, i.e., the derived tables, the ini-
tial entity collection can be produced. The entity collection
is generated by creating entities with attributes selected from
the derived column tables (the attribute name is the name of
the derived column table and the value is one of its values.)
However, we would not like to generate completely randomly
the entity collection, but would like to have some control over
it. For this reason, we do the following. We decide the number
of entities that we need to create, say N , and the maximum
number of attributes we expect them to have, say M . We

123

http://www.wikipedia.org/
http://dbpedia.org/About
http://www.amazon.com/
http://www.imdb.com/
http://www.informatik.uni-trier.de/~ley/db/
http://www.okkam.org/

E. Ioannou et al.

now make M random selections from the pool of derived
column tables, each time simply selecting one derived col-
umn table. If we do not want to allow the entities to have
multi-value attributes in the entities, e.g., multiple attributes
with the same name but different value, we make sure that
the M selections we make have no repetitions, i.e., we never
select the same derived column table twice. In the sequence,
we construct a relational table Ro[A0, A1, . . . , AM], where
the attribute Ak is the name of the derived column table we
selected in our kth of the M selections. Next, we populate
the table Ro with data, by selecting for each attribute Ak , N
values from the respective derived column table, and insert-
ing them in attribute Ak of the table Ro. At the end of this
process, the table Ro has N tuples. When selecting the N
values from the derived column table, we have two options.
Either we always do a random selection, meaning that there
may be some repetitions, or we do a random selection with-
out repetitions, or we can select values that follow the Zipfian
distribution. The way this is achieved is through a small pre-
processing of the column tables. Basically, assuming that a
column table has K tuples, we generate K integer values that
are following the Zipfian distribution and we assign them to
the respective K tuples of the column table. We refer to this
number as the repetition number. Then during the random
selection of the values from the derived column tables, when
a value is retrieved that has the number j assigned to it from
the previous step, it populates j tuples in the Ro table instead
of only one.

We can now generate an entity collection Io of N entities
by constructing an entity for every tuple of the populated table
Ro. Each such entity will have M attributes, one for every of
the M attributes of the table Ro. This task is performed by
the entity generator module in Fig. 2.

Having all the entities in the entity set having M attributes,
and actually all of them with the same name, is not very nat-
ural. For this reason, before generating the entity collection
Io, we perform an iterative step in which we nullify a num-
ber of attribute values of the tuples in Ro. When a i th tuple
has a null value in its j th attribute A j , it is considered that
the entity ei generated by that tuple has no A j attribute. The
number of values that are nullified is specified by the eval-
uator in the configuration parameters of EMBench. If not, a
30 % default value is considered.

Example 4 Consider that we now wish to generate entities
representing people based on the column tables mentioned
in Example 3. Let us now suppose that each entity will need
to contain an occupation attribute (with values taken from
the corresponding table and following a Zipfian distribution.
The latter implies that the majority of the attributes would
appear few times (e.g., “pilot”, “parliament member”) and
only a small number of the attributes would appear many
times (e.g., “administrative assistant”). Zipfian distribution

is also applied on rules, for instance over the Name rule
(Example 3) it would generate names in which the values
from First Name would appear many times (e.g., “John”,
“Marie”) and only a small portion of the values would be rare
(e.g., “Odysseus”).

Note that the use of relational tables is only an implemen-
tation choice that does not affect in any way the expressive-
ness of the data model of the entities.

6.3 Entity Modifiers

With the original entity collection Io been created, the mod-
ified dataset Im is produced next. This is achieved by run-
ning the table through a series of modifiers. A modifier is a
software component that implements a modifier function as
explained in the previous section. The input to a modifier is
a table like the Ro and the output is a table with the same
schema and number of tuples but with modified values. At
the end of the process, the modified table Rm is used to gen-
erate an entity collection which plays the role of the modified
entity collection Im described in the previous section.

What modifiers are used, in what order and how much
each will modify the table is something that is specified by a
set of configuration parameters. These parameters have some
default values in the system but can also be modified by the
user.

With the original and the modified entity collections Io

and Im in place, the scenarios can be created. To do so, an
entity er is selected from the former collection, say the one
corresponding to the i th tuple of the table Ro, alongside the
entity ec which is the one corresponding to the i th tuple of the
modified table Rm. The generated scenario is the 〈Im, er, ec〉.
The above steps are repeated to create multiple scenarios
for the same entity collection. If more scenarios need to be
constructed for different entity sets, the whole process can
be repeated from the beginning. The number of times the
whole process is to be repeated and the number of scenarios
that are to be generated each time, is again specified in the
configuration file of EMBench by the user otherwise some
default values are used.

The generation of scenarios that test only one specific
type of heterogeneity can be achieved by allowing only one
modifier to be applied to the original table Ro each time.

Each modifier needs its own specific implementation.
Modifiers can be easily added in the system as independent
Java classes, and the user needs to specify their configura-
tion parameters in the global configuration file of EMBench.
We describe here a few details on how the modifiers already
included in the system have been implemented.

