
Searching Web 2.0 Data through
Entity-Based Aggregation

Ekaterini Ioannou1 and Yannis Velegrakis2

1 Technical University of Crete, ioannou@softnet.tuc.gr
2 University of Trento, velgias@disi.unitn.eu

Abstract. Entity-based searching has been introduced as a way of al-
lowing users and applications to retrieve information about a specific real
world object such as a person, an event, or a location. Recent advances
in crawling, information extraction, and data exchange technologies have
brought a new era in data management, typically referred to through the
term Web 2.0. Entity searching over Web 2.0 data facilitates the retrieval
of relevant information from the plethora of data available in semantic
and social web applications.
Effective entity searching over a variety of sources requires the integra-
tion of the different pieces of information that refer to the same real world
entity. Entity-based aggregation of Web 2.0 data is an effective mecha-
nism towards this direction. Adopting the suggestions of the Linked Data
movement, aggregators are able to efficiently match and merge the data
that refer to the same real world object.

Keywords: semantic web, data integration, semantic data management.

1 Introduction

1.1 Challenges

Implementing entity-based aggregation to support entity search, poses a number
of challenges due to the peculiarities of the modern web data, and specifically
of that of Web 2.0 [3]. In particular, integration support needs to provide some
coherence guarantees, i.e., to ensure that it can detect whether difference pieces
of information in different sources representing the same real world object, are
actually linked. It is not rare the case in which different sources contain quite
different information about the same entity.

To successfully provide the above functionality, the aggregator needs first
to cope with heterogeneity. Web 2.0 applications have typically a large amount
of user-generated data, e.g., text, messages, tags, that are highly heterogeneous
either by nature, or by design. For instance, DBPedia is based on RDF data
and utilizes its own ontology, whereas Wikipedia adopts a more loose schema
binding. The aggregator should be able to deal with a wide variety of entity
descriptions ranging from keyword style entity requests to more structured and
detailed descriptions.

Furthermore, the aggregator also has to be able to deal with a discrepancy in
the knowledge about an entity available in different sources (knowledge hetero-
geneity): Due to different reasons (e.g., perspective, targeted applications), two
sources might know more, less or different things about an entity. Exactly this
makes their integration promising, but also challenging.

The aggregator should also be able to cope with the different data quality lev-
els of the sources. User-generated datasets, or datasets generated by integrations
of heterogeneous sources, are typically high in noise and missing values [2] which
impedes entity identification. Finally, data brought together from multiple inde-
pendently developed data sources that partially overlap, introduces redundancy
and conflicts that need to be resolved in an efficient and consistent manner.

1.2 Approach & Contributions

To support entity-based searching over integrated entity descriptions of Web 2.0
data we propose an infrastructure for entity-based aggregation. Our main fo-
cus on the part of the infrastructure that matches queries to entity profiles. This
requires extending search and aggregation technologies (e.g., semantic search en-
gines, mashups, or portals) with functionallities that will allow them to maintain
and exploit information about entities and their characteristics.

The current version of our system uses the Entity Name System (ENS) [23],
which is an entity repository service. Our goal is to enable entity-based aggrega-
tion for the particular repository. This requires matching capabilities in order to
ensure that each entity in the repository has a unique identifier. We achieve this
through the search functionality. In short, when the repository is queried (i.e.,
entity search) we detect and return the entities from the repository that contain
the characteristics found in the requested query. If no entity match is found in
the repository, then a new entry is created in order to be used for future requests.
If a partially matching entity is found, the stored entity may be enhanced with
the additional characteristics from the source data, improving the chances of
successful identification in future requests.

The introduced Matching Framework has several contributions regarding
matching and entity searching. First, it brings data matching from its static
and design-time nature into a dynamic process that starts at design-time with
some initial knowledge and continues to evolve throughout its run-time use. An
additional contribution is that it is able to employee an extensible set of match-
ing methodologies, each based on a different matching technique. This allows us
to deal with the inability of a single matching algorithm to address the matching
problem. Also, matching is performed as a series of steps that include selection of
the most appropriate matching algorithm and combination of results from more
than one modules. Note that a short description of the Matching Framework
was included in [19]. In this journal we provide the details of our work.

The remaining paper is structured as follows. Section 2 presents a motivating
example. Section 3 introduces the Matching Framework and discusses the com-
ponents composing it. Section 4 explains how existing matching methodologies
can be incorporated in the proposed Matching Framework and also provides a

couple of concrete examples. Section 5 describes various requests we used for
evaluating our infrastructure and reports quality and execution time. Finally,
Section 6 provides conclusions and discusses possible future directions.

