(12)

United States Patent

Kotidis et al.

US007440957B1

(10) Patent No.: US 7,440,957 B1
(45) Date of Patent: Oct. 21, 2008

(54)

(735)

(73)

@
(22)
(1)

(52)
(58)

(56)

UPDATES THROUGH VIEWS

Inventors: Ioannis Kotidis, Lake Hiawatha, NJ
(US); Divesh Srivastava, Summit, NJ
(US); Ioannis Velegrakis, Lake
Hiawatha, NJ (US)

Assignee: AT&T Intellectual Property IL, L.P.,
Reno, NV (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 186 days.

Appl. No.: 11/290,683
Filed: Nov. 30, 2005

Int. CL.

GO6F 17/30 (2006.01)

US.CL s 707/100; 707/200

Field of Classification Search 707/2-4,
707/100, 200

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,924,103 A * 7/1999 Ahmedetal. 707/201
6,449,605 Bl 9/2002 Witkowski

6,546,402 Bl 4/2003 Beyer et al.
6,609,122 Bl 8/2003 Ensor

6,735,717 B1* 5/2004 Rostowfske etal. 714/13
6,751,619 B1* 6/2004 Rowstron etal. 707/10
7,092,951 B1* 8/2006 Luo etal. .. 707/100

7,181,452 B1* 22007 Luoetal.ccccoeinnnins 707/8
7,243,088 B2* 7/2007 Vermaetal. 707/1

* cited by examiner

Primary Examiner—Cheryl Lewis
(74) Attorney, Agent, or Firm—Hoffmann & Baron, LLP

(57) ABSTRACT

A method and system are disclosed that allow database views
and base tables to be treated identically with respect to que-
ries, insertions, deletions and updates. The method and sys-
tem include separating the data instance of a view into a
logical data instance and a physical data instance. The physi-
cal data instance is extended to include identifiers on data
values that are used to query insert, delete and update infor-
mation in base tables. The manner in which users and appli-
cations interface with the view remains unchanged since
those interactions occur at the logical level.

11 Claims, 6 Drawing Sheets

10 SERVER 8
20~ NON-VOLATILE MEMORY - 12
INTERFACE | [TRANSLATION | [EXTENSION
MODULE MODULE MODULE INPUT/QUTPUT |1~ 14
g 3)
2 2% 2 ~ 16
30—~ 0BMS I
CATALOG
wooie. F1 VIEW INSTANCE - 36
1 I
3) T]
PERSONNAL | [TEACHING | [SCHEDULING
TABLE TABLE TABLE
T 3 T
41— 38 40 42 ¢

60 —1—

50~~~ ACCESS DEVICE
NONVOLATILE - 92
MEMORY
~ 56
BROWSER
INPUT/QUTPUT }—T~ 54
T
_\

44

62 61

U.S. Patent Oct. 21, 2008 Sheet 1 of 6 US 7,440,957 B1

FIG. 1
10~ SERVER 5
20~ NON-VOLATILE MEMORY CPU 12
INTERFACE | [TRANSLATION | [EXTENSION
MODULE MODULE MODULE INPUT/OUTPUT [~ 14
3) 3
2 24 26 RAM 16
30— D8NS
C ° |
CATALOG
ol VIEW INSTANCE - 36
|
332) ﬂ |
PERSONNAL | [TEACHING | [SCHEDULING
TABLE TABLE TABLE
3 3 s
41— 38 40 42 $—

50— ACCESS DEVICE

NONVOLATILE | CPU —1~ 52
MEMORY
| $— RAM [T 96
NETWORK BROWSER
60 —+— — INPUT/QUTPUT [—T~ 54
i
44 ‘) \

)

62 b1

US 7,440,957 B1

Sheet 2 of 6

Oct. 21, 2008

U.S. Patent

G lud
£7 Iy
0l [IF
s 8
¥4
Ot 3| Py 18
0l fold | xo4 | X0y | 13
Gy foud | xof | Xof | S)
€7 foud | xo4 | X0 | SO
0l fold | xof | x04 | S)
0l foud | xof | ¥o3 | S0
wi | Jnod | was |dinba | joud | dws | dsp
98 —— apnpayag 1N09=WAS 1 uyana) *oanaEmX_ccoemn_uf
aa dw | SBUOr | o
13 80 |06 S0 dy | xog | ¢ 98
pp g | $ 60 | fod | xoj [¥y | seuor| pyd | §
84— R d
an| 80 |53 [o | fod | xo xof | 33 |4
WN | 0} | W | fod | xo \s X0 |)
79—~ hop wJ nod l~cg [was dinba | joud 1 oL/ dwa | dop {~7y
8)|npayas buiyana] |auuosIag
S S S
08 I yL 8L oy 1y Z 'H11