Introducing Contradictory Features. For the
misspellings introduction task, we assume the existence of
set A, which includes all letters of the English alphabet in

123

On Generating Benchmark Data for Entity Matching

upper and lower case. Let symbol |world| denotes the length
of a word, and that random(1, l) is a function that returns
a random position from 1 to l. If i is the position of a char-
acter that should be misspelled, then word[i] corresponds to
the character itself. The possible misspelling transformations
are:

1. insertion of a character randomly selected from the alpha-
bet (i.e., A[random(1, |A|)]) into a randomly selected
position in the word (i.e., word[random(1, |word|)]),

2. deletion of a randomly selected character from the word,
3. substitution of a randomly selected character from the

word with a character randomly selected from the alpha-
bet, and

4. permutation of existing neighbor characters that are ran-
domly selected from the word.

Note that for misspellings, the user also provides a the
misspelling rate m. This means that the selected transforma-
tion is not applied only once on the given word, but a total
of m times.

For the word permutation task, the steps are similar to the
permutation of characters within a word. We first randomly
select two words from the text, and swap them. For intro-
ducing abbreviations we randomly select a position in the
word, and then delete all characters from that position until
the end of the word, and replace them with a “.” character.
A similar process is followed for acronym generation, but in
this case, we delete all characters after the first character of
the randomly selected word(s).

For synonyms and multilingualism, we use dictionaries
and thesauri. For this, EMBench requires two mappings:
one from the words to the synonyms, and another from the
words to the word in the other language. This information
is maintained in a relation database. Once the process ran-
domly selects a word from the text, then this mapping is used
for identifying the replacement, and then we substitute the
picked word with the one derived from the mapping.

Introducing Structure Variations. To achieve this kind
of data variation, the modifier is first selecting randomly the
entities in the entity collection on which it will apply the
changes. The number of entities that are selected is a config-
uration parameter. For each of the entities, the modifier then
chooses whether it will perform an attribute deletion, or an
attribute split/merge. The attribute deletion task is similar to
the word deletion described previously. It randomly selects
an attribute among all the attributes of the selected and nul-
lifies it. For the case of merge, the process first selects two
different attributes from the entity merges them under a third
one, and for split the process selects one attribute into two.

Introducing Variation between Entities. Variations
between entities are realized through the underspecified

transformation and the overspecified transformation. The first
creates entities that do not contain enough information (i.e.,
attributes) for allowing high effective matching. The lat-
ter creates entities containing information that is not really
needed and which should be detected and “ignored” during
the matching process.

The process for both transformations uses a variation per-
centage parameter that is given by the user. This percent-
age is multiplied with the number of attributes of the given
entity, resulting in number x that is between 1 and the max-
imum number of the entity attributes. The underspecified
transformation, randomly selects x attributes and nullifies
them, i.e., removes them from the entity. For the overspec-
ified transformation, EMBench generates x new attributes
that are included in the entity. This is implemented by sim-
ply extending the table Ro described in the previous section
with new attributes.

Dealing with underspecified or overspecified entities, is
quite a challenging task for entity matching [59], and espe-
cially for entity search systems as these allow users to include
queries (describing entities) which in most situations corre-
spond to underspecified entities. It is, therefore, not really
required to combine underspecified or overspecified transfor-
mation with any other transformations, although in EMBench
this is possible.

Monitoring Entity Evolution. The entity evolution mod-
ifier sees evolution in two levels. One is the attribute level
in which an entity updates its values. For instance, the per-
son named “Jacqueline Lee Bouvier”20 was later known as
“Jackie Kennedy”, and then as “Jacqueline Onassis”. To do
so, the modifier selects randomly an entity and an attribute
within, and modifies its value. It may also nullify it instead,
to model the case that an entity had some characteristic that
it lost.

The second level is the conceptual evolution, basically the
split/merge operations. For this the modifier selects an entity,
removes it and inserts two new. Each of the two new entities
has a subset of the attributes of the one that was removed. For
the case of the merge, two entities are removed from the entity
set and a new one is inserted, the attributes of which are the
union of the attributes of the two entities that were removed.
In the case in which there are conflicts, i.e., two attributes with
the same name but different values, one of the two values is
randomly selected. One difference from existing terminology
evolution systems [79] and versioning systems [68] is that
we do not maintain any timestamp information to achieve
conceptual evolution [20].

Supporting Association Network Variance. Recall that
an association between entities is modeled by using the id
of the second as a value in one of the attributes of the first.
EMBench supports modifications to the way the entities are

20 http://en.wikipedia.org/wiki/Jacqueline_Kennedy_Onassis

123

http://en.wikipedia.org/wiki/Jacqueline_Kennedy_Onassis

E. Ioannou et al.

associated between them. The way it does so is by selecting
the values that are ids and shuffling them around alongside
the elimination of some and the introduction of some new.
However, entity matching techniques that use this informa-
tion are based on the assumption that the data is pretty stable
[29,46,49,50]. If the associations are modified, then these
techniques will not work. What EMBench can contribute in
this part is to measure the sensitivity of these techniques on
the data modifications.

Example 5 Consider the entity collection shown in Fig. 1,
and now assume that the abbreviation modifier is applied on
it. A possible output over the attribute 〈institution, “Univer-
sity of Paris”〉 is 〈 institution, “Un. of Paris” 〉. Applying the
structure variation modifier over attributes 〈 name, “Pierre”〉
and 〈surname, “Curie”〉 may result to the attribute 〈name,
“Curie Pierre”〉. The latter can would also result to 〈name,
“C. Pierre”〉 if the acronym modifier is also applied on it.

