Author Proof

Support of Part-Whole Relations
in Query Answering

Piotr Kozikowski!, Ekaterini Ioannou?, Yannis Velegrakis! ®9,

and Francesco Guerra®

! University of Trento, Trento, Ttaly
piotr.kozikowski@gmail.com, velgias@disi.unitn.eu
2 Technical University of Crete, Chania, Greece
ioannou@softnet.tuc.gr
3 University of Modena and Reggio Emilia, Modena, Ttaly
francesco.guerraQunimore.it

Abstract. Part-whole relations are ubiquitous in our world, yet they do
not get “first-class” treatment in the data managements systems most
commonly used today. One aspect of part-whole relations that is par-
ticularly important is that of attribute transitivity. Some attributes of
a whole are also attributes of its parts, and vice versa. We propose an
extension to a generic entity-centric data model to support part-whole
relations and attribute transitivity and provide more meaningful results
to certain types of queries as a result. We describe how this model can be
implemented using an RDF repository and three approaches to infer the
implicit information necessary for query answering that adheres to the
semantics of the model. The first approach is a naive implementation
and the other two use indexing to improve performance. We evaluate
several aspects of our implementations in a series of experimental results
that show that the two approaches that use indexing are far superior
to the naive approach and exhibit some advantages and disadvantages
when compared to each other.

1 Introduction

Part-whole relations exist virtually everywhere and their modelling plays an
important role in many application domains [6]. Despite this, they do not get
“first-class” treatment in the data managements systems most commonly used
today.

Part-whole relations have a number of properties and can be subdivided into
different, more specific, kinds of relations. The conceptual modeling of part-
whole relations and their different types and properties is a big challenge in
itself and has been studied previously. The work in [1] provides a good summary
of the difficulties and nuances involved. We believe that from all properties of
part-whole relations the one that is most universal and deserves built-in support
in a general-purpose data management system is that of attribute transitivity.
It is very common to find that if some entity z is part of other entity y, some
© Springer International Publishing Switzerland 2015

J. Cardoso et al. (Eds.): KEYSTONE 2015, LNCS 9398, pp. 1-14, 2015.
DOI: 10.1007/978-3-319-27932-9_9

Author Proof

2 P. Kozikowski et al.

attributes of z are also attributes of y and vice versa. For example, if Bob is an
employee that works for the R&D department of company X, he also works for
company X. Similarly, the person who owns a car usually also owns the car’s
engine. Query answering should take this transitivity into account: given that
the contents of a database include “Bob works for R&D” and “R&D is part of
company X”, the answer to the question “who works for company X?” should
include Bob, even though this fact is not explicitly stated in the data.

This transitivity does not always hold, though. The hand of a violinist is
definitely a part of his or her, but it would make little sense to say that this
hand plays for an orchestra given that the violinist does. Therefore, it is desired
to have the ability to specify which attributes are transitive with respect to
part-whole relations and which are not.

In schema-centric systems, such as relational databases, this kind of function-
ality can be achieved by using the schema to establish specific types of entities
and attributes and define which types of entities are part of other types of entities
and which type of attributes should be transitive. For example, a table depart-
ment may be declared to be part-of the table company by having a column
part-of containing a foreign key to company. If a third table employee is associ-
ated to department with the relationship works-for, the question “who works for
company X?” can be answered with a predefined query that takes the semantics
of the schema into account. The main limitation of this approach is that all the
semantics have to be known a priori and defined in the schema, which imposes
a rigid structure to which all data must conform. In many cases, the data is not
structured enough for the design of such a schema to be practical, yet considering
attribute transitivity when answering queries is still useful.

Entity-centric systems, which deal with unstructured or semi-structured data
and do not rely on a schema, offer even less support for part-whole relations.
Entities can have any number of arbitrary attributes, the values of which are
other entities or atomic values such as strings and numbers. In such scenario the
part-of relation is just like any other attribute.

In this paper we propose a new type of database that allows attributes to
be transitive with respect to part-whole relations and takes this transitivity
into account in query answering, all while preserving the flexibility and suitabil-
ity for schema-less semi-structured data characteristic of entity-centric systems.
We introduce a new data model to account for part-of relations and attribute
transitivity, implement this model using existing database technology, suggest
indexing techniques to speed-up query answering, and explore many aspects of
the performance of our implementation in a series of experiments.

