
Searching with XQ: the eXemplar Query Search Engine

Davide Mottin

University of Trento

Trento, Italy

mottin@disi.unitn.eu

Matteo Lissandrini

University of Trento

Trento, Italy

ml@disi.unitn.eu

Yannis Velegrakis

University of Trento

Trento, Italy

velgias@disi.unitn.eu

Themis Palpanas

Paris Descartes University

Paris, France

themis@mi.parisdescartes.fr

ABSTRACT
We demonstrate XQ, a query engine that implements a novel
technique for searching relevant information on the web and
in various data sources, called Exemplar Queries. While the
traditional query model expects the user to provide a set of
specifications that the elements of interest need to satisfy,
XQ expects the user to provide only an element of interest
and we infer the desired answer set based on that element.
Through the various examples we demonstrate the function-
ality of the system and its applicability in various cases. At
the same time, we highlight the technical challenges for this
type of query answering and illustrate the implementation
approach we have materialized. The demo is intended for
both researchers and practitioners and aims at illustrating
the benefits of the adoption of this new form of query an-
swering in practical applications and the further study and
advancement of its technical solutions.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Query formulation

Keywords
Query paradigms; Exemplar queries; Labeled graphs

1. INTRODUCTION
Highly structured query languages are typically used by

expert users that know well what they are looking for and
how to express it using the constructs of the query language.
Nowadays, a large number of users are technically novice or
have no clear idea of the item they are looking for, thus, they
are producing simple, vague, and most of the time, ambigu-
ous queries. This has led into a large amount of work on
trying to discover what the user had in mind when formu-
lating the query. Techniques such as interactive query re-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.

Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.

http://dx.doi.org/10.1145/2588555.2594529.

laxation [6], semantic enhancement, or related queries using
log-analysis [7], are only some examples among the many.

We demonstrate here a novel query technique we have re-
cently introduced [5], in which the user knows an element
among those expected to be in the desired result set, but
cannot provide a set of specifications that actually describe
all the elements in that desired set. In other words, the user
“query”works as an example of what the user is looking for.
We call this novel query paradigm exemplar queries to em-
phasize its di↵erent nature from those mentioned previously
and the new evaluation methods it requires.

Although the idea of exemplar queries looks very similar
to the well-known notion of query by example (QBE), it
is fundamentally di↵erent. In QBE, the user query is used
simply to communicate to the query evaluation engine the
conditions that the elements in the result set should sat-
isfy. In some sense, QBE works like a wild-card query, and
is simply a more user-friendly method to describe the query
conditions. In an exemplar query, on the other hand, the in-
formation provided by the user is a sample from the desired
set, which means that the conditions characterizing all the
elements in the desired answer may not even be explicitly
stated in the user query.

Exemplar queries may attract considerable attention from
many di↵erent types of end users. They are particularly suit-
able for users that need to investigate a topic in a field in
which they have none or limited experience, which means
that they do not know the terminology to formulate the
right search queries, but instead they know of a specific in-
stance (sample) of what they are looking for. For example,
a student asked to investigate a new topic may be given a
paper on that topic as a starting point. The challenge is that
many aspects of the topic may not be explicitly stated in the
provided paper, thus, they have somehow to be inferred. A
di↵erent example is the one of a lawyer or a reporter that
may have a specific case in their hands and are looking to
find other similar cases.

Exemplar queries may also attract considerable attention
from the search engine community since they can signifi-
cantly advance the field with novel functionalities.

In particular, in parallel to the query evaluation that a
search engine performs, the user query can also be seen as
an exemplar query and be evaluated as such. The results
of this evaluation can be appended to the results the search
engine generates, increasing the probability to capture the
user’s intent. For instance, a query on the World War II will
typically return documents related to this war. Evaluating

Figure 1: Exemplar Query Example

the query as an exemplar query will result to many other big
wars in history. Exemplar queries can also be used to en-
hance the “related information” sections that existing search
engines are currently o↵ering, like for instance, the related
entities or the queries other users have also searched that
Google provides on the side bar. In the query about World
War II, for example, the side bar may contain also link on
information about World War I, or the Roman Empire wars.

This demonstration is about XQ, a system that imple-
ments this new search paradigm of exemplar queries, and
can complement to existing search engines and significantly
enrich the current user experience.