7 Usage of EMBench

EMBench offers three main functionalities. The first is to
create a source repository by importing data using shredders.
The second is to generate entity datasets using the data from
the source repository. The third functionality is to evaluate
matching algorithms. To ease the use of these functionalities,
EMBench is in general fully parametrized through a configu-
ration file. In addition, EMBench is accompanied with a user
interface that allows the specification of the parameters that
build the configuration file on-the-fly and run EMBench. In
this section, we elaborate on each of the three functionali-
ties, and the following URL provides an online access to the
system as well as the binary file for a local execution:

http://db.disi.unitn.eu:8282/embench/

Note that although the main purpose of EMBench is of
course generating synthetic data for evaluating entity match-
ing algorithms, as a by-product, it can be used for two addi-
tional purposes. One is the creation of a data warehouse from
real data sources, which can be done using the shredders. The
second is the generation of large synthetic entity collections,
i.e., sets with various entity types, on which no modifiers are
applied.

Importing Data in the Repository. The first task is to
import data in the repository. For this task, users can either
utilize the data that are induced in the default implementa-
tion of EMBench (Fig. 2), or collect data from the existing
sources. The latter can be achieved using the EMBench’s
shredders. In some sense, the shredders create an image of the
real database in a column-store format. By selecting which
shredders to activate, the EMBench users can control which
sources should be copied and which not. The generic shred-

der that the EMBench comes with can be easily extended
to support additional sources. In addition, EMBench comes
with a small collection of shredders, which include a generic
shredder for a relational database, and shredders for known
systems (described in Sect. 6.1).

To perform the data collection and shredding part, assum-
ing that the shredders are implemented and in place, the user
needs to simply select from the GUI what shredders should
be used and the parameters of the sources from where they
will retrieve the data, such as the communication protocol
and the Internet address.

Configuration and load of the source repository will be
typically performed only once, as the data stored in the repos-
itory are not altered by the other functionalities of EMBench.
And if the users are satisfied with the data incorporated in
EMBench’s default implementation (discussed in Sect. 8),
then the efforts are really minimal.

Generating Entity Collections. Once the collected data
are in place the user has to specify how the column tables
should be combined to generate the initial and the modified
entity collection. Figure 3 shows a snapshot of the interface
with the configuration parameter fields. Two configurations
are required for generating the entity collection. The first
involves defining the schema for the entities to be gener-
ated; in particular, the maximum number of entity attributes,
the distribution of the values, the percentage of non-existing
attributes, etc. All these are done by the configuration inter-
face. For example, as shown in the figure, the first set will
contain from 45,000 to 50,000 “publication” entities. Each
entity will have the following attributes: a title, a conference,
from 2 to 5 authors, and a year. The second part of the con-
figuration involves the modifiers that are to be used and the
parameters of each one. As also shown in the figure, users
first select a modifier and then specify its parameters.

Note that there can be multiple templates in a single gener-
ation (option “Add Entity Type” Fig. 3). A template is basi-
cally one run of the EMBench as we have described it so
far. However, in many cases it is desired to generate different
groups of entities with each group having different character-
istics. The user has the ability to introduce as many templates
as desired (finite number though), and for each one to spec-
ify the parameters for the generation of the respective entity
collections.

With the configuration parameters set, the user can finally
ask EMBench to run. The output is a set of entity collections,
with each entity collection accompanied with it’s modifier
version. Thus, every entity has two versions: the one that con-
tains the original data and another that contains the modified
data. In addition, the user also receives a list that provides
the sequence of modifiers that were applied on each entity.

Evaluating Matching Algorithms. Of course, since we
need to evaluate entity matching algorithms, we need to quan-
tify the matching success. A straight forward approach is to

123

http://db.disi.unitn.eu:8282/embench/

On Generating Benchmark Data for Entity Matching

Fig. 3 Screenshot of EMBench GUI for generating an entity collection

compare the collection containing the original entities with
the collection containing the modified entities. There are
already various metrics of this kind in the literature. Some
of the well-known, also included in the default EMBench
implementation, are the following:

1. Precision is the percentage of the successfully detected
matches divided by the number of all returned matches.

2. Recall is the percentage of the successfully detected
matches divided by the number of matches that should
have been found by the algorithm.

3. F-measure is the harmonic mean of precision and recall,
defined as: (2×precision×recall)/(precision+recall).

As already discussed, the above metrics are not the only
available options. An excellent collection and discussion of
the different metrics can be found here [35] and here [6]. To
allow that incorporation of additional metrics in EMBench,
we did not restrict the implementation to the specific metrics
but allow users to easily incorporate additional metrics.

One of the issues with the metrics included in EMBench
is that they are too strict on the success or not of the match-
ing process. In particular, many entity matching tools may
return an ordered list of possible entities as an answer. If the
expected entity is not in the first position, the matching tool
is penalized the same independently of whether the expected
entity is in the second, third, fourth position, or is not returned
at all. To alleviate this problem, the metrics that have been
already included in EMBench will have to be adjusted to take
into consideration the position of the expected entity in the
result set.

In any case, the metric that is to be used to evaluate the
success of the entity matching tool for a scenario is highly

related but orthogonal to our work. The goal of our system
is to generate the right set of test cases, with which any kind
of metric can be used.