The paper is organized as follows. Section 2 provides a motivating example
that illustrates why considering attribute transitivity with respect to part-whole
relations is useful for answering queries. Section3 describes the generic data
model and our extension for supporting part-whole relations and attribute tran-
sitivity. We describe our implementation of this extended data model in Sect. 4,
discussing three different approaches. We provide an experimental evaluation of
our implementation in Sect. 5, concluding in Sect. 7.

Author Proof

Support of Part-Whole Relations in Query Answering 3

e T e A
A ea Ly
o T)
EC-Business | EC-Education | | EC-Religion | Q| .-'a T Ql
. . represerifed-in Shict - a
publichon-of
publication-of USA supports e2 e5
projagt-of
How a Consensus on Global Values Can Add Value | P
o~ P
Principles for Engaging Business in the ECI | (@) ~ a _ : (@)
T ~.-~ T
) > I
| University courses based on the Earth Charter | Q P /a ~ Q
/panm/ ‘\pamx\ _ ~
e
[Sostanatle devoopmet coue | [Cimat crarge couse | e, Ae
Fig. 1. A small fragment of the repository data. Fig.2. An example of

attribute transitivity.
2 DMotivating Example

Consider a system incorporating a repository that stores data related to non-
governmental organizations (NGOs). NGOs typically represent and organize
information in a very diverse way. This constitutes a challenge that the system
needs to deal and especially when executing queries over the repository.

Figure 1 shows a small fragment of a repository that includes data related to
the Farth Charter, one of the many NGOs affiliated with the United Nations.
In the figure, each box represents an entity and each arrow represents an entity
attribute. For example, the arrow labeled as “affiliated-with” denotes the affili-
ation of the entity Farth Charter with the United Nations. The arrows labeled

s “part-of” denote that the Farth Charter is divided into the areas of business,
education, and religion.

Consider now a user that wants to retrieve the publications of Earth Char-
ter. Based on the information explicitly included in the repository, the answer to
would only include EC in action. The publications How a Consensus on Global
Values Can Add Value and Principles for Engaging Business in the ECI would
not be included in the result set, since these are not directly associated with the
entity Farth Charter. Of course, we could modify the model and associate the
publications directly with the entity Farth Charter instead of EC-Business, but
then a query asking for the publications of EC-Business would return no results.
In addition, associating these publications with both entities would be cumber-
some for the user of the repository, as she would have to figure out what is the
hierarchy of areas and subareas of the Earth Charter before adding information
about a publication.

Receiving inadequate query answers might frequently occur if we only use
the information explicitly declared in the repository. Some additional examples
with this issue appear when we try to retrieve the organizations that support
the Earth Charter or the current projects of EC-Education.

Author Proof

4 P. Kozikowski et al.

To solve this problem, the repository should be able to reason about the
implicit information implied by the part-of relations and be able to fully answer
questions such as the ones discussed in the previous paragraphs. To do this
in a sensible manner, we suggest incorporating additional knowledge for each
attribute, and more specifically the transitivity of attributes with the part-of
relations. We assume that the user of the repository does know this when insert-
ing a new attribute. Note that this does not require the users to know what
are the part-of relations themselves. For example, the user adding Principles for
Engaging Business in the ECI as publication-of the entity EC-Business would
know that this attribute has transitivity from part to whole. Thus, this pub-
lication should also be considered to be also a publication-of the entities that
EC-Business is part of, i.e., the Farth Charter entity.

3 Data Model

3.1 Basic Database

We consider a generic data model that is centered around entities and attributes.
An entity represents any object in the world, such as a person, a car or a school.
No restrictions are imposed on the structure or characteristics of entities. An
attribute describes some aspect of an entity and is composed of a name and a
value. We assume the existence of an infinite set of entities £, names N, and
atomic values V. The latter contains values such as integers, strings, etc.

Definition 1. Let pair (n, v) denote an attribute with n€N being the attribute
name and veEUV the attribute value. A database is a tuple (E, G) where ECE
is a finite set providing the entities (i.e., {e}). G is a finite set that provides
the attributes of each entity as well as the relationships between entities, i.e.,
GCNx{EUV}. []

Our definition can be used to represent structured data while also having the
benefits of dataspaces [3] where data can be only partially structured.