2 Motivating Example

We are currently seeing a plethora of systems that use data from Web 2.0 ap-
plications and sources. For being able to use such data, the systems need to
integrate the collected/received Web 2.0 data. Our matching framework focuses
on providing this task, i.e., performing the integration of data coming from Web
2.0 applications and sources, and in particular on matching and merging together
the data describing the same real world objects. Consider a portal system, such
as Thoora3, or Daylife4, that crawls the web collecting, analysing, and catego-
rizing news articles and blog posts. The system employs special similarity search
techniques that find whether different articles talk about the same topic. These
techniques are mainly based on textual analysis which try to identify entities
mentioned in each article/post. Consider an article that talks about a person
called Barack Obama living in Washington DC and a second one talking about
a Nobel Prize winner also called Barack Obama who has been a senator in Illi-
nois (i.e., entities labeled e1 and e2 in Figure 1 respectively). The fact that both
articles talk about a person called Barack Obama, is some indication that they
may refer to the same person. However, it is not sure that they actually do,
since the rest of the information they have is different. For instance, the second
article, in contrast to the first, does not mention anything about the residence
of the person, but instead mentions some origin place that is different from the
Washington DC area.

A linked-data could link the two entities if there was a way to refer to them,
for instance through the existence of some identifiers in the data, if such iden-
tifiers exist. Since the data is coming from text articles and not from database
systems, this information may not be available at all, or may not be useful since
these identifiers may have been locally assigned at run time with no persistence
guarantees. The identification needs to be based mainly on their characteristics
that are mentioned in the articles. Nevertheless, the portal developer, having the
knowledge that Barack Obama is one of the Nobel Prize recipients can provide
an add-hoc solution that links these two entities.

Consider now a blog post that talks about a person called Barack Obama,
who is the recipient of a Nobel Prize and lives in Washington DC (shown as
entity e3 in Figure 1). Clearly no document from those seen so far had an en-
tity with these three characteristics. There are strong indications, however, that
this person is the same as the one in the first article, since they agree on the
name and the residence place. It similarly agrees with the entity in the second
article. Nevertheless, the portal developer, that knows that the entities in the
first two articles are actually the same person, that has the combined set of their

3 http://www.thoora.com/
4 http://www.daylife.com/

e1 e2 e3

(a)

id : URL-A
name: Barack Obama

residence:
Washington DC
genre: Male

id : URL-B
name: Barack Obama
awards: Nobel Prize

senator: Illinois

id : URL-C
name: Barack Obama
awards: Nobel Prize

residence:
Washington DC

(b)

entity id: 1254
name: Barack Obama

residence:
Washington DC

awards: Nobel Prize
senator: Illinois
genre: Male

alternative id: URL-A
alternative id: URL-B
alternative id: URL-C

Example Queries:

1: Obama nobelist
2: senator Illinois nobel price

(c) 3: Barack Obama senator
4: name: “Barack Obama”; awards: “nobel”

Fig. 1. (a) Theree entities found in news articles and blog posts. (b) The corresponding
entity entry created through entity-based aggregation. (c) A few query examples.

characteristics, can more confidently conclude that the entity mentioned in the
blog post is the one in the first two. This kind of knowledge, however, resides
in the mind of the portal developer alone with no systematic way of represent-
ing and using it. Linked-data, when available, may be exploited to reach similar
conclusions, but it will require global knowledge, advanced reasoning and is not
guaranteed to work in all cases.

To overcome this problem, during integration, the portal can utilize a repos-
itory of entities that contains discriminative knowledge about a large number
of already known real world objects. These entities could have been collected
from a number of existing social and semantic applications, such as Wikipedia,
DBPedia, and Freebase, as well as articles that the portal crawler has already
crawled and analyzed. The repository need not be a knowledge base, since this is
neither realistic, nor practical. Instead, it should contain a collection of entities
alongside their characteristics that allow their identification. Each entity, should
also have a unique identifier that distinguishes it from all the other entities. The
creation and use of such a repository requires solutions to a number of challeng-
ing issues. These issues include among others the efficient and effective entity
search, population, storage, and maintenance of entities.

At run time, when the portal analyses an article and detects an entity, it
collects its characteristics, and generated entity search queries using these char-
acteristics. The repository receives this query and retrieves the identifier of the
corresponding matched entity. Naturally, it may be the case that no entity with
all these characteristics exists, or the case that there are more than one such
entities. Thus, the repository responds to such a query request by providing a
small list of candidates.