To evaluate a matching algorithm, the user need to extends
the EMBench’s evaluation class and implement two meth-
ods. The first method is for constructing entities as needed
by the specific matching algorithm given the data from the
EMBench. The second method is for comparing two entities
and deciding if there are a match or a non match. The user
then executes EMBench and receives the evaluation results.

8 Applicability Experience

We now demonstrate the applicability of EMBench by using
it to evaluate different entity matching scenarios. Section 8.1
discusses the use of EMBench for comparing various match-
ing algorithms, and Sect. 8.1 illustrates the performance eval-
uation of a single algorithm. Finally, Sect. 8.3 provides a
comparison of EMBench with an existing benchmarking
for matching applications, and more specifically with the
SWING system that we discussed in Sect. 2.2.

8.1 Comparison of Matching Algorithms

The first scenario we investigated was using EMBench for
comparing various matching algorithms. To demonstrate the
applicability of EMBench in this scenario, we needed a small
collection of matching algorithms. For this, we used Sec-
ondString21, which is an open-source package with approxi-
mate string matching algorithms. Cohen et al. [23] performed

21 http://secondstring.sourceforge.net/.

123

http://secondstring.sourceforge.net/

E. Ioannou et al.

Table 1 Extending the
experimental evaluation of
Cohen et al. [23] to a larger set
of entity types and an increasing
level of modification

The table reports F-measure
plus the average time of entity
comparisons

Modification level Time (ms)

5 % 10 % 15 %

Publication size = 10,000

(title, 3–4 authors, year, venue)

JaroWinkler .941 .927 .921 .026

Jaro .919 .904 .898 .025

Monge–Elkan .773 .761 .753 .333

TFIDF .672 .662 .665 .015
Academic size = 10,000

(person name, university)

JaroWinkler .833 .837 .836 .033

Jaro .779 .781 .782 .030

Monge–Elkan .491 .498 .499 .429

TFIDF .424 .424 .424 .016
Item size = 5,000

(name, company)

JaroWinkler .853 .851 .843 .021

Jaro .806 .805 .805 .018

Monge–Elkan .559 .549 .561 .221

TFIDF .44 .44 .44 .014

Song size = 5, 000

(name, band, album, year)

JaroWinkler .955 .954 .937 .014

Jaro .936 .935 .916 .012

Monge-Elkan .804 .796 .794 .132

TFIDF .73 .73 .73 .016

Person size = 5,000

(name, occupation, 0–1 university)

JaroWinkler .957 .951 .954 .029

Jaro .941 .940 .940 .011

Monge–Elkan .77 .77 .77 .334

TFIDF .650 .650 .650 .014

a comparison between several string matching algorithms,
with their results reported in a heavily cited publication (cur-
rently with more than 930 citations).

As the authors reported in [23], evaluation was performed
over a small set of entity types, such as animals, birds, CORA
publications22, and games, with less than 6,000 entities in the
collection with the largest size. We now extend the specific
experimental evaluation by comparing some of the string
matching algorithms over a larger set of entity types and over
an increasing modification level. For this, we used the mis-
spelling, abbreviation, and permutation modifiers and con-
figured their feature percentage to 5, 10, and 15 %.

Table 1 reports the results of the additional comparisons
between four string similarity algorithms: Jaro, JaroWin-

22 This dataset was described in Sect. 2..

kler, Monge-Elkan, and TFIDF. Execution time was affected
when using a different modification level, and thus we only
report one execution time per collection and string similar-
ity algorithm. The results clearly indicate that Monge–Elkan
requires the most time for processing the entity comparisons,
Jaro and TFIDF require almost the same time, and JaroWin-
kler requires the less time. In addition to time, the table also
reports the F-measure of each algorithm for the various mod-
ification levels. The JaroWinkler algorithm has the highest
F-measure followed by the Jaro algorithm.

In addition to the comparison between algorithms from
SecondString, we have also examined the performance of
more generic algorithms. We need here to re-emphasize that
this paper is not a study of matchers, thus, our goal in this
paper is not to dictate the best matcher. There are already
many such works in the literature. Instead, we simply wanted

123

On Generating Benchmark Data for Entity Matching

Fig. 4 F-measure for two different sequences of modifiers

to illustrate how successfully EMBench can highlight the
advantages and the limitations of the matchers it evaluates.
For this reason, we do not provide the names of these generic
algorithms but we will refer to them as “matcher A” and
“matcher B”.

For this evaluation, we used a dataset with 5,000 publica-
tion entities, out of which the 2,500 where modified using the
misspelling, permutation, and abbreviation modifiers. Using
EMBench we first retrieved F-measure when no modifier was
applied, then when only the first modifier was applied, fol-
lowed by two modifiers, and finally with all three modifiers.
We repeated this evaluation using a different order in the exe-
cution of the modifiers. Figure 4 shows the results for these
executions. Each plot shows F-measure and the modifier(s)
that were applied on the dataset. As shown in the plot, every
additional modifier reduces the performance of the matching
algorithm. However, we can also notice that some combina-
tions are better handled than others. For instance, matcher
A is able to better cope with the combination misspelling
and then abbreviation, than with abbreviation and then mis-
spelling. This is of course an aspect of matcher A that should
be further investigated by the people that created the specific
algorithm.