U.S. Patent Oct. 21, 2008 Sheet 3 of 6 US 7,440,957 B1
FIG.
G- 3 24
3
TRANSLATION MODULE
160 162 168
S S S
DELETE MODULE
INSERT PROCESS| | PROCESS UPDATE
MODULE IN() OUT() MODULE
{ {
))
164 166
FIG. 4
_g (START)
y
REPLACE EVERY VIEW INVOLVED IN |~ 15¢
THE QUERY BY ITS VIEW DEFINITION
PROCESS SELECT CLAUSE OF QUERY |— 152
INTRODUCE JOIN WITH DOMAIN | __ 5,
TABLE IN QUERY
REPLACE SELECT CLAUSE
EXPRESSION WITH DOMAIN DISPLAY [~ 196
FORM ATTRIBUTES
|
PROCESS CONDITIONS IN THE WHERE | {55
CLAUSE OF QUERY

i
(_END)

US 7,440,957 B1

Sheet 4 of 6

Oct. 21, 2008

U.S. Patent

gl ~—

PoM ¢C 80
on| 01 8@
- UON 0l 1d
Aop wy noa
3|npayas

5
iy

Ol

445
00l ~

mm |
foud £ dxoy ;
I 8C1
foud | dxoj \“oﬁ
foud | dxoy 1
ouw | sauop \vm_ uwuﬂ“ = L0
d| X0{ x04 | 13
foud X04 Sauor [|1Yd
ford | xoy —Xot | 33 {85l
14| fod | xof] | 9
was | dinba | joud oL dwa | dap
buiyona| |duuos.iag
) Y
0¥ 8¢

S HID

US 7,440,957 B1

Sheet 5 of 6

Oct. 21, 2008

U.S. Patent

vl

foud gy | 13
(osd mwva 13 114!
_ o Opgy | 33
3 d dvoy | 1
pom | €7 foud sauof | (lyd
an| 0l _.o.a —X04- | 33—
UoW 0l (0sd X0 X0{ | <)
Aop w dinba joud dws | dep
8|npayds Buyona] |auuos.ay
)))
o oF € 9 Hry

US 7,440,957 B1

Sheet 6 of 6

Oct. 21, 2008

U.S. Patent

0l 0Ll 0l
§ y
AV AT AY A4 yl
§ 4 1y iz | o TR
aw |7 g | € A 0z | ol \ \
dj 17 SO | If Ie 0¢ 0l sauor | 1}
fod | 07 W | 0S 0¢ 0Z 0) x04 | 0l
Aodsip | PIA foidsip | PIA was | dinba | joud foidsip| pIA
Wogdinbe NOQuas buiyona) KoQjoud
Sy S) Y
80} 90! 0f 701
TS S lyd | ¢
sauor | |} oL | 2 13 AN
CH~1 X0 or 0 0l Rl S |
Aojdsip| PIA dwa | dap fojdsip| QI
noqdwa ENVNEN noqdep
Y Y Yy
20! 8¢ 00!
Z

US 7,440,957 B1

1
UPDATES THROUGH VIEWS

TECHNICAL FIELD

The present invention generally relates to relational data-
base management systems, and more particularly to data-
bases using views.

BACKGROUND OF THE INVENTION

Generally, a database view is a virtual or logical database
table composed of the result set of a pre-compiled query. A
view provides limited access to only portions of database
tables that are relevant to an application. Typically, database
views achieve schema independence by allowing certain
physical database changes to occur while keeping the logical
view interface unchanged.

Views are usually virtual meaning that their instance data is
completely defined by applying the view query on base
tables. Due to this virtual nature, view updates need to be
translated to updates on base tables in a way that the view state
after the update is the same if the update was applied to a
materialized view (i.e., a physical copy of a view that is stored
or maintained).

The prior art has shown the difficulty of translating view
updates in a side-effect free manner. For example, as
described in the publication On the Correct Translation of
Update Operations on Relational Views, ACM TODS, 8(3):
381-416, 1982, which is incorporated herein by reference,
Dayal and Bernstein disclose generating translations for view
updates. The views disclosed in Bernstein, however, are
restricted to those without join attributes in the view interface.
Similarly, as described in Update Semantics of Relational
Views, ACM TODS, 6(4):557-575, December 1981, which is
incorporated herein by reference, Bancilhon and Spyratos
disclose using a view complement to determine the existence
ofunique translations. Computation of the view complement,
however, has been shown to be NP-Complete (See S. Cos-
madakis and C. Papadimittiou, Updates of Relational Views,
In PODS, page 317, March 1983, which is incorporated
herein by reference).

Accordingly, there is a need to achieve side-effect free
translations for various types of view updates. Furthermore,
there is a need to translate a view deletion in a manner that
does not affect the instance of any other subview (e.g., a
sub-query of a view) defined for the view.