The richer the repository is, the more the confidence for the returned entities
of a search request will be. If no entities are returned, then a new entry may be

created in the repository for that new entity with the characteristics mentioned
in the query, for example as shown in Figure 1(b). This will enable its future
identification in other articles or posts. If, instead, the entity is found in the
repository through some partial match, then the characteristics of the found en-
tity may be enhanced with the additional characteristics mentioned in the query
to improve the chances and confidence of its identification in future articles.

3 Matching Framework

Consider again the challenges of integrating Web 2.0 data. Such data do not have
a fixed schema and may consist of name-value attributes, attributes with only
values, or a mix of both. Furthermore, the data given for integration may contain
only one entity as well as a collection of entities which are somehow related to
each other, such as entity repositories from Social applications. Despite the many
existing results in entity matching, no solution has been found to work for all
situations.

Our matching framework focuses on performing integration of data com-
ing from Web 2.0 applications and sources, and in particular on matching and
merging together the data describing the same real world objects. As such, it
is responsible for receiving the queries requesting entities, controlling the exe-
cution flow, which primarily invokes the matching process, and returning the
result set. Thus, our infrastructure can be useful for applications and systems
that incorporate Web 2.0 data, for example the one described in the motivating
example (i.e., Section 2).

Matching Modules

-- Entity Store –

-- Matching Framework –-

Module

Manager

Searcher

…

Query Generation

Transformation

 Entity Matching

@

E
n

tity
 N

a
m

e
 S

y
s
te

m

Web 2.0 data
repository

indexer

Fig. 2. An illustration of the Matching Framework within the ENS service.

Entity Name Service (ENS). The main components of the Matching
Framework are illustrated in Figure 2. Note that our framework is part of the
Entity Name Service (ENS) [23]; an entity repository service that maintains a
collection of entities as well as a number of discriminative properties that are

used for entity identification and for assigning a unique identifier to each of the
entities.

To achieve its goals, ENS addresses a set of challenges. The first challenge is
to introduce a generic methodology for matching that incorporates an extend-
able set of matching modules, each focusing on addressing a specific matching
situation. Another related challenge involves the selection of either the most
promising module for a given query, or the combination of different modules.
Additionally, the ENS service need to efficiently store and retrieve entities from
the potentially very large entity collection and this is performed through the
Entity Store.

Entity Store. A matching algorithm typically performs a lot of query-entity
comparisons, which means that existing techniques either fail at Web scale or
have performance that is prohibited for run-time. To minimize the time required
for comparisons, we try to reduce the number of entities given to the matching
algorithms for processing. The entity store provides a repository of entities along
with an index for efficient entity retrieval. The requirement for the entity store
is therefore to provide the set of entities that contain some of the information
from the given query. By further processing these entities we can then identify
the one requested by the query. We refer to the set of entities returned by the
store as the candidate set.

In our current implementation we used Necessity system [20] as the entity
store. Necessity is composed of two main part, which are shown in Figure 2. The
first part is the repository, implemented as a key-value Voldemort repository5

and able to maintain a large number of entities. Scalability in Voldemort is
obtained by simply adding more servers when more entities are added to the
repository, which means that the remaining components of the ENS are left
untouched. Moreover, this key-value repository supports linear scalability since
it is designed from scratch to scale by simply adding new nodes. The second part
of is the inverted index, implemented as a Solr Brocker6, which uses Lucene7

for full-text indexing and search. When a new query arrives, the Solr broker
will assign the query to some of its shards, collect their top-k results, and then
aggregate them to identify the best top-k entities, i.e., the candidate set that is
then given to the matching framework. Please not that the details with respect
to the entity store are not included in the journal since these are available in the
publication describing the particular system [20].

Overview of Query Answering. The processing flow is controlled by the
Entity Matching component, which also receives queries from users. When this
component receives a query, it first gives it to the Query Generation and Trans-
formation components for generating initial request commands for the Entity
Store, and also to the Module Manager component for identifying the most
suitable matching module or modules that could process this query. The initial
request commands are then revised by the selected matching module(s) and then

5 http://project-voldemort.com/
6 http://lucene.apache.org/solr/
7 http://lucene.apache.org/

given to the Searcher component for pass it on to the Entity Store. The store
processes the request commands and returns the candidate set. The entities from
the candidate set are then given to the module(s) for performing matching and
identifying the entity that corresponds to the given query. Through the Entity
Matching component, the users receives the results for the processed queries.

The following paragraphs, we discuss the components composing the Match-
ing Framework. We also give the details of the processing performing in each of
these components.