The final evaluation focused on testing the capabilities of
the matching algorithms with respect to the size of the dataset,
i.e., the number of entities contained in the collection. This
is important in entity matching since entity matching takes
place at the instance level and entity collections may scale
up to thousands or even millions of entities, especially after
the advent of big data in our lives. To create collections with
different number of entities, we used a publication collection
with 5,000 entities and then included additional entities. Fol-
lowing this process, we created two additional collections,
one containing 7,000 entities and another containing 10,000.
The modifier was executed on the 2,500 entities from each
collection. On these three collections we applied the two
matchers. Figure 5 plots the time that each matcher required
for these three collections. As expected, when the collec-
tion size is increased the required time is also increased for
both matchers. However, we can clearly see that matcher A
can better handle a collection with larger size than matcher
B, since the time increase for matcher A is less than for
matcher B.

Fig. 5 Execution time for different entity collection sizes (i.e., dataset)

Fig. 6 Extending the experimental evaluation from [48] over entity
collections that have an increasing modification level

8.2 Measuring a Matching Algorithm’s Performance

In this scenario, we tested the performance of a single algo-
rithm. More specifically, we use the RDFsim algorithm [48]
introduced for detecting semantic-aware near duplicates
among data integrated from various sources and applications.
The detected duplicates are then grouped together, merged,
or removed, in order to avoid repetition and redundancy, and
in order to increase the diversity in the information provided
to the user.

As described in [48], the original evaluation for the spe-
cific algorithm was based on a prototype that crawled news
articles from various agencies (e.g., BBC, Reuters, and CNN)
taken from the Google News Web site. The entities, such as
people, locations, organizations, and events, from the new
article were extracted using the OpenCalais Web service23.
It is clear that this evaluation captured the use of multiple
entity types as well as scalability.

One aspect that was not investigated in the original
evaluation was the effectiveness of the semantic-aware

23 http://www.opencalais.com/.

123

http://www.opencalais.com/

E. Ioannou et al.

Table 2 Overview of the functionalities provided by EMBench and SWING

EMBench SWING

Data acquisition

Supported data sources Any other system Linked data repository

Currently in API DBLP, Amazon, IMdb, DBPedia, Freebase

Lyrics, & any relational db

Additional acquisition options Combinations using derived tables Enrichment of the data

Quality of resulted data Distinct cleaned values Quality as in Freebase

Data generation

Entities types Arbitrary, i.e., users can defined by them Based on Freebase classes

Entity data Attributes follow Normal or Zipf distribution Retrieved alphabetically from Freebase

Entity alignments Generated Generated

Matching scenarios

Textual variations Misspelling, word permutation, acronyms, Word/character modification or addition, gender format,

Initials, abbreviations Modifications on dates, names, integers and floats

Structure variations Attribute merge or split, underspecified and Property/class deletion or addition

Overspecified entities

Semantic variations Synonyms, multilingualism support, Synonyms

Support of entity evolution

Automatic testing Included Included

near duplicate detection when the entities contain different
modification levels. News agencies typically provide articles
with a sufficiently cleaned content. In addition, even if modi-
fications between the entities existed, it was not obvious how
to “measure” them in order to investigate the algorithm’s
effectiveness with respect to modifications.

To investigate this aspect of the algorithm we evaluated the
algorithm using EMBench. We generated a collection with
8,000 publications that contained a title, 3–4 authors, a year,
and a venue. We then introduced modifications to the pub-
lications using misspelling, abbreviation, and permutation.
We applied modifications on the collection several times,
each time increasing the modification level, i.e., configur-
ing the attribute percentage from 4 % until 14 %. We then
used EMBench to evaluate the algorithm and receive Preci-
sion, Recall, and F-measure. Figure 6a shows the results for
the last two metrics (Precision was always 1), and Fig. 6b
shows the execution time. From the results, we notice that
the execution time is not affected from the modification level.
However, it is clear that the effectiveness is reduced when the
modification level is increased. This indicates that prior using
the specific algorithm on such data collections, one should
first improve this aspect of the algorithm.

8.3 EMBench versus SWING

The last part of the applicability experience section, presents
a comparison between EMBench and an existing bench-
marking for matching applications. For this comparison, we

used the SWING system, which is a semantic Web instance
generator that can be use to evaluate matching applications
(discussed in Sect. 2.2).

In order to perform this comparison, we used the descrip-
tion and source code of SWING24. Table 2 provides an
overview of the functionalities included in the EMBench sys-
tem with the functionalities included in the SWING system.
These functionalities are grouped into three categories: data
acquisition, data generation, and matching scenarios.

As shown in the table, the two systems have various dif-
ferences with respect to data acquisition. SWING aims at
retrieving data from existing linked data repositories, and, as
reported in the description of the [37], only Freebase is used
in the current implementation. In contrast, EMBench uses
shredders that can connect to any other system for retrieving
values. The current implementation of EMBench contains
shredders for various systems as well as a generic shredder
for relational database.

The second category contains functionalities related to
data generation. According to the current implementation,
SWING receives two movie titles and then retrieves all Free-
base movies those titles are alphabetically in between the
given titles. The resulted entities are then used as the basis
for SWING’s entity collection. This methodology has a few
negative aspects. The first is that users cannot specify the
number of movies that should be included in the collec-
tion, but will need to handle all movies returned by the sys-

24 http://code.google.com/p/swing-generator/.