SUMMARY OF THE INVENTION

Techniques are disclosed that allow database views and
base tables to be treated identically with respect to queries,
insertions, deletions and updates. The techniques include
separating the data instance of a view into a logical data
instance and a physical data instance. The physical data
instance is extended to include identifiers on data values that
are used to query insert, delete and update information in base
tables. The manner in which users and applications interface
with the view remains unchanged since those interactions
occur at the logical level. Additional details of this technique
are described in the publication Updates Through Views: A
New Hope, 22nd International Conference on Data Engineer-
ing, Apr. 3-7, 2006, which is incorporated herein by refer-
ence.

Various aspects of the system relate to processing database
view requests in a side-effect free manner. For example,
according to one aspect, a method includes propagating arbi-
trary updates to views to underlying base tables by associat-

15

20

25

30

35

40

45

55

60

65

2

ing an identifier with a data value included in a physical data
instance, the physical data instance derived from at least one
base table,

mapping at least one of a tuple insertion, a tuple deletion and
a value update to the physical data instance using a view
definition and the identifier, and

applying the at least one of a tuple insertion, a tuple deletion
and a value update to the physical data instance.

In some preferred embodiments, the method also may
include generating a clone tuple and a preserve tuple. The
clone tuple and preserve tuple are associated with at least one
of'the tuple insertion, the tuple deletion and the value update.
The method may also include generating a join-graph that is
used in applying at least one of the tuple insertion, the tuple
deletion and the value update to the physical data instance.

A system, as well as articles that include a machine-read-
able medium storing machine-readable instructions for
implementing the various techniques, are disclosed. Details
of'various embodiments are discussed in greater detail below.

In some embodiments, one or more of the following advan-
tages may be present. For example, the disclosed techniques
may provide that no other view tuple be affected by a base
tables modification apart from the one specified in the view
update command. In addition, no additional tuple (i.e., data
row) may appear in the view after the base tables have been
modified. Another benefit may relate to view deletions. For
example, when a tuple is deleted from a view, the instance of
any subview associated with the view may remain unaffected.

Another benefit may relate to using views for insertions.
For example, the techniques may ensure that a view insertion
introduces tuples in base tables, provided that there are no
side-effects.

Additional features and advantages will be readily appar-
ent from the following detailed description, the accompany-
ing drawings and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a block diagram of a computer system for
providing updates through views according to the present
invention.

FIG. 2 illustrates examples of base tables and a view
instance.

FIG. 3 is a block diagram of preferred components
included in a translation module.

FIG. 4 is a flow chart of a method for translating view
queries expressed on base tables.

FIG. 5 illustrates examples of modified base tables

FIG. 6 illustrates an example of an update using an attribute
value.

FIG. 7 illustrates an example of a physical data instance.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

FIG.1is ablock diagram that illustrates a computer system
5, in which executable program instructions and operational
data operating in accordance with the present invention are
disclosed. As shown in FIG. 1, a server 10 is provided that
includes a central processing unit (CPU) 12, an input-output
device 14, a random access volatile memory (RAM) 16, and
non-volatile memory 20, all of which are preferably intercon-
nected via a common bus 18 and controlled by the CPU 12.

US 7,440,957 B1

3

A network 44 is provided that may include various devices
such as servers, routers, and switching elements that may be
connected in an extranet, intranet or Internet configuration. In
one preferred embodiment, the server 10 communicates with
an access device 50 over the network 44 with varying degrees
and types of communications and logic capabilities. For
instance, wire, fiber optic line, wireless electromagnetic com-
munications by visible light, infrared, and radio frequencies
may be implemented on the network 44 as appropriate.

Various communication protocols, e.g., ISO/OSI, IPX,
TCP/IP, may be used on the network 44. In the case of the
Internet, a single, layered communications protocol (TCP/IP)
generally enables communications between the server 10 and
the access device 50.

The access device 50 shown in FIG. 1 preferably includes
a CPU 52, an input-output device 54, random access memory
56 and non-volatile memory 60, all of which are intercon-
nected via a bus 61 and controlled by the CPU 52. In one
preferred embodiment, the non-volatile memory 60 of the
access device 50 is configured to include a browser 62 capable
of requesting and displaying information from the server 10.
The access device 50 may include a personal computer, a
laptop computer, or other electronic-based device. Although
only one access device is illustrated in FIG. 1, the system may
be configured to support multiple access devices. A user using
the access device 50 over the network 44 may access the
server 10 to process view update requests.