3.1 Query Generation & Transformation

The Matching Framework needs to generate the request commands for the Entity
Store. Our current system incorporates the Necessity entity store, thus, we
need to generate a Lucene query. Since the Entity Store offers very efficient
but restricted search functionality, this step might also require the generation
of more that one queries, with the final candidate set being the merging of the
results returned by the entity store for all generated queries.

We already explained, the query can be enhanced and refined by the match-
ing modules according to their needs. This might involve query transforma-
tions on the schema level, for example to adapt from attributes used by the
user/applications to attributes available in the repository, to include attribute
alternatives, or to relax the query to the most frequent naming variants.

3.2 Matching Modules

Individual matching modules implement their own method for matching queries
with candidates, i.e., entities returned from the store. Naturally, the algorithm
of each module will focus on a specific matching task. For example, we can
have matching modules providing algorithms for entities that do not contain
attribute names, or for entities that contain inner-relationships. As shown in
Figure 2, modules may also use a local database for storing their internal data,
or even communicate with external sources for retrieving information useful for
their matching algorithm.

In addition to the individual modules, the Matching Framework can also
contain modules that do not compute matches directly, but by combining the
results of other modules. The current version of our system can handle the
following two types of combination modules: (i) sequential and (ii) parallel pro-
cessing. In sequential processing, the matching module invokes other modules in
a sequence, and each module receives the results of previously invoked module.
Therefore, each module refines the entity matches they receive and the resulted
entity matches are the ones returned by the last module. The parallel processing
invokes a set of matching modules at the same time. Each module returns its
entity matches, and thus the combination module needs to combine their results.

3.3 Module Manager

This component is responsible for managing the modules included in the Match-
ing Framework. To know the abilities of each module, the Module Manager main-
tains the module profiles. These profiles contain not only the module description
and classification, but also information on their matching capabilities. For ex-
ample, the average time required for processing queries and the query formats
that they can handle.

The manager is responsible to select the best suitable matching module to
perform the entity matching for the given entity. The basic methodologies for
the performing the module selection are the following:

– The entity request explicitly defines the matching module that should be
used. Such a selection can, for example, be based on previous experience
or by knowing that a specialized matching module is more effective when
integrating the data of a specific Social application.

– The matching module is selected based on information in the entities to be
integrated. This may include requirements with respect to performance or
supported entity types.

– The module is selected based on an analysis of the data in the entity to be
integrated, for example existence or not of attribute names.

In addition to the basic methodologies, we can also have advance methodolo-
gies. Given the architecture of our Matching Framework we can actually perform
the matching using more than one modules. This will result in a number of pos-
sible linkages, each one encoding a possible match between two entities along
with the corresponding probability (indicating the belief we have for the partic-
ular match). Thus, the goal now is to maintain these linkages in the system and
efficiently use them when processing incoming requests.

This is an interesting and promising direction that has not yet been studied
deeply by the community. With respect to our Matching Framework, we have
investigated how to perform only the required merges at run-time by following
the possible world semantics given the linkages as well as effectively taking into
consideration the entity specifications included in given requests [17]. In addi-
tion, we have also studied the possibility of executing complex queries instead
of just answering entity requests. More specifically, we proposed the usage of an
entity-join operator that allows expressing complex aggregation and iceberg/top-
k queries over joins between such linkages with other data (e.g., relational tables)
[16]. This includes a novel indexing structure that allows us to efficiently access
the entity resolution information and novel techniques for efficiently evaluating
complex probabilistic queries that retrieve analytical and summarized informa-
tion over a (potentially, huge) collection of possible worlds.

4 Matching Modules

In this section we explain how the suggested system can incorporate and use
existing matching techniques. For this task, it is important to understand the

methodologies followed by the existing techniques. Thus, we consider the existing
techniques categorized according to their methodology and explain how each
category can be incorporated in our system.

Please note that we discuss existing matching techniques to the extend needed
for this purpose of the introduced system. A complete overview of existing match-
ing techniques as well as related surveys is available in [9], [12], [15], [14], and
[29].

4.1 Atomic Similarity Techniques

The first category of matching techniques consider that each entity is a single
word or a small sequence of words. Matching issues is the entities of this cat-
egory can occur from misspellings, abbreviations, acronyms, naming variants,
and use of different languages (i.e., multilingualism). As examples consider the
following: entity-1 is “TCCI Journal” and entity-2 is “Transactions on Compu-
tational Collective Intelligence journal”. The matching methodology followed by
the techniques of this category is based on detecting resemblance between the
text values on the entities; more details about the followed methodology can be
found in [6] and [8].