It is easy to see that when all entities have at least one attribute, they will also
be referred to in the G set. We can actually include a triple of the form (e, —, —)
in G for each entity e that does not have an attribute, and then consider this G as
the compact representation of the database. Given this compact representation,
we can also retrieve the attributes of an entity e, using the following function:
Attr(eqs) = {(n, v) | {eq, n, v)EG}.

A query is described by a rule consisting of a head and a body. Both head
and body are composed of a conjunction of atoms. The head can have only
entity atoms of the form e (ni:wi, nows, ..., ng:vg), where e, n;, and v; are
variables or constants. Variables appearing at the beginning of an atom (outside
the parenthesis), i.e., e, correspond to entity variables and can only be bound to
elements of £. Variables on the left side of each colon, e.g., n; and ns, stand for
attribute names and can only be bound to elements of N. Variables on the right
side of each colon, e.g., v1 and vy, stand for attribute values and can be bound

Author Proof

Support of Part-Whole Relations in Query Answering 5

to either elements of £ (entities) or elements of V (atomic values). In addition to
entity atoms, the body of a query can also have atomic atoms, which are boolean
conditions involving variables and constant values, e.g., <10 or z=y.

Note that the variables appearing anywhere in the query are shared across
all atoms from both the head and the body. Nesting is possible by using atoms
as attribute values.

Given a binding of the variables e, n;, and v; to e®, n?, and v} respectively,
for every i from 1 to k, the entity atom e (ni:v1, naive, ..., ngivg) is said to
be true if there is an entity e’ in the database that has attributes <n§’, vf),
Vi € [1,k]. If all the atoms in the body of a query are true, the atoms in the
head of the query are also considered to be true, in which case a set of entities
and attributes as described in the head of the query is returned.

Ezample 1. Consider a user that want to detect an entity with the attribute
publication-of having as value some entity, which in turn has the attribute
affiliated-with with yet some other entity as value. She thus poses the fol-
lowing query:

Q 1 | $pub(related-to:$org) :- $pub(publication-of: $ngo),$ngo(affiliated-with: $org)

Executing Q 1 over the data of Fig.1 return the entity EC in action having
the attribute related-to with the entity UN as value. |

3.2 Extension to Part-of Databases

We now extend the data model for the basic database (introduced in the previous
paragraphs) to a model that accounts for the transitivity of attributes with
respect to part-of relations.

The set 7 = { up, down, both, none } defines the four possible types of
attribute transitivity. The elements up and down represent transitivity from
part to whole, and whole to part, respectively. The element both denotes that
both of the previous types of transitivity apply, and element none indicates that
there is no transitivity. Additionally, the special name partOf is removed from
the set of valid attribute names A and is reserved for part-of relations (Fig.5).

Definition 2. A part-of database is a tuple (E, G, P). E is the entity set, i.c.,
ECE. P is a set of entity pairs, i.e., PCE X E, with each pair (e;, e;) denoting
e; is partOf e;. G provides relationships of an entity with its attributes or other
entities, including also the transitivity type, i.e., G C Ex N x {E UV} xT x7T.
Each element in G is (e, n, v, et, vt,) with e € £ being the entity, n € N the
attribute name, v € EUY the attribute value, and et,vt€T the transitivity for the
entity that has the attribute and the attribute value v, respectively. |

Each element of G states that an entity e has an attribute with name n and
value v and that this attribute is transitive with respect to the part-of relations
defined in P as specified by et and vt. Only one combination of n, v, et, and
ev is allowed per attribute (i.e. the same attribute cannot be declared twice
with conflicting types of transitivity). In addition, using the information of P,

Author Proof

6 P. Kozikowski et al.

Earth Charter

EC-Business‘ lEC-Education l EC-Religion ‘

downl||false true

. 9 N both || true true

Fig. 3. Part-of database for Fig.1 data. Fig.4. DAG example. Fig.5. Corres-
pondence for
transitivity.

i.e., partO f relationships between entities, we form a graph and we assume that
there are no cycles in this graph.

As with the original model (Sect. 3.1), under the assumption that every entity
in a part-of database has at least one attribute, the set E is no longer needed
to represent the database and a more compact representation consisting of the
quintuples in G and the pairs in P is possible. We denote this representation
with tuple (G, P).