2. RUNNING EXAMPLE
The demonstration will not be around a single running

example, but the participants will have the opportunity to
try many di↵erent searches, either proposed by the demon-
strators or by the participants themselves. The principal
running example illustrating the functionality of the sys-
tem, however, and the one that will be first presented is the
one of the exemplar query of Google and YouTube. Con-
sider the case of a university student who has been given
an assignment to perform a study on company acquisitions
in California. The student is not really an expert in the
field, and not familiar with the related terminology. Writing
a query with the terms “acquisitions” and “California” will
in the best case return documents talking about the topic
of acquisitions, that are also mentioning California. An ar-
ticle on the takeover of del.icio.us by Yahoo! may not be
returned if the actual words of acquisition and California
are not explicitly mentioned in the text. The student knows
that a good case of the type of acquisition she is looking
for is the one of YouTube by Google. Thus, she issues the
query: “Google founded in Menlo Park acquired YouTube”.
The search engine typically responds with results related
to Google, Menlo Park, and YouTube, but will not return
anything related to an acquisition of del.icio.us by Yahoo!.
The same query without the geographic specification place
is still valid, but any further specification in the example is
useful to restrict the search space. If there is a significant
number of users that have performed similar searches in the
past, an analysis of the query logs may reveal that informa-
tion and the search engine may be able to propose, in the
related searches section, queries on Yahoo! and del.icio.us.
(A simple test in existing search engines reveals that this is
not actually happening.) Relaxing one or more of the query
conditions does not help in a significant way, since the re-
sults are still focused around the Google case. Nevertheless,
XQ is able to perform the right reasoning and return the

Figure 2: Exemplar Query Evaluation Steps

Yahoo! -del.icio.us case.
Consider now a second candidate answer for the user query:

Opel that was acquired by General Motors (GM). Among
the Yahoo! -del.icio.us and GM -Opel, it is more likely that
the former is among the company acquisitions that the user
is interested in, and not the latter. This is because even
though Yahoo! was founded in a di↵erent city than Google,
that city is still in California (just like Google), while the
city that GM was founded is in Michigan. Furthermore, the
example of Google-YouTube is about IT companies, and so
are the Yahoo! -del.icio.us, while GM -Opel belong to the au-
tomotive industry. XQ is able to also discover and return
GM -Opel as an answer to the exemplar query but will rank
it lower than the one of Yahoo! -del.icio.us.

Figure 1 illustrates a portion of the data repository with
the information described previously, the exemplar query
(top left) and the relationships that lead to the inference of
the respective exemplar query answers.

Given the case of Google-YouTube, our system is able to
identify not only that both the cases of Yahoo! -del.icio.us
and GM -Opel are related to the case of Google-YouTube but
also that the former is more related to it than the latter.

3. TECHNICAL DESCRIPTION
Figure 2 illustrates the individual steps of an exemplar

query evaluation task. It is assumed that data is modeled
using a graph based data model in which an element of inter-
est is represented as a node and its characteristic attributes
as edges. The model is generic enough to capture data in
many di↵erent application scenarios.

[Direct Evaluation] Given the user query, the first step is
to identify in the data repository the structure to which the
user is referring, i.e., those representing the example that
the user already knows to be part of the desired result set.
We refer to that structure as the user sample. The reason
we consider that structure as the example and not what the
user has actually provided in query expression is two-fold.
The first is that what the user provides may be vague and
imprecise since it is typically expressed in some user friendly
language such as a set of keywords. The second is that in
order to construct the exemplar query answers, we need to
find similar elements to the element the user knows about
(the one specified in the user query), but to do so we need to
know as much information as possible about that element.
Unfortunately, most of the time the user query contains only
the information necessary to identify the required element
and is not intended for providing a full description of the
element. Thus, in order to obtain as much information as
possible, there is a need to recognize it in the data repository
and retrieve all the information that is available for it.

For this task there is already a large volume of literature
on methods that can be used. In our system we are based
on some semantic-based technique we have recently devel-
oped [1], but this is not the focus of our current demonstra-
tion, so we will not elaborate on it.

[IsoSimilarity] Once the user sample has been identified,
we search in the database elements similar to it. Note that
the previous step may generate more than one sample. If
this happens, then the current step is repeated for each of
the samples identified. Checking for similar elements is a
challenging task due to the number of similarity checkings
that need to be done, a solution that does not scale well.