Module Example - Handing multilingualism. In the modern global
environments, the data is collected from many physically distributed sources or
applications that may be located in different countries. This unavoidable leads
to data expressed in a diverse set of languages. Furthermore, users with different
cultural backgrounds typically pose queries in their native languages, that is not
necessarily the same as the one in which the data has been stored. In such a
situation, it is not at all surprising that traditional string matching algorithms
are dramatically failing. A popular solution to cope with the problem is to use
some form of standardization. For instance, as a convention, all the information
can be translated into English and then stored into the system. When a query
is received, it is first translated into English, if not already, and then evaluated
against the stored data.

The specific approach has unfortunately two main limitations. The first is
that the data will be returned to the users in English which will be surprising
if the user knew that the data had been inserted is some other language. The
second limitation is that the translation from one language to another is not
always perfect. Thus, if the data was original in a language, say Italian, and the
query posed by the user is also in Italian, translating both of them in English
and then evaluating the query against the data may loose in terms of accuracy
and precision.

For the above reasons, we follow an approach in which we combine the best
of both worlds. In particular, we maintain two copies of the data. One that is
the original form in which the data has been inserted. The second one, called
the canonical representation, is the translation of the original data into English.
When a user query is received, then two evaluations are taking place in parallel.
The first is the evaluation of the user query as-is over the original data. This
evaluation has the advantage that it allows the high-accuracy retrieval of the
data that match the provided query in the same language. At the same time, the

provided query is translated into the canonical form, i.e., English, and evaluated
against the canonical forms of the data. This will allow the query to retrieve
as answers, data that has been inserted originally in some completely different
language. At the end, the result lists of the two approaches are merged together
into one single list, by considering the combined returned score.

Another advantage of the approach we have followed, apart from the fact that
it is easily extended to support more than one languages. Also, the translation
mechanism allows for the utilization of additional information that guides the
translation such as personalization, time, etc.

4.2 Entities as sets of data

This entity representation of this category can be seen as an extension of the
previous one. More specifically, the entities are now represented as a small col-
lection of data. The most typical situation is considering that each record of a
relational table provides an entity. As examples consider the following: entity-1 is
{“TCCI Journal”, “2015”, ...} and entity-2 is {“Transactions on Computational
Collective Intelligence journal”, “2015”, ...}

One methodology to address this issue, it to concatenate the data composing
each entity into one string and then perform matching using a technique from
the previous category [7, 21]. Other techniques perform matching by detecting
mappings between entities. For example, [30] detects mappings by executing
transformations, such as abbreviation, stemming, and the use of initials. Doan
et al. [10] apply profilers that correspond to predefined rules with knowledge
about specific concepts.

In the following paragraphs we present two such modules that have been
included in our system. The first implements the methodology suggested from
an existing technique, whereas the second is a new technique created for targeting
a specific entity type.

Module Example II - Group Linkage. This module adapts the algorithm
suggested in [24], and matches an entity to a candidate when it detects a large
fraction of similarities between their data. For being able to use this algorithm
we consider the given query Q and the candidate C as the two entities. Their
matching probability is given by:

MP (Q,C) =

∑
∀pi∈Q∀pj∈C

{
sim(pi, pj) if sim > t

0 otherwise

|Q|+ |C| −matched pairs,
(1)

where |C| gives the number of attribute value pairs in the candidate, |Q| the
number of predicates in the query, and matched pairs the number of sim(pi, pj)
higher that threshold t.

Module Example II - Eureka Matching. The matching methodology of
the Eureka module computes the overlap of the predicates in the query with the
attributes of the candidates. As an initialization step, the algorithm creates a
small local inverted index as follows: Each term (i.e., word) in the values from the
attribute-value pairs of the query become keys in a hash table. We then process

the information in each candidate and when we identify a candidate contains
one of these values, we add the candidate’s identifier with the values attribute
to the list of entities of the corresponding key. The score MP (Q,C) between the
entity described in the query Q and candidate C is computed by:

∑
∀p1∈Q, ∀p2∈C

1 × importance(p1.attr),
if p1.attr = p2.attr & p1.value ∈ p2.value

0.5 × importance(p1.attr),
if p1.attr = null & p1.value ∈ p2.value

(2)

where importance is a weight that reflects the importance of a specific attribute,
e.g., attribute name is more important than attribute residence for the entities
of Figure 1.