123

http://code.google.com/p/swing-generator/

On Generating Benchmark Data for Entity Matching

tem. Another negative aspect is that SWING assumes that
the retrieved entities contain “clean” data and without any
duplicates. Given the repository with individual clean values,
EMBench is able to generate various entity types that are not
covered by the SWING approach. In addition, EMBench is
able to simulate real world data scenarios through the incor-
porated distributions.

The last category contains functionalities related to the
supported matching scenarios. Here, we see that both
systems support similar scenarios with respect to textual
variations. However, EMBench supports additional scenarios
for the other variations, such as underspecified and overspec-
ified entities.

9 Conclusions

In this paper, we have presented EMBench, an implemen-
tation of a framework for evaluating entity matching sys-
tems through a systematic generation synthetic test cases.
EMBench imports data from many different real databases,
and based on them generates entity collections of different
sizes and different heterogeneities. By tuning its configu-
ration parameters, the users can control the degree of het-
erogeneity added to the data, and thus stress test the under
evaluation entity matching tool. We explained how our tool
can be used, and we performed a series of experiments over
existing matching techniques for illustrating the kind of infor-
mation that can be obtained using the EMBench system.

Entity matching has received considerable attention dur-
ing the last decade, but the research area still lacks a widely
acceptable methodology for evaluating and comparing entity
matching algorithms. We are hoping that EMBench will
allow researchers to better evaluate their matching algo-
rithms, identify the capabilities of the algorithms, and also
guide performance improvements on the existing entity
matching systems. A wide adoption of EMBench may allow
it to be adopted as a norm, paving the way for a standard.

Acknowledgments This work has been partially supported by the EU
Project OKKAM ICT-215032 and the ERC Grand Lucretius 267856.

References

1. Aizawa A, Oyama K (2005) A fast linkage detection scheme for
multi-source information integration. WIRI, pp 30–39

2. Alexe B, Tan W, Velegrakis Y (2008) STBenchmark: towards a
benchmark for mapping systems. PVLDB 1(1):230–244

3. Alexe B, Tan WC, Velegrakis Y (2008) Comparing and evaluating
mapping systems with STBenchmark. PVLDB 1(2):1468–1471

4. Ananthakrishna R, Chaudhuri S, Ganti V (2002) Eliminating fuzzy
duplicates in data warehouses. VLDB, pp 586–597

5. Andritsos P, Fuxman A, Miller RJ (2006) Clean answers over dirty
databases: a probabilistic approach. ICDE

6. Bellahsene Z, Bonifati A, Duchateau F, Velegrakis Y (2011) On
evaluating schema matching and mapping. In: Bellahsene Z, Boni-

fati A, Rahm E (eds) Schema matching and mapping, chapter 9.
Springer, Berlin, pp 253–291

7. Benjelloun O, Garcia-Molina H, Menestrina D, Su Q, Whang S,
Widom J (2009) Swoosh: a generic approach to entity resolution.
VLDB J 18(1):255–276

8. Bergamaschi S, Domnori E, Guerra F, Lado RT, Velegrakis Y
(2011) Keyword search over relational databases: a metadata
approach. SIGMOD, pp 565–576

9. Bergamaschi S, Guerra F, Rota S, Velegrakis Y (2011) A hidden
Markov model approach to keyword-based search over relational
databases. ER

10. Bergamaschi S, Guerra F, Rota S, Velegrakis Y (2011) KEYRY: a
keyword-based search engine over relational databases based on a
hidden Markov model. ER, pp 328–331

11. Bergamaschi S, Guerra F, Rota S, Velegrakis Y (2011) Under-
standing linked open data through keyword searching: the KEYRY
approach. LWDM, pp 34–35

12. Bernstein PA, Melnik S, Churchill JE (2006) Incremental schema
matching. VLDB, pp 1167–1170

13. Bhattacharya I, Getoor L (2004) Deduplication and group detection
using links. LinkKDD

14. Bilenko M, Mooney R (2003) Adaptive duplicate detection using
learnable string similarity measures. KDD, pp 39–48

15. Bilenko M, Mooney R, Cohen W, Ravikumar P, Fienberg S (2003)
Adaptive name matching in information integration. IEEE Intell
Syst 18(5):16–23

16. Bizer C, Heath T, Berners-Lee T (2009) Linked data—the story so
far. Int J Semantic Web Inf Syst 5(3):1–22

17. Bonifati A, Mecca G, Papotti P, Velegrakis Y (2011) Discovery and
correctness of schema mapping transformations. In: Bellahsene Z,
Bonifati A, Rahm E (eds) Schema matching and mapping, chapter
5. Springer, Berlin, pp 111–147

18. Bonifati A, Velegrakis Y (2011) Schema matching and mapping:
from usage to evaluation. EDBT, pp 527–529

19. Bouquet P, Stoermer H, Bazzanella B (2008) An entity name system
(ENS) for the semantic web. EWSC, pp 258–272

20. Bykau S, Mylopoulos J, Rizzolo F, Velegrakis Y (2011) Supporting
queries spanning across phases of evolving artifacts using steiner
forests. CIKM, pp 1649–1658

21. Bykau S, Mylopoulos J, Rizzolo F, Velegrakis Y (2012) On mod-
eling and querying concept evolution. J Data Seman 1:31–55