Figure 2 provides a graphical representation of the semantics of attribute
transitivity. The entity ez is part of ey, which in turn is part of e;. Entities eq4,
es, and eg have a similar configuration. The entity es has an attribute a with
es as value. If et=up or et=both for attribute a, it is inferred that e; also has
an attribute with name a and value e; by virtue of transitivity, even if such
attribute is not explicitly declared in G. Similarly, if et=down or et=both for
attribute a then ez has an attribute with name a and value e5. The cases for the
different values of vt are analogous.

Consider again our example with the NGOs repository. The data about
Earth Charter can be represented using the part-of database shown in Fig. 3.
All attributes have now values for et and vt. Part-of relations are no longer nor-
mal attributes but a special kind of relationship between entities. For instance,
the attribute publication-of of the entity Principles for Engaging Business in
the ECI has et=none and vt=up. This means that this attribute has no transi-
tivity on the entity’s side, and transitivity of type up on the value’s side. Since
the value of this attribute is EC-Business, which is part of Farth Charter, an
attribute publication-of is implicitly established for the entity Principles for
Engaging Business in the ECI having Earth Charter as value.

The query language for part-of databases has the same elements and structure
as the one defined in the previous section. The difference lies in the semantics of
queries. Fach atom in the body of a query can now be satisfied with the entities
and attributes in the inferred closure of (G, P), defined as (GUG’,P), where G’ is
the set of all triples (e, n, v) that can be inferred from the transitive attributes
in G and the part-of relations in P by applying the inference rules described
previously.

Author Proof

Support of Part-Whole Relations in Query Answering 7

Ezxample 2. Consider now searching for all entities that have an attribute
publication-of with Earth Charter as value in the inferred closure of (G, P).

Q 2 | $pub(publication-of: Earth Charter) - $pub(publication-of: Earth Charter)

If applied to the data of Fig. 3, this query returns entities: (i) EC in action, (ii)
How a Consensus on Global Values Can Add Value, and (iii) Principles
for Engaging Business in the ECI. Each of these three entities has an
attribute publication-of with Earth Charter as value. |

4 QOur Solutions

We implemented the part-of database using Sesame!, which is an open source
framework for storing and querying RDF data. We chose RDF because it is a
well established specification of a data model that is similar to the one we use.
Sesame offers one of the most robust and mature implementations of an RDF
repository available as open source.

4.1 Naive Approach

Our first implementation follows a lazy inference approach. All information is
stored in a standard RDF repository and nothing is inferred at the time of inser-
tion. When the database is queried, it analyzes the body of the query for patterns,
inserts RDF statements corresponding to the inferred closure of those patterns,
translates the query into SPARQL, executes it, and removes the inferred state-
ments.

Update operations are uninteresting since they are direct mappings to the
corresponding operations of the RDF repository. The only exception is that
whenever a part-of relation is added, a check is made to ensure the addition
does not introduce a cycle in the part-of graph G,,. Supposing that the function
addPartOfRelation(e1, e2) is invoked, the part-of graph is traversed to ensure
that there is no path from es to ep, in which case the operation fails.

Query answering involves several steps. The query is parsed and every entity
atom is broken into one or more minimal atoms of the form e(n:v). The atoms in
the body of the query are classified according to which elements are constants and
which are variables. If we denote variables with “?”, the eight possible patterns
are: e(n:v), e(n:2), e(?:v), e(?:2), ?(n:v), 2(n:?), 2(?:v) and 2(?:2). If the pattern
2(2:2) is found, the inferred closure of the entire database is computed, otherwise,
only the implicit statements involving the constants in the query patterns are
inferred.

The inferred closure of a pattern can be a subset of that of other pattern. In
this case the former is considered redundant and only the latter is computed. For
example, a query may contain the pattern e; (?:v1), which requires the inference
of all the implicit statements that have e; as entity and v; as attribute value.

! http://www.openrdf.org/.

http://www.openrdf.org/

Author Proof

8 P. Kozikowski et al.

If the same query also contains the pattern e (¢:%), all the implicit statements
that have e; as entity have to be inferred, which are a superset of those with e;
as entity and vy as attribute value.