The server 10 of the present invention is configured to
include a database management system (DBMS) 30.
Examples of DBMS systems, with which the present inven-
tion may operate include Oracle™, Sybase™, Informix™,
SQL Server™, and DB2™. As shown in FIG. 1, in one
preferred embodiment, the DBMS 30 may include a plurality
of modules that include executable code and operational data
suitable for execution by the CPU 12 and for operation within
the non-volatile memory 20 of FIG. 1. It will be appreciated
by one skilled in the art that the DBMS 30 shown in FIG. 1
may be distributed across both local and remote computer
servers.

The DBMS 301is configured to include a catalog module 32
that provides listing information (e.g., physical and logical
schema information, index information) regarding one or
more database objects (e.g., database tables and views)
included in the DBMS 30. As shown in the FIG. 1 example,
the DBMS 30 also is configured to include a plurality of base
tables 41 and a view instance 36. Although only a single view
instance is shown in FIG. 1, the present invention is not
limited to a single view instance configuration. For example,
in some embodiments, one or more base tables and view
instances may be included and distributed across local and
remote database management systems.

As shown in FIG. 1, the base tables 41 of the DBMS 30
include a personnel table 38, a teaching table 40 and a sched-
uling table 42 that may be used in a university computing
environment. The view instance 36 illustrated in FIG. 1 rep-
resents ajoin view of the base tables 41. The view instance 36
contains data identical to the base tables, but is configured
with a heterogeneous schema. The personnel table 38, the
teaching table 40, the scheduling table 42 and the view
instance 36 will be used as examples throughout this disclo-
sure to explain the present invention.

Referring to FIG. 2, details of the personnel table 38, the
teaching table 40, the scheduling table 42 and the view
instance 36 are shown. As illustrated in FIG. 2, the personnel
table 38 stores the department (dep) 72 for each employee
(emp) 70 where she is employed. The teaching table 40 stores
information concerning seminars (sems) 74 that are taught by

20

25

30

40

45

55

60

65

4

professors (prof) 76 and teaching equipment (equip) 78 pro-
fessors may use. The scheduling table 42 stores information
regarding a room number (rm) 80 and the day (day) 82 a
seminar course (cour) 83 commences. The view instance 36 is
a materialized view that joins the personnel table 38, the
teaching table 40 and the scheduling table 42. For example, as
shown in FIG. 2, tuple td 84 of the view instance 36 is formed
by joining tuples tp:[EE,Fox] 86, tt[Fox, Proj, DB] 88 and
ts:[DB, 10, Tue] 90 of base tables personnel 38, teaching 40
and scheduling 42, respectively.

Referring back to FIG. 1, the non-volatile memory 20 of
the server 10 is configured to include an interface module 22
that provides a graphical user interface for interacting with
the DBMS 30, an extension module 26 that separates the data
instance of a view into a logical data instance and a physical
datainstance, and a translation module 24 that uses identifiers
included in the physical data instance to query, insert, update
and delete information in base tables.

The extension module 26 of the present invention extends
the relational model of base tables by generating an identifier
for each relational attribute (e.g., display form value) identi-
fied in a base table. In one preferred embodiment, the exten-
sion module 26 adds one or more additional columns to each
base table. The extension module 26 uses the one or more
additional columns to store the identifier associated with each
id-value pair, leaving the original column in the base table to
represent its display form. In one preferred embodiment, the
extension module 26 generates a unique 64-bit integer value
that is stored as the identifier. In another preferred embodi-
ment, the extension module 26 generates a 32-bit integer
value that is stored as the identifier.

In another preferred embodiment, the extension module 26
extends the relational model of base tables by generating a set
of binary tables, referred to herein as domain tables. In this
embodiment, the extension module 26 uses the domain tables
to store associated identifier-values from the domain of an
attribute. For example, referring now to FIG. 7, a set of
domain tables 100, 102, 104, 106, 108 associated with the
logical table Teaching 40 and Personnel 38 of FIG. 2 are
shown. As shown in FIG. 7, the first column of the domain
tables may store an id-value identifier (vID) 110, and the
second column of the domain tables may store an id-value
display form (display) 112. In this preferred embodiment,
each domain table generated corresponds to one and only one
attribute of a relation and the id-value identifier column 110 of
a domain table may serve as a key. As a result, the relational
tables need to store only the id-value identifier.

Referring back to FIG. 1, the translation module 24 trans-
lates view queries expressed on base tables to queries on the
physical data tables. In one preferred embodiment, referring
to FIG. 4, the translation module 24 executes the following
method. First, the translation module 24 replaces every view
involved in the query by its view definition 150. This process
is equivalent to query unfolding. Next, the translation module
24 processes the select clause of the query 152. The transla-
tion module 24 selects attributes specified in the query from
the physical data instance resulting in tuples of identifiers and
not display forms. Next, for each expression in the select
clause referencing a display form, the translation module 24
introduces a join with its domain table in the query 154. The
join is based on the identifier attribute of the domain table and
the referenced attribute of the physical data instance. The
translation module 24 then replaces the select clause expres-
sion of the query by one using the display form attribute of the
domain table 156. Next, the translation module 24 processes
the conditions of the where clause in the query 158. For every
expression in the where clause referring to a table attribute of

US 7,440,957 B1

5

the logical base table, the translation module 24 performs the
same steps as above. In one embodiment, when an equality
join condition appears in the where clause as a result of query
unfolding, the translation module 24 allows the join condition
to remain unchanged so that the join is based on the identifiers
and not the display forms.