22. Cohen W (2000) Data integration using similarity joins and a word-
based information representation language. ACM Trans Inf Syst
(TOIS) 18(3):288–321

23. Cohen W, Ravikumar P, Fienberg S (2003) A comparison of string
distance metrics for name-matching tasks. IIWeb co-located with
IJCAI, In, pp 73–78

24. Cohen W, Richman J (2002) Learning to match and cluster large
high-dimensional data sets for data integration. KDD, pp 475–
480

25. Dalvi N, Kumar R, Pang B, Ramakrishnan R, Tomkins A, Bohan-
non P, Keerthi S, Merugu S (2009) A web of concepts. PODS, pp
1–12

26. Doan A, Halevy A (2005) Semantic integration research in the
database community: a brief survey. AI Magazine 26(1):83–94

27. Doan A, Lu Y, Lee Y, Han J (2003) Object matching for informa-
tion integration: A profiler-based approach. IIWeb co-located with
IJCAI, pp 53–58

28. Dong X, Halevy A (2007) Indexing dataspaces. SIGMOD confer-
ence, pp 43–54

29. Dong X, Halevy A, Madhavan J (2005) Reference reconciliation
in complex information spaces. SIGMOD conference, pp 85–96

30. Duchateau F (2009) Towards a generic approach for schema
matcher selection: leveraging user pre- and post-match effort for
improving quality and time performance. Ph.D. thesis, Universite
Montpellier II–Sciences et Techniques du Languedoc

123

E. Ioannou et al.

31. Duchateau F, Bellahsene Z, Hunt E (2007) XBenchMatch: a bench-
mark for XML schema matching tools. VLDB, pp 1318–1321

32. Elmagarmid A, Ipeirotis P, Verykios V (2007) Duplicate record
detection: a survey. TKDE 19(1):1–16

33. Euzenat J, Ferrara A, van Hage W, Hollink L, Meilicke C, Nikolov
A, Ritze D, Scharffe F, Shvaiko P, Stuckenschmidt H, Sváb-
Zamazal O, Cássia T (2011) Final results of the ontology alignment
evaluation initiative 2011. OM co-located with ISWC

34. Euzenat J, Meilicke C, Stuckenschmidt H, Shvaiko P, Cássia T
(2011) Ontology alignment evaluation initiative: six years of expe-
rience. J Data Seman 15:158–192

35. Euzenat J, Shvaiko P (2007) Ontology matching. Springer, Berlin
36. Fagin R, Haas L, Hernandez M, Miller R, Popa L, Velegrakis Y

(2009) Clio: schema mapping creation and data exchange. In: Con-
ceptual modeling: foundations and applications. Springer, Berlin,
pp 198–236

37. Ferrara A, Montanelli S, Noessner J, Stuckenschmidt H (2011)
Benchmarking matching applications on the semantic web. In:
ESWC (2), pp 108–122

38. Ferrara A, Nikolov A, Scharffe F (2011) Data linking for the seman-
tic web. J Data Seman 7(3)

39. Getoor L, Diehl C (2005) Link mining: a survey. SIGKDD Explor
7(2):3–12

40. Giunchiglia F, Shvaiko P, Yatskevich M (2005) S-Match: an
algorithm and an implementation of semantic matching. Seman-
tic interoperability and integration

41. Halevy A, Franklin M, Maier D (2006) Principles of dataspace
systems. PODS, pp 1–9

42. Hassanzadeh O, Kementsietsidis A, Velegrakis Y (2012) Data man-
agement issues on the semantic web. ICDE, pp 1204–1206

43. Heath T, Bizer C (2011) Linked data: evolving the web into a global
data space. In: Synthesis lectures on data management. Morgan &
Claypool Publishers, San Rafael

44. Hernández M, Stolfo S (1998) Real-world data is dirty: data cleans-
ing and the merge/purge problem. Data Mining Knowl Discov
2(1):9–37

45. Ioannou E, Nejdl W, Niederée C, Velegrakis Y (2010) On-the-fly
entity-aware query processing in the presence of linkage. PVLDB
3(1):429–438

46. Ioannou E, Niederée C, Nejdl W (2008) Probabilistic entity linkage
for heterogeneous information spaces. CAiSE, pp 556–570

47. Ioannou E, Niederee C, Velegrakis Y (2010) Enabling entity-based
aggregators for Web 2.0 data. In: WWW, pp 1119–1120

48. Ioannou E, Papapetrou O, Skoutas D, Nejdl W (2010) Efficient
semantic-aware detection of near duplicate resources. ESWC, pp
136–150

49. Kalashnikov D, Mehrotra S (2006) Domain-independent data
cleaning via analysis of entity-relationship graph. TODS 31(2):
716–767

50. Kalashnikov D, Mehrotra S, Chen Z (2005) Exploiting relation-
ships for domain-independent data cleaning. SIAM SDM

51. Kopcke H, Rahm E (2010) Frameworks for entity matching: a com-
parison. DKE 69(2):197–210

52. Koudas N, Marathe A, Srivastava D (2004) Flexible string matching
against large databases in practice. VLDB, pp 1078–1086