Figure 2 is helpful in visualizing how the inferred closure of a pattern can be
obtained. To see the case for pattern e(n:?), suppose a part-of database contains
entities e, e, €3, 4, €5 and eg, with the part of relations shown in the figure, and
that ey’s attribute with name a and value e5 has full transitivity (et=both and
vt=both). The dashed lines represent the inferred closure of the database. First,
every entity e’ that is directly or indirectly a part of e (i.e. there is a path from e’
to e in G)) has to be checked for ownership of an attribute a with name n that
has et=up or et=both. If such attribute exists, the statement (e, n,valueO f(a))
is added to the inferred closure. In the example, doing this for the pattern e; (a:?)
would result in (e, a, e5) being added to the inferred closure. Next, every entity
e’ that e is directly or indirectly part of (i.e. there is a path from e to e” in
Gp) has to be checked for ownership of an attribute § with name n that has
et=down or et=>both. If such attribute exists, the statement (e, n, valueO f(f3)) is
added to the inferred closure. In the example, the statement (e3, a, e5) would be
added to the closure if this were done for pattern es(a:?). Finally, every entity
v that is the value of an attribute 7 of e that has name n and vt# none has
to be checked for being directly or indirectly part of some entity v’ (if vt=up or
vt=both), and/or an entity v” being directly or indirectly part of v (if vt=down
or vt=both). If such entities exist, the statements (e,n,v’) and/or (e,n,v") are
added to the closure. In the example, the statements (es,a,es) and (es, a, eg)
would be added to the closure after doing this for pattern es (a:?).

The case for pattern ?(n:v) can be seen as a mirror of that for e(n:?). The
same steps are performed but the roles of e and v are interchanged. Other pat-
terns require different steps but the underlying logic is the same and is not fully
detailed for the sake of brevity.

Once the inferred closure of all the atoms in the body of a query is added to
the repository, the equivalent SPARQL query is executed using Sesame’s query
engine. After the results of the query are available, all the inferred statements
that were added are removed leaving the database in the same state as before
executing the query.

4.2 Total Materialization

We now present another approach that follows an eager inference approach. Each
time a statement or part-of relation is added, its inferred closure is computed.
Similarly, when a statement or part-of relation is removed, the affected inferred
statements are removed. The query execution is left entirely to Sesame’s query
engine, thus our main concern in this implementation is the speed of update
operations.

Part-of Relations Index. Whenever a transitive attribute is inserted, the
part-of graph has to be traversed to find all the relevant entities for the inferred

Author Proof

Support of Part-Whole Relations in Query Answering 9

closure. In the same way, deleting a transitive attribute requires a traversal of
the part-of graph to find those inferred statements that should be removed. To
speed-up this process, we propose an index dedicated to part-of relations.

The set of all part-of relations can be seen as a directed acyclic graph (DAG).
We represent this graph with a double adjacency list that contains both the direct
and indirect part-of relations. For example, the DAG in Fig. 4 is represented as
follows:

1 {2,3y <{4,5,6,7,8,9,10} {} {3

2 {4,5} {6,9,10} {1y {3

3 {5,6,7} {8,10} {1y {3

4 {9} {3 {2r {1}

5 {10} {6} {2,3} {1}

6 { { {3,10}{1,2,5%}
7 {8} {3 {3 {1}

8 {} {3 {rr {1,3%

9 {3 { {4y {1,2}
10{6} 8 {5} {1,2,3}

There is an entry for every vertex in the DAG. The first column contains the
list of vertices each vertex is connected to. The second column contains the list
of vertices each vertex is indirectly connected to through other vertices. Columns
three and four contain what the first and second columns would, if the direction
of all edges were reversed. The idea is that a single look-up of this index is all that
is needed for the insertion or deletion of any transitive statement. Depending
on the type of transitivity, the lookup may include all columns or only some of
them.

This index can be implemented with a key-value store. We used Ehcache?, a
system developed in Java meant primarily for caching the contents of some other
larger and slower datastore, but it can also be used as a persistence solution to
store very large datasets on disk without depending on any external database.
The reason to prefer Ehcache over something such as Berkeley DB is that it
performs object caching -Java objects are only serialized and deserialized when
written to or read from disk-; Berkeley DB and other similar systems must
serialize and deserialize Java objects every time they are inserted or retrieved,
even if no access to disk is made. We found that object caching has a big influence
on performance even if the amount of objects kept in memory is a relatively small
part of all the stored data.