For example, in one preferred embodiment, given the view
query “select v.day from Viewlnstance v where
v.emp="Fox’”, the translation module 24 performs query
unfolding that results in the following query:

select s.day

from Personnel p, Teaching t, Schedule s

where p.emp="Fox’ and p.emp=t.prof and t.sem=s.cour.

Next, the translation module 24 introduces a join with the
domain table dayDom of attribute day in the query, and
replaces the expression s.day by the expression dd.display
that selects the display form attribute from the introduced
domain table. Similar steps are applied for the expression
p-emp of the where clause and the query becomes:

select dd.display AS day

from Personnel p, Teaching t, Schedule s,

dayDom dd, empDom de

where de.display="Fox’ and p.emp=t.prof
t.sem=s.cour and s.day=dd.vID and p.emp=de.vID

As shown in the above example, the translation module 24
processes values of the physical data instance as a pair, each
pairincluding a display form and an identifier (i.e., id-values).
The values at the logical level, with which users and applica-
tions interact, remain unchanged. Furthermore, the transla-
tion module 24 may use two id-values to form a join if their
identifiers are equal. The translation module 24 then maps an
id-value to the logical level and displays only a data values
display form. This allows the present invention to have dif-
ferent id-values that appear the same at the logical level, but
have different identifiers that can participate in different joins.

Referring now to FIG. 3, components of the translation
module 24 are disclosed. As shown in FIG. 3, the translation
module 24 includes an insert module 160, a delete module
162 and an update module 168.

The insert module 160 provides for insertions of new tuples
into base tables using views. For an insertion of a new tuple tv
in a view, the insert module 160 creates the correct tuples in
base tables so that their join is tuple tv. In particular, the insert
module 160 creates a new tuple tR for every relation (e.g.
table) R that appears in the from clause of a view query. For
example, if an attribute A of a relation R is used in the select
clause of the view query, the insert module 160 creates a new
id-value vo for the attribute A of the tuple tR. The identifier o
of'that id-value differs from any other identifier of an id-value
in the domain of A that is already in the database. The display
form v is the one specified in the insert statement for the
attribute A. Finally, for every two or more attributes that the
where clause of the view query specifies or logically implies
to be equal, e.g., the join attributes, their identifiers are set the
same. One advantage of this technique may be in ensuring
that the new tuples tR join to form the tuple tv.

Ifthe insert module 160 determines that values in the insert
statement violate pre-defined conditions of the view query,
the insert module 160 rejects the insertion statement. For
example, referring to the base tables of FIG. 2 and a view V
with view query: select * from Personnel, Teaching where
emp=prof, if tuple [CS, Berry, Berry, PC, HW]J] is to be
inserted in the view, the insert module 160 generates the
[CSn1, Berryn2] and [Berryn2, PCn3, HWn4] tuples in the
relations personnel 38 and teaching 40, respectively. The
identifiers ni are all new identifiers that do not exist in the
database. The insert module 160 preserves the join between

and

20

25

30

35

40

45

50

55

60

65

6

the two tuples by having the id-value in the attribute emp and
profinclude the same identifier n2. If instead, tuple [CS, John,
Berry, PC, HWIJ]| was to be inserted in the same view, the
insert module 160 rejects the statement since it violates the
condition that attributes emp and prof should be equal.

In some preferred embodiments, when the view query
projects out certain attributes, the insert module 160 may
introduce id-values with null display forms on the projected-
out attributes whose value cannot be inferred from the join or
the equality conditions in the view.

In another example, if the previously discussed view query
did not have the attributes emp and equip in the select clause,
then insertion of tuple [CS, Berry, HWJ] in the view is trans-
lated by the insert module 160 to insertion of tuple [CSnl,
Berryn2] in the personnel table 38 and [Berryn2, nulln3,
HWn4] in the teaching table 40.