4.3 Collective Matching

The techniques performing collective matching are based not only on the data
composing each entity (as in Sections 4.1 and 4.2) but also on available relation-
ships and associations between the entities. For an example, consider that we are
now working on addressing the entity matching problem in a collection of pub-
lications. One of the publications has authors α, β, and γ. Another publication
has authors α, β, and γ’. Performing matching using one of the methodologies
from the previous categories would result in the matching of authors α and β
between the two publications, and a strong similarity between author γ and γ’.
The former (i.e., matching of authors α and β) gives a relationship between
the two publications. Combining this relationships with the similarity between
γ and γ’ increases our belief that these authors are actually the same, and thus,
perform their match.

One approach for performing collection matching was introduced by Anan-
thakrishna et al. [4]. It detects fuzzy duplicates in dimensional tables by ex-
ploiting dimensional hierarchies. The hierarchies are built by following the links
between the data from one table to the data from other tables. Entities are
matched when the information across the generated hierarchies is found simi-
lar. The approach in [5] uses a graph structure, where nodes encode the entities
and edges the inner-relationships between entities. The technique uses the edges
from the graphs to cluster the nodes. The entities inside clusters are considered
as matches and are then merged together. Another well-know algorithm is the
Reference Reconciliation [11]. Matching starts by comparing the entity literals
to detect possible relationships between entities. The detected matches are then
propagated to the rest of the entities and is used for increasing the confident for
the related entity matches. The approach introduced in [18] models the data into
a Bayesian network, and uses probabilistic inference for computing the proba-
bilities of entity matches and for propagating the information between matches.

Incorporating collective matching techniques is also possible with our sys-
tem. The main required functionality for having such a module is being able to
maintain the information related to the relationships between entities, including
efficient update and navigation mechanism. This is a functionality that can be
achieved through the entity store by storing relationships inside each entity, i.e.,

as attribute value pairs. The entity store can also implement specialized indexes
for the relationships - if this is useful for the particular technique. Another func-
tionality that would be helpful is being able to call other matching modules, and
in particular modules from Section 4.1 and 4.2 for detecting possible similarities
between entities. As we explained in Section 3 and also illustrate in Figure 2, this
capability can by realized through the matching framework thourgh sequential
or parallel processing of modules.

4.4 Matching using Schema Information

Another helpful source of knowledge related to entity matching is through the
available schema information. Note that knowledge coming from schema infor-
mation is typically correspondences between the entity attributes and not be-
tween the actual entities [13, 28], and thus can not directly be used for matching.
However, it definitely assist the matching methodologies presented in the previ-
ous categories. For example, by knowing which schema attributes are identical,
or present a high similarity, we perform a focused entity matching only on the
particular attributes.

Our system can easily incorporate such methods. The most prominent mech-
anism is to implement them as a typical matching module. Schema information
is anyway present in the entities of the Entity Store, and thus, accessible to the
modules. The entity matching process that uses the results of this processing
can be included in the same module, or in another module that just call it.

4.5 Blocking-based Matching

One methodology to increase the efficiency of matching is by reducing the per-
formed entity comparisons. Blocking is focusing on this, and more specifically
through the following process: entities are separated into blocks, such that the
entities of the same block can result in one or more matches, whereas the entities
of different blocks can not result in matches. Having such blocks means that we
do not need to compare all entities between them but only the entities inside
the same block, which of course reduces the comparisons.

The most common methodology for blocking is to associate each entity with
a value summarizing key its data and use this to create the blocks. For exam-
ple, the approach introduced in [22], builds high-dimensional overlapping blocks
using string similarity metrics. Similarly, the approach in [1], uses suffixes of
the entity data. One group of approaches focused on data with heterogeneous
semi-structured shemata. For instance, [25, 26] introduced an attribute-agnostic
mechanism for generating the blocks and explained how efficiency can be im-
proved through scheduling the order of block processing and identifying when to
stop the processing. The approach introduced in [31] processes iteratively blocks
in order to use the results of one block in the processing step of another block.
The idea of iteratively block processing was also studied in [27]. It provided a
principled framework with message passing algorithms for generating a global
solution for the entity resolution over the complete collection.

Incorporating blocking-based matching in our system can be achieved with
two ways. The first is by modifying the storage functionality, and in particular,

the method for adding them in the Entity Store. Entities should be also processed
to generate the value summarizing key which is also included (and stored) in their
attribute value pairs. These keys are used by the matching modules for skipping
entity comparisons. The alternative incorporation of blocking is by modifying
the matching framework in order to follow one specific blocking technique, i.e.,
entities are actually separated using the value summarizing key and are given to
the modules grouped according to the block in which they belong.