Transitive Attributes Index. The index for part-of relations is useful when
inserting and deleting transitive statements, but the insertion and removal of
part-of relations can benefit in turn from fast access to transitive attributes.
This is because the inferred closure of transitive attributes already existing in the
database can be affected by the addition or removal of a part-of relation. Given

2 http://ehcache.org/.

http://ehcache.org/

Author Proof

10 P. Kozikowski et al.

e1, ny, v1 | eu=true, ed=true, vu=false, vd=false €1|€1, M1, V1 V4 |€2, Mg, Vg

e1, ng, vy |eu=true, ed=false, vu=false, vd=false €1|€e1, n2, V2 V5| €2, N5, Vs

e1, ng, vy |eu=false, ed=true, vu=false, vd=false . .
9, ny, vy | eu=false, ed=false, vu=true, vi=true ~ Fig. 7. Index for eu. Fig. 9. Index for vu.

ez, ny, vs |eu=false, ed=false, vu=true, vd=false
s M1, » N4,

o2 n6, ve|eusfalse, edsfalse, wusfolse, vistrue
) M3,) M6,

Fig. 6. Table with transitive attributes. Fig. 8. Index for ed. Fig. 10. Index for vd.

that transitive statements are stored as reified triples in RDF, their retrieval is
not very efficient. Moreover, it is usually the case that only some of the transitive
attributes are relevant for a given operation (e.g., only those with the transitivity
type up and involving certain entity). It is therefore desired to have a fast way
of retrieving transitive attributes with different characteristics.

To index transitive attributes, we propose to use an alternative representation
of transitivity. Instead of having the two variables et and vt with four possible
values each, we store four binary variables: eu, ed, vu and vd. Figure 5 shows the
correspondence of the two representations for et, eu and ed. The correspondence
between vt, vu, and vd is analogous.

Using this representation, the index consists of four tables, one for each of the
binary variables eu, ed, vu and vd. To avoid having to modify the inner workings
of the Sesame repository, we also added a fifth table containing all transitive
attributes; this is the table that is indexed by the other four. Figures?7, 8, 9
and 10 show how the example contents of Fig.6 are indexed. Naturally, in the
real implementation the index tables contain pointers to entries in the main table
rather than the entire triples as shown here.

Similarly to the part-of relations index, we implemented the transitive
attributes index using a key-value store.

4.3 Smart Indexing

The previous approaches represent two extremes. The naive approach has fast
update operations and the best possible space utilization given our choice of RDF
repository, but much processing is required for answering queries, making them
slow. The total materialization approach, on the other hand, achieves the fastest
query answering possible given our choice of RDF repository and SPARQL query
engine, but uses considerable extra space to have all the implicit information
always readily available for queries, and needs to perform maintenance operations
with every update.

We now present an approach that compromises the conflicting goals of fast
query answering and fast update operations with low space requirements. Ideally,
we should rewrite the query engine itself to compute the transitive closure of
query patterns progressively and avoid the inference of statements that can be
discovered to be unnecessary given the partial results already obtained from the
query. This is, however, outside of the scope of our research. Instead, we still
compute the inferred closure of all non-redundant patterns in the body of a
query, as in the naive approach, but we try to do this as efficiently as possible
with the help of an index.

Author Proof

Support of Part-Whole Relations in Query Answering 11

In order to avoid traversing the part-of graph when computing the inferred
closure of query patterns, we use the same part-of relations index used for the
total materialization approach. We also need an index for transitive attributes,
but the one from the total materialization approach is not very suitable for our
current task. While inserting and deleting part-of relations is only concerned
with transitive attributes involving either a specific entity or a specific attribute
value, query answering often requires both entity and attribute value, and also
the attribute name, depending on the query pattern. We could add a table for
each of the query patterns, but this would result in at least six tables, requiring
much extra space and defeating part of the purpose of not opting for the total
materialization approach.

Instead, we propose to use B-trees -the basic data structure employed in
Berkeley DB and many other databases- to simulate tries and allow prefix search.
This way we can use a single index to search for relevant transitive attributes
having one, two, or all three elements e, n, v of an attribute. This allows us to
provide fast response time to all the access patterns required by query patterns
using only three indexes: one sorted by env, other by vne, and the third by pev.