In a preferred embodiment, the insert module 160 may
process the insert command differently if the insert command
is for a base table instead of a view. For example, if a tuple ti
is to be inserted in a logical schema relation R, then the insert
module 160 inserts a new tuple tn in the physical table R. The
insert module 160 processes every attribute of tn as an id-
value vo where identifier o is a new one and the display form
v is the one specified in the respective attribute in tuple ti. For
every relation R' that joins with R through attributes A and B,
respectively, the insert module 160 duplicates every tuple
with a display form in attribute A equal to the display form of
attribute B in tn. The insert module 160 also sets the identifier
of the id-value in A of the duplicate to be the same as the
identifier of the id-value of attribute B in tn. As a result, the
behavior expected by the insertion of tuple ti in R may be
achieved.

In another example, referring to the base tables of FIG. 5,
assume that tuple [Fox, mic, DB] is to be inserted in the
relation teaching 40 and that tuple [Foxm, micp, DBn] is a
new tuple. As shown in FIG. 5, an instance of the identifiers
m, p and n do not exist. The tuple is expected to join with
every tuple in relation personnel 38 with display form ‘Fox’
on attribute emp 70. To ensure this, the insert module 160
duplicates every tuple of the personnel table 38 with that
property and sets the identifier of the id-value ‘Fox’ in emp 70
to be m. The insert module 160 then performs similar steps for
the Schedule table 42.

The delete module 162 provides deletions from regular
tables as well as view instances. In one preferred embodi-
ment, referring to FIG. 4, the delete module 162 processes
deletions by duplicating the tuples that participate in the join
forming the view tuple under the deletion. In another pre-
ferred embodiment, the delete module 162 performs the mini-
mum number of changes in base tables to achieve the view
deletion without side-effects in the view and without affect-
ing the instances of the subviews. For example, given views
that involve natural joins: R1xR2xRn where each table Ri
refers to a base table, if a Ri is a view, the delete module 162
replaces the view by its view definition by applying query
unfolding. The delete module 162 also identifies the common
join attribute Ai,j of tables Ri and Rj. When Ri and Rj join on
multiple attributes then Ai,j refers to their composite attribute.
As a result, the delete module 162 supports cyclic joins as
well as self joins when Ri and Rj are the same relation.

Inthe case ofasingle tuple delete, in one preferred embodi-
ment, the delete module 162 identifies the single tuple td to be
removed from view V. Referring now to FIG. 3, the delete
module 162 includes two modules: a processIn module 164
and a processOut module 166 that may be used in processing
the single tuple delete td. The method employed by the delete
module 162 first identifies the tuple tdi of table Ri that is used

US 7,440,957 B1

7

in the join forming the view tuple td. For each tdi, during
execution of the processIn module 164 and processOut mod-
ule 166, the delete module 162 generates a single special
tuple, referred to as the delete tuple, and one or more special
tuples, referred to as preserve tuples. The preserve and delete
tuples are clones of existing base table tuples with different
(e.g., new) identifiers at the join attributes. In a preferred
embodiment, the delete tuples only join among themselves to
form the view tuple td. The delete module 162 inhibits every
other view or subview tuple that was formed through a join
using td from being formed through a join using the preserve
tuples. Therefore, the delete module 162 only removes the
delete tuples which results in the deletion of only tuple td
from the view.

In one preferred embodiment, the delete module 162
employs a join execution graph to visit the relations Ri. In this
embodiment, given a view query Qv, the delete module 162
generates a join graph G(V, E) as an undirected graph whose
set of nodes is the relations in Qv: V={R1,R2, ... Rn} and set
of edges E={(Ri,Rj)IRi joins Rj through Ai,j}. The join graph
generated by the delete module is a connected DAG (Directed
Acyclic Graph) obtained from join graph Ge(Ve,Ee) by pro-
cessing the nodes in Ve to be those in V, processing the edges
in E directionally and removing one or more of the edges to
make the graph acylic in the event of cyclic joins in the view
query, to obtain Fe.

The processIn module 164 of the delete module 162 is
invoked for a relation R, that is chosen to be processed when
the set predecessors (Ri) is not empty, i.e. node Ri has one or
more incoming edges in Ge. The processln module 164 may
assure that changes made in adjacent nodes of Ri in Ge result
in no tuples disappearing from the view. In one preferred
embodiment, the processln module 164 executes the follow-
ing method.

First, the processIln module 164 creates a clone of tuple tdi
that is inserted in Ri. The clone differs from tdi only on the
id-value of the join attribute corresponding to an incoming
edge (Rj, Ri). The new id-value vd generated has the same
display form as in tdi, but a different identifier d. For example,
as shown in FIG. 6, application of this step on the base tables
creates no tuple in the personnel table 38 (no incoming edge),
tuple [Foxd, proj, DB] in the table teaching 40 and tuple
[DBd, 10, Tue] in the table schedule 42.