5 Usage Experience

We now demonstrate and discuss the applicability of the suggested infrastruc-
ture. For this we use various collection of requests that can be used to evaluate
methodologies for entity linkage as well as entity search. Each collection is taken
from a different real world data source (e.g., structured and unstructured data)
and this leads to requests that have different format. Note that the entity re-
quests are accompanied with a small set of urls from the systems in which they
are described (e.g., Wikipedia url, OKKAM id, etc.). The following paragraphs
describe these entity collections8 and report the required processing time as well
as the quality of the returned answer set.

(A) People Information. The first collection contains 7444 entity requests
from short descriptions of people’s data from Wikipedia. The text describing
these people was crawled and then processed using the OpenCalais extractor
to extract the contained entities. Some examples are: (i) “Evelyn Dubrow”
Country=“US” Position=“womenlabor advocate” and (ii) “Chris Harman” Po-
sition=“activist” Position=“journalist”.

(B) News Events & Web Blog. Wikipedia contains small summaries of news
events reported in various online systems, such as BBC and Reuters. We used
the OpenCalais extractor to identify the entities in the events. This also resulted
in entity type along a few name-value attributes for each entity. We also used
the OpenCalais extractor to identify the entities described in a small set of blogs
discussing political events, e.g., http://www.barackoblogger.com/. The process
resulted in a collection with 1509 entity requests. Some request examples are:
(i) Alex Rodriguez and (ii) name=“Charles Krauthammer”.

(C) Historical Records. Web pages sometimes contain local lists of entities, for
example members of organizations, or historic records in online newspapers. This
collection contains 183 entity requests taken from such lists, i.e., no extraction
process was involved. Some examples are: (i) Don Henderson British actor and
(ii) George Wald American scientist recipient of the Nobel Prize in Physiology
or Medicine.

(D) DBPedia. The last entity collection contains 2299 requests from the
structured DBPedia data. Some examples are: (i) name=“Jessica Di Cicco”
occupation=“Actress Voice actress” yearsactive=“1989-present” and (ii) birth-
name=“Jessica Dereschuk” eyeColor=“Green” ethnicity=“WhiteCaucasian” hair-
Color=“Blonde” years=“2004”.

8 The collections can be found at http://www.softnet.tuc.gr/˜ioannou/entityrequests.html

To evaluate the introduced infrastructure we used the Necessity entity
store [20] with ∼6.8 million entities. The entities in the store were people and
organizations from Wikipedia, and geographical items from GeoNames. We then
used the infrastructure to retrieve the entities for 4000 requests from our four
collections. For each request the infrastructure returned a list of entities match-
ing the particular request. The requested entity was the first item in the list for
77.5%. The average time for processing the requests was 0.025 seconds.

6 Conclusions

In this work we presented an novel approach for enabling aggregators to per-
form entity-based integration, leading to more efficient and effective integration
of Social and Semantic Web data. In particular we equipped aggregators with
an Entity-Name-System, which offers storage and matching functionality for en-
tities. The matching functionality is based on a generic framework that allows
incorporation and combination of an expandable set of matching modules. The
results of an extended experimental evaluation on Web data, such as Web blogs
and news articles, demonstrated the efficiency and effectiveness of our approach.

Ongoing work includes the improvement of the existing functionality based on
the fact that many entity integration requests may arrive at the same time to the
aggregator. This requires a special handling both for reasons of efficiency and for
reasons of accuracy. We refer to this task as bulk integration. The entities given
for bulk integration may exhibit some special characteristics, such as presence
of inner-relationships, which should be also considered to improve integration’s
performance and quality. We are also investigating the ways of improving inte-
gration by exploiting external knowledge in systems, such as WordNet. Another
interesting direction, which we are currently investigating, is how to combine
and reason over the matching results that have been generated by more than
one matching modules.

References

1. Aizawa, A., Oyama, K.: A fast linkage detection scheme for multi-source informa-
tion integration. In: WIRI. pp. 30–39 (2005)

2. Alexe, B., Tan, W.C., Velegrakis, Y.: STBenchmark: towards a benchmark for
mapping systems. PVLDB 1(1), 230–244 (2008)

3. Amer-Yahia, S., Markl, V., Halevy, A.Y., Doan, A., Alonso, G., Kossmann, D.,
Weikum, G.: Databases and Web 2.0 panel at VLDB 2007. SIGMOD Record (2008)