Using the entity, attribute name, and attribute value as key, and the attribute
transitivity as value in a B-tree, just as Fig.6 does, we achieve prefix search
functionality by providing a custom comparator to be employed as the basis for
sorting by the B-tree. A different comparator is used for each of the three sortings
we need. For example, the index sorted by env employs a comparator that uses
v as basis for comparison of two keys only if their respective values for e and n
are equal; otherwise only e and n are considered. Likewise, the values of n are
considered only if the keys have the same values of e. When searching the B-tree
having only a prefix of the key, like en, we get the first key with the values of e
and n that we specified, if such key exists, and can iterate through contiguous
entries until we encounter a key that has a different value of some element of
the prefix than what we specified. At this point we stop, having retrieved all
attributes that share the prefix we searched for.

5 Experimental Results

We tested our implementations of the part-of database using synthetic datasets
composed of entities connected to each other with part-of relations in a tree
configuration. We used five parameters: n is the number of trees in a dataset,
h the height of each tree, b the number of children per node, attrs the num-
ber of non-transitive attributes per node, and ¢_attrs the number of transitive
attributes. Transitive attributes are transitive either from part to whole (et = up
and vt = up), or from whole to part (et = down and vt = down), with an equal
number of each.

Each experiment consist in the creation of a synthetic dataset from scratch,
a warm-up routine to ensure the database is fully initialized, and a set of mea-
surements of different operations, each repeated several time selecting random
nodes and the results averaged. In addition to measuring the time to complete

Author Proof

12 P. Kozikowski et al.

300000
250000
200000 2

oo §

time (ms)

o0 §

0 o o o
0 1000 2000 3000 4000 5000 5000 7000 BO0D 9000 0 100 20 300 400 50 600 700 80 900
b

Fig. 11. Performance Fig. 12. Perf. with long Fig. 13. Effects of increas
with shallow trees. relation chains. ing tree height.

1600 80000 350 100000 400 700000

600000
1200 60000 500000

1000 soo00 £
i 400000

quantity

time (ms)

a0 w00

g
iples

a0

Fig. 14. Effect of increas- Fig. 15. Transitive attribute Fig. 16. Tree # vs. per-
ing node children. # vs. performance. formance.

common operations, we also measured the size taken on disk by the database
and its index, if any, after ensuring that all its contents were flushed to disk. In
all graphs we provide the main variable being measured (i.e., time or space) on
the vertical axis on the left, and the number of RDF triples used by the given
configuration, not including any inferred triples, on the vertical axis on the right.
This helps to observe the behavior relative to the size of the data.

Performance. Our main interest is the performance of queries. We evaluated
all combinations of queries with the patterns e(n:?), e(%:v) and ?(n:v) using as
e and n the root of the tree and a random node at the bottom of the tree, and
transitive attributes as n.

Our first experiment focused on testing the behavior of trees with n=1, h=1,
attrs=0 t_attrs=2, and large numbers of children per node b. The results are
shown in Fig.11. In the following experiment we tested the opposite extreme:
trees with b=1 (not really trees) and high values of h, the other parameters
remaining unchanged. Figure 12 shows the results. As one may expect, the per-
formance achieved with total materialization is much better than the other two
approaches. The time taken for processing queries by the naive implementa-
tion seems to be directly proportional to the number of RDF statements. Smart
indexing performs noticeable better and seems to be more resilient to wide and
shallow trees than it is to long chains.

To try a more realistic scenario, we also tested trees that have more balanced
ratios of h to b. Figure 13 shows the case where b=2 for various values of h.
Figure 14 shows the inverse case with h fixed to 4 and various values of b. The
results are very similar to the previous ones. Height has a slightly greater impact
on performance than number of children, but performance is best correlated with
the number of RDF triples, which in these experiments is directly proportional
to the number of nodes in the tree.

Next, in experiment 5, we explored the effect of adding transitive attributes
with other parameters fixed at n = 1, h = 4, b = 5 and attrs = 0. Figure 15

Author Proof

Support of Part-Whole Relations in Query Answering 13

140000 1 2
120000
100000

a0000

size (KB)
<
<

60000

time (ms)
time (ms)
<

40000

20000

Fig.17. Tree # vs. db Fig.18. Tree # vs. Fig. 19. Tree # vs. deletion.
size. insertion.

shows the results. It is clear that, at least with tree configurations, the number of
transitive attributes has a much smaller effect on performance than the number
of part-of relations. This time even the naive implementation has a performance
degradation less than proportional to the number of RDF triples.