The processIln module 164 then creates join-preserve
tuples for incoming edges. For example, if (RjO,Ri), (Rj1,
Ri), . . ., (RjkRi) are incoming edges of Ri in Ge., the
processln module 164 establishes a tuple t in Ri that joins with
tuples tdj0, tdj1, . . ., tdjk of relations Rj0, Rj1, . . ., Rjk
respectively. Next, the processIn module 164 clones tuple tin
Ri exactly 2k-2 times. (In case table Ri joins with multiple
tables using the same join attribute, k refers to the number of
join-attributes that have an incoming edge.) Next, the pro-
cessln module 164 enumerates the copied tuples using an
index valueh inrange 1 . . . 2k-2. Next, the processIn module
164 generates a new id-value Vpjl, with special identifier p, if
the bit position in j1 of the binary representation ot'h is 1, for
the id-value of join attribute Ajl,i in the hth clone. When t is
not the tuple tdi, for any value of'k, the processIn module 164
adds a clone of t to Ri. When t is the tuple tdi, no action is
performed.

For example, the teaching table 40 in the join execution
graph has only one incoming edge emanating from the table
Personnel 38; thus, as shown in FIG. 5, the processIn module
164 clones tuples|[Fox, proj, PL] 120, [Fox, proj, OS] 122 and
[Fox, 1p, OS] 124 and introduces the respective tuples [Foxp,
proj, PL] 126, [Foxp, proj, OS] 128 and [Foxp, 1p, Os] 130.

20

25

30

35

40

45

50

55

60

65

8

The schedule table 42 also has one incoming edge 132 from
the teaching table 40. Once the processln module 164 is
executed for a relation, the tuple created in the first step is
processed as tuple tdi. For example, in the description of the
processOut module 166 that follows, the tuple tdi is consid-
ered the tuple [Foxd, proj, DB].

The processOut module 166 is invoked when the set suc-
cessors (Ri) is not empty, i.e. node Ri has one or more out-
going edges in Ge. The processOut module 166 modifies Ri
so that tuple tdi does not interfere with other joins apart from
the one creating the view tuple td. In one embodiment, the
processOut module 166 executes the following method.

First, the processOut module 166 creates a special clone of
tuple tdi that is inserted in Ri. In the clone, every join attribute
Ai for which there is outgoing edge (Ri, Rj) keeps the same
display form but gets a new identifier d. As shown in FIG. 5,
the processOut module 166 creates tuples [EE, Foxd] of rela-
tion Personnel and [Foxd, proj, DBd] by cloning the td, tuples
[EE, Fox] and [Foxd, proj, DB], respectively.

Next, the processOut module 166 creates join-preserve
tuples between Ri and adjacent nodes in Ge. The processOut
module 166 inserts a clone of tuple tdi in Ri. In the clone, the
join attribute Ai,j for which there is outgoing edge (Ri,Rj) in
Ge keeps the same display form but receives a new identifier
p- The clone is implemented to preserve all the view tuples
which were formed through a join using tdi and which should
remain in the view after the deletion of td. For example, as
shown in FIG. 5, tuples [EE, Foxd] 134 in the personnel table
38 and [Foxd, proj, DBd] 136 in the teaching table 40 were
created by cloning tuples [EE, Fox] 138 and [Foxd, proj, DB]
140 respectively, due to their join with tuples in relations
Teaching 40 and Schedule 42.

Next, the processOut module 166 removes the tuple tdi
from Ri. As shown in FIG. 5, single-strike-through tuples
illustrate the deletion during this step.

Once the processln and processOut modules 164, 166 have
completed, the special delete tuple created in each table is
removed by the delete module 162 without side-effects.
Referring to FIG. 5, deletion of these tuples are illustrated as
double-strike-throughs.

The delete module 162 processes multiple view tuples to be
deleted similarly to a single view tuple delete. In a multiple
view delete, the delete module 162 allows tdi to refer to a
multitude of tuples. In that circumstance, the delete module
162 generates one special delete tuple using the processOut
module 166 and the processIn module 164 for the multitude
of tuples instead of one for each of its tuples.

The update module 168 performs updates on base tables as
is typically performed in the relational model. In one embodi-
ment, the update module 168 processes an update on a view as
a deletion followed by an insertion. In some preferred
embodiments, the update module 168 issues a virtual delete
followed by a base table value update. The virtual delete is
similar to the operations performed by the delete module 162
described previously. The difference is that at the end the
delete tuples (the double strike-through tuples shown in FIG.
5) are not removed by the update module 168. As a result, the
update module 168 issues an update that modifies the display
forms of their id-values appropriately with no side-effect in
the view.