4. Ananthakrishna, R., Chaudhuri, S., Ganti, V.: Eliminating fuzzy duplicates in data
warehouses. In: VLDB (2002)

5. Bhattacharya, I., Getoor, L.: Deduplication and group detection using links. In:
LinkKDD (2004)

6. Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., Fienberg, S.: Adaptive name
matching in information integration. IEEE Intelligent Systems 18(5), 16–23 (2003)

7. Cohen, W.: Data integration using similarity joins and a word-based information
representation language. TOIS 18(3), 288–321 (2000)

8. Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string distance metrics
for name-matching tasks. In: IIWeb co-located with IJCAI. pp. 73–78 (2003)

9. Doan, A., Halevy, A.Y.: Semantic integration research in the database community:
A brief survey. AI Magazine (2005)

10. Doan, A., Lu, Y., Lee, Y., Han, J.: Object matching for information integration:
A profiler-based approach. In: IIWeb co-located with IJCAI. pp. 53–58 (2003)

11. Dong, X., Halevy, A., Madhavan, J.: Reference reconciliation in complex informa-
tion spaces. In: SIGMOD Conference. pp. 85–96 (2005)

12. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A
survey. TKDE (2007)

13. Fagin, R., Haas, L., Hernandez, M., Miller, R., Popa, L., Velegrakis, Y.: Clio:
Schema mapping creation and data exchange. In: Conceptual Modeling: Founda-
tions and Applications, pp. 198–236. Springer (2009)

14. Ferrara, A., Nikolov, A., Scharffe, F.: Data Linking for the Semantic Web. Journal
of Data Semantics 7(3) (2011)

15. Getoor, L., Diehl, C.P.: Link mining: a survey. SIGKDD Explorations (2005)
16. Ioannou, E., Garofalakis, M.: Query analytics over probabilistic databases with

unmerged duplicates. TKDE 27(8), 2245–2260 (2015)
17. Ioannou, E., Nejdl, W., Niederée, C., Velegrakis, Y.: On-the-fly entity-aware query

processing in the presence of linkage. PVLDB 3(1), 429–438 (2010)
18. Ioannou, E., Niederée, C., Nejdl, W.: Probabilistic entity linkage for heterogeneous

information spaces. In: CAiSE. pp. 556–570 (2008)
19. Ioannou, E., Niederée, C., Velegrakis, Y.: Enabling entity-based aggregators for

web 2.0 data. In: WWW. pp. 1119–1120 (2010)
20. Ioannou, E., Sathe, S., Bonvin, N., Jain, A., Bondalapati, S., Skobeltsyn, G.,

Niederée, C., Miklos, Z.: Entity search with necessity. In: WebDB (2009)
21. Koudas, N., Marathe, A., Srivastava, D.: Flexible string matching against large

databases in practice. In: VLDB. pp. 1078–1086 (2004)
22. McCallum, A., Nigam, K., Ungar, L.: Efficient clustering of high-dimensional data

sets with application to reference matching. In: KDD. pp. 169–178 (2000)
23. Miklós, Z., Bonvin, N., Bouquet, P., Catasta, M., Cordioli, D., Fankhauser, P.,

Gaugaz, J., Ioannou, E., Koshutanski, H., Maña, A.: From web data to entities
and back. In: CAiSE. pp. 302–316 (2010)

24. On, B.W., Koudas, N., Lee, D., Srivastava, D.: Group linkage. In: ICDE (2007)
25. Papadakis, G., Ioannou, E., Niederée, C., Fankhauser, P.: Efficient entity resolution

for large heterogeneous information spaces. In: WSDM. pp. 535–544 (2011)
26. Papadakis, G., Ioannou, E., Niederée, C., Palpanas, T., Nejdl, W.: Beyond 100

million entities: large-scale blocking-based resolution for heterogeneous data. In:
WSDM. pp. 53–62 (2012)

27. Rastogi, V., Dalvi, N., Garofalakis, M.: Large-scale collective entity matching.
PVLDB 4(4), 208–218 (2011)

28. Shen, W., DeRose, P., Vu, L., Doan, A., Ramakrishnan, R.: Source-aware entity
matching: A compositional approach. In: ICDE. pp. 196–205 (2007)

29. Staworko, S., Ioannou, E.: Management of inconsistencies in data integration. In:
Data Exchange, Integration, and Streams, pp. 217–225 (2013)

30. Tejada, S., Knoblock, C.A., Minton, S.: Learning domain-independent string trans-
formation weights for high accuracy object identification. In: KDD (2002)

31. Whang, S., Menestrina, D., Koutrika, G., Theobald, M., Garcia-Molina, H.: Entity
resolution with iterative blocking. In: SIGMOD Conference. pp. 219–232 (2009)