Finally, experiment 6 consisted in maintaining the tree structure and number
of attributes fixed at h = 4, b = 5, attrs = 50 and t_attrs = 6 and observing
the effect of increasing the size of the database by adding trees. The results
are shown in figure Fig.16. In this experiment smart indexing had less of an
advantage over the naive implementation. In both cases the time for answering
queries grows less than proportionally to the number of RDF triples.

Overall, the result of all experiments are similar. Smart indexing has a big
advantage over the naive implementation, but does not come anywhere even
close to the levels of performance achieved by total materialization.

Database Size. Figure 17 shows the results of experiment 6 for database size.
Evidently, the total materialization approach gets the worst results, but consid-
ering that it uses both an index and additional space in the RDF repository to
store inferred statements, it is surprising that the amount of space it uses grows
only slightly more than proportionally to the number of RDF triples. Obviously
the naive approach is the best in terms of database size. Smart indexing is right
in the middle.

In a typical RDF repository there are many more distinct object, predicates
and objects than the URI prefixes they use. Therefore, storing the identifiers
separately from URI prefixes can improve space utilization. This is most likely
already done in Sesame’s RDF repository and it is a simple way to improve the
space efficiency of our indexing.

Update Operations. Update operations where tested by inserting a part-of
relation between the root of a tree and a newly created entity and between a leaf
node of a tree and other newly created entity. New transitive attributes were also
inserted for the same nodes. The average time for those insertions was measured,
after which the operations were undone with the corresponding deletions, the
average time of which was also measured. Figures 18 and 19 show the results of
doing this in experiment 6.

Maintaining the indexes imposes a noticeable overhead, but in a typical sce-
nario in which queries are much more common than updates, it is well worth it.

Author Proof

14 P. Kozikowski et al.

6 Related Work

Part-whole relations have been studied from a conceptual modelling perspective
[4,5,7]. The different cases that have been considered there are covered by our
model. Modelling of part-whole relations has been studied in object oriented
databases [1,2,6]. The main difference with our work is that they focus specif-
ically on object oriented systems and their modelling of part-whole relations
takes place at the schema level, as a mechanism to among other things improve
the enforcement of the semantics defined in the schema. The model we consider
does not require a schema and is more suited for semi-structured data. A similar
line of work studied the information that can be inhereted across the different
relations proposed for their epistemological layer of knowledge.

7 Conclusions

We proposed a new model to express part-of relations and the transitivity of
attributes from whole to part and part to whole. Queries in this model take into
account part-of relations and attribute transitivity to return more meaningful
results, without any extra effort from the user. We implemented this model using
an RDF repository and suggested two different approaches to index part-of rela-
tions and transitive attributes to improve query performance. Our experimental
evaluation of these techniques indicates total materialization is unmatched in
terms of query performance, but the performance of inferring implicit informa-
tion in a lazy fashion can be improved significantly with an index with modest
space requirements.

References

1. Artale, A., Franconi, E., Guarino, N., Pazzi, L.: Part-whole relations in object-
centered systems: an overview. Data Knowl. Eng. 20(3), 347-383 (1996)

2. Bertino, E., Guerrini, G.: Extending the ODMG object model with composite
objects. SIGPLAN Not. 33(10), 259-270 (1998)

3. Dong, X., Halevy, A.: Indexing dataspaces. In: Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data, pp. 43-54. ACM,
Beijing (2007)

4. Gerstl, P., Pribbenow, S.: Midwinters, end games, and body parts: a classification
of part-whole relations. Int. J. Hum. Comput. Stud. 43(5-6), 865-889 (1995)

5. Gerstl, P., Pribbenow, S.: A conceptual theory of part-whole relations and its
applications. Data Knowl. Eng. 20(3), 305-322 (1996)

6. Halper, M., Geller, J., Perl, Y.: An OODB part-whole model: semantics, notation
and implementation. Data Knowl. Eng. 27(1), 59-95 (1998)

7. Winston, M., Chaffin, R., Herrmann, D.: A taxonomy of Part-Whole relations.
Cogn. Sci. 11(4), 417-444 (1987)