For example, given the update command Update Vb set
emp=rm where dep="EE’ and sem="DB’, the update module
168 sets the emp attribute of tuple td 84 in FIG. 2 and the
subsequent two tuples 85 to the value of their rm attribute 87,
which is “10°, “23”', and ‘45°, respectively. The difference
shown between FIG. 5 and FIG. 6 is that the double strike-

US 7,440,957 B1

9

through tuples are not deleted but instead are replicated by the
update module 168 with identifiers d10, d23, and d45 144.
Various features of the system may be implemented in
hardware, software, or a combination of hardware and soft-
ware. For example, some features of the system may be
implemented in one or more computer programs executing on
programmable computers. In addition, each such computer
program may be stored on a storage medium such as read-
only-memory (ROM) readable by a general or special pur-
pose programmable computer or processor, for configuring
and operating the computer to perform the functions
described above.
Although preferred embodiments of the present invention
have been described herein with reference to the accompany-
ing drawings, it is to be understood that the invention is not
limited to those precise embodiments and that various other
changes and modifications may be affected herein by one
skilled in the art without departing from the scope or spirit of
the invention, and that it is intended to claim all such changes
and modifications that fall within the scope of the invention.
The invention claimed is:
1. A computer implemented method of propagating
updates to views associated with base tables comprising:
associating an identifier with a data value included in a
physical storage location of at least one base table;

receiving at least one of a tuple insertion, a tuple deletion
and a value update, each of which comprises command
information;

mapping the command information to the physical storage

location using a view definition;
applying the at least one of the tuple insertion, tuple dele-
tion and value update to the physical storage location
using the identifier, such that, an update to the physical
storage location is reflected in the at least one base table,

wherein the mapping comprises generating a clone tuple
and a preserve tuple, the clone tuple and preserve tuple
associated with the at least one of the tuple insertion, the
tuple deletion and the value update,

wherein the mapping comprises generating a join-graph,

the join-graph associated with the physical storage loca-
tion, and

wherein the join-graph is a directed acyclic graph.

2. The method of claim 1, wherein the physical storage
location includes an id-value pair, the id-value pair linking the
identifier and the value.

3. The method of claim 1, wherein associating the identifier
with a data value comprises adding an attribute to the physical
storage location.

4. The method of claim 1, wherein the mapping comprises
performing query unfolding.

5. A machine-readable storage medium comprising
machine-readable instructions that, when applied to a
machine, cause the machine to:

associate an identifier with a data value included in a physi-

cal storage location of at least one base table;

map command information to the physical storage location

using a view definition in response to receiving at least
one of a tuple insertion, a tuple deletion and a value
update, each of which comprises the command informa-
tion;

apply the at least one of the tuple insertion, tuple deletion

and value update to the physical storage location using
the identifier, such that, an update to the physical storage
location is reflected in the at least one base table,

20

25

30

35

40

45

50

55

60

10

when applied to the machine, cause the machine to gener-
ate a clone tuple and a preserve tuple, the clone tuple and
preserve tuple associated with the at least one of the
tuple insertion, the tuple deletion and the value update,

when applied to the machine, cause the machine to gener-
ate a join-graph, the join-graph associated with the
physical storage location, and

when applied to the machine, cause the machine to gener-

ate a directed acyclic graph.

6. The article of claim 5, including instructions that, when
applied to the machine, cause the machine to include an
id-value pair in the physical storage location, the id-value pair
linking the identifier and the value.

7. The article of claim 5, including instructions that, when
applied to the machine, cause the machine to add an attribute
to the physical storage location.

8. The article of claim 5, including instructions that, when
applied to the machine, cause the machine to perform query
unfolding.

9. A computer-implemented system comprising:

a network;

adevice coupled to the network, the device configured to
include a server; and

a service delivery device coupled to the network, the
service delivery device including a processor and
memory storing instructions that, in response to
receiving a first type of request for access to a service,
cause the processor to:

associate an identifier with a data value included in a
physical storage location of at least one base table;

map command information to the physical storage loca-
tion using a view definition in response to receiving at
least one of a tuple insertion, a tuple deletion and a
value update, each of which comprises the command
in formation;

apply the atleast one of the tuple insertion, tuple deletion
and value update to the physical storage location
using the identifier, such that, an update to the physi-
cal storage location is reflected in the at least one base
table,

in response to receiving the first type of request over the
network, cause the processor to generate a clone tuple
and a preserve tuple, the clone tuple and preserve
tuple associated with the at least one of the tuple
insertion, the tuple deletion and the value update,

in response to receiving the first type of request over the
network, cause the processor generate a join-graph,
the join-graph associated with the physical storage
location, and

in response to receiving the first type of request over the
network, cause the processor generate a directed acy-
clic graph.

10. The system of claim 9, wherein the memory stores
instructions that, in response to receiving the first type of
request over the network, cause the processor to include an
id-value pair in the physical storage location, the id-value pair
linking the identifier and the value.

11. The system of claim 9, wherein the memory stores
instructions that, in response to receiving the first type of
request over the network, cause the processor to add an
attribute to the physical storage location.