53. Legler F, Naumann F (2007) A classification of schema mappings
and analysis of mapping tools. BTW, pp 449–464

54. Lenzerini M (2002) Data integration: a theoretical perspective.
PODS, pp 233–246

55. McCallum A, Nigam K, Ungar L (2000) Efficient clustering of
high-dimensional data sets with application to reference matching.
KDD, pp 169–178

56. Miklós Z, Bonvin N, Bouquet P, Catasta M, Cordioli D, Fankhauser
P, Gaugaz J, Ioannou E, Koshutanski H, Maña A, Niederée C,
Palpanas T, Stoermer H (2010) From web data to entities and back.
CAiSE, pp 302–316

57. Minack E, Paiu R, Costache S, Demartini G, Gaugaz J, Ioannou
E, Chirita P, Nejdl W (2010) Leveraging personal metadata for
desktop search: the Beagle++ system. J Web Seman 8(1):37–54

58. Morris A, Velegrakis Y, Bouquet P (2008) Entity identification on
the semantic web. SWAP

59. Mottin D, Palpanas T, Velegrakis Y (2013) Entity ranking using
click-log information. Intell Data Anal J 17:5

60. Ontology alignment evaluation initiative (OAEI) co-located with
ISWC. http://oaei.ontologymatching.org/

61. Papadakis G, Giannakopoulos G, Niederée C, Palpanas T, Nejdl W
(2011) Detecting and exploiting stability in evolving heterogeneous
information spaces. JCDL, pp 95–104

62. Papadakis G, Ioannou E, Niederée C, Fankhauser P (2011) Effi-
cient entity resolution for large heterogeneous information spaces.
WSDM, pp 535–544

63. Papadakis G, Ioannou E, Niederée C, Palpanas T, Nejdl W (2011)
Eliminating the redundancy in blocking-based entity resolution
methods. JCDL, pp 85–94

64. Papadakis G, Ioannou E, Niederée C, Palpanas T, Nejdl W (2012)
Beyond 100 million entities: large-scale blocking-based resolution
for heterogeneous data. WSDM, pp 53–62

65. Parag DP (2004) Multi-relational record linkage. MRDM work-
shop co-located with KDD, pp 31–48

66. Rahm E, Bernstein P (2001) A survey of approaches to automatic
schema matching. VLDB J 10(4):334–350

67. Rastogi V, Dalvi N, Garofalakis M (2011) Large-scale collective
entity matching. PVLDB 4(4):208–218

68. Rizzolo F, Vaisman A (2008) Temporal XML: modeling, indexing,
and query processing. VLDBJ 17(5):1179–1212

69. Rizzolo F, Velegrakis Y, Mylopoulos J, Bykau S (2009) Modeling
concept evolution: a historical perspective. ER, pp 331–345

70. Roşoiu M, Cássia T, Euzenat J (2011) Ontology matching bench-
marks: generation and evaluation. OM co-located with ISWC.

71. Rosoiu ME, dos Santos CT, Euzenat J (2011) Ontology matching
benchmarks: generation and evaluation. OM

72. Sarawagi S, Bhamidipaty A (2002) Interactive deduplication using
active learning. KDD, pp 269–278

73. Shen W, DeRose P, Vu L, Doan A, Ramakrishnan R (2007)
Source-aware entity matching: a compositional approach. ICDE,
pp 196–205

74. Shvaiko P, Euzenat J (2008) Ten challenges for ontology matching.
In: OTM conferences (2), pp 1164–1182

75. Tejada S, Knoblock C, Minton S (2002) Learning domain-
independent string transformation weights for high accuracy object
identification. KDD, pp 350–359

76. Tsinaraki C, Velegrakis Y, Kiyavitskaya N, Mylopoulos J (2010)
A context-based model for the interpretation of polysemous terms.
ODBASE, pp 939–956

77. Tummarello G, Delbru R, Oren E (2007) Sindice.com: weaving the
open linked data. In: ISWC/ASWC, pp 552–565

78. Vaccari L, Shvaiko P, Pane J, Besana P, Marchese M (2012) An eval-
uation of ontology matching in geo-service applications. GeoInfor-
matica 16(1):31–66

79. Weikum G, Ntarmos N, Spaniol M, Triantafillou P, Benczúr A,
Kirkpatrick S, Rigaux P, Williamson M (2011) Longitudinal ana-
lytics on web archive data: it’s about time!. CIDR, pp 199–202

80. Whang S, Menestrina D, Koutrika G, Theobald M, Garcia-Molina
H (2009) Entity resolution with iterative blocking. SIGMOD con-
ference, pp 219–232

81. Yatskevich M (2003) Preliminary evaluation of schema matching
systems. Tech Rep DIT-03-028, University of Trento

123

http://oaei.ontologymatching.org/

	On Generating Benchmark Data for Entity Matching
	Abstract
	1 Introduction
	2 Related Work
	2.1 Entity Matching
	2.2 Benchmarking Data

	3 Entity Matching Systems
	4 Entity Matching Evaluation Requirements
	5 Entity Matching Scenarios
	5.1 Entity Modifiers

	6 The EMBench System
	6.1 Repository
	6.2 Entity Generator
	6.3 Entity Modifiers

	7 Usage of EMBench
	8 Applicability Experience
	8.1 Comparison of Matching Algorithms
	8.2 Measuring a Matching Algorithm's Performance
	8.3 EMBench versus SWING

	9 Conclusions
	Acknowledgments
	References