To reduce the number of similarity searches that need
to take place, XQ uses an intelligent pruning and similar-
ity evaluation technique. The idea is to remove in advance
nodes that are unlikely to be of interest to the user. The first
intuition is that nodes in the graph that are located far from
the user sample will be also semantically distant from the
user’s intention as expressed in the query. Conversely, the
portion of the graph that is likely to contain relevant answers
is called Relevant Neighborhood, and it is constructed from
the subset of nodes with higher proximity, in terms of path
length, to the nodes of the user sample. For this reason XQ
uses a principled way of measuring the relative distance and
for pruning the graph, which builds upon the well known
concept of the Personalized PageRank (PPV) [2]. In XQ,
user preferences are expressed through the nodes and edges
in the exemplar query. Hence, the XQ algorithm does not
treat all edges equally as it happens for links between web-
pages, instead it adapts to the various edges and their labels,
and assign weights proportional to the amount of informa-
tion carried by each edge compared to other edges. Thus the
main di↵erence between the original PPV model and the one
XQ uses, i.e., the Adaptive Personalized PageRank Vector
(APPV), lays on the fact that we build the adjacency ma-
trix A of the database D in order to take into account also
the di↵erent importance of the edges. The APPV v is then
defined as for the PPV and is computed over the weighted
matrix A with: v = (1 � c)Av + cp. In the computation
of the vector v, p is the vector that represents the starting
probability in the PPV algorithm and which is conveniently
biased towards the nodes in the user sample. In order to ob-
tain higher performance XQ approximates the computation
of the APPV vector by implementing an iterative function
that does not need to traverse the entire graph but guesses
the value of the PageRank using an approach similar to the
weighted particle filtering procedure proposed in [4]. The
final values contained in the APPV vector v represent an
estimate of the distances of the nodes in the graph from the
subset of nodes in the user sample. The distance values in
v are then seen as a relevance measure, and we keep those
nodes with a value higher than a threshold.

For similarity, XQ uses a method based on graph isomor-
phism on edge labels. Sub-graph isomorphism is known to
be an NP-complete problem. To improve the performance,
XQ uses an e↵ective way to prune the search space even fur-
ther than what was pruned by the relevance measure, and
restricts the list of database nodes that have to be matched
to the nodes of the user sample in order to find isomorphic
structures. For this, it uses an e�cient technique for com-
paring nodes, and an algorithm for e↵ectively rejecting pairs
of nodes that are bound to not participate in any isomorphic

mapping. For each node we store a signature precomputing
the set of edge-labels of the edges at a fixed distance from the
node. The verification process matches the query node sig-
natures with each node signature in the Relevant Neighbor-
hood and prunes the non-matching nodes. The e↵ectiveness
of the method is further improved by exploiting the concept
of simulation, which is a computationally tractable notion of
graph matching. Although this technique may lead to false
positives, the schema is e↵ective and reduces further the
search space and time. The false positives are subsequently
removed by running the traditional isomorphic verification
algorithm on them. A more detailed description of this step
can be found in the conference version of this work [5].

[Ranking] Once the set of solutions of the user samples
have been computed, they need to be ranked according to
the likelihood that they are of interest to the user. Finding
the right ranking function requires taking into consideration
the various factors that may a↵ect such a list. We claim
that such a decision depends on two main parameters: the
structural similarity and the importance of the label struc-
tures. For the first, we have adopted a metric that is based
on a vectorial representation of nodes using its neighbor-
hood [3] extended to capture the di↵erences among nodes
that emerge when taking into account the edge-labels of the
neighbors. For the second, XQ uses the Personalized Page
Rank (computed in the previous step) that among others
embeds the distance information in that score to take into
consideration the distance of a node from the user sample.
As the final ranking score we take the linear combination

⇢(ns, n) = �S(ns, n) + (1� �)p[n]. (1)

where p[n] is the APPV score and S(ns, n) is the structural
similarity. � is a diversification parameter that depends on
the user and on the data. A value close to 1 favors results
similar to the neighbor nodes of the user sample, while a
value close to 0 favors solutions close to the sample.

[Page Retrieval] The ranked solutions are elements in the
data repository that are related to the user sample. They
can be used as already mentioned in the side bar of exist-
ing search engines to provide other related information to
the user query. For instance, they can form a section (or
enhance an existing one) on related queries, or related en-
tities. However, it may be of interest to actually retrieve
pages about these elements and merge them into the exist-
ing search results of a traditional search engine. For this,
an optional step is the one of page creation that retrieves
pages from a search engine related to each of the solutions
generated in the previous step.

4. SYSTEM DESCRIPTION
The interface of the XQ System looks similar to the inter-

face of known search engines, with the typical search field
and the list of results below it (see Figure 3). However, the
results are fundamentally di↵erent than those search engines
typically provide since it implements the exemplar query
evaluation task of Figure 2. Apart from the system func-
tionality that can be observed on this main page, the system
o↵ers the interested researcher the opportunity to dig into
the individual steps and observe the results. For instance,
given an exemplar query and the generated result answer,
the option “Samples” at the top leads the user into a di↵er-
ent panel that illustrates the samples that have been found

Figure 3: The XQ System Interface: The main panel (left) and the sample panel (right).

for the provided exemplar query. This panel is illustrated on
the right-hand side of Figure 3. The left part of this panel is
the list of the found samples and by clicking on one of them,
the canvas part illustrates its properties and neighbors in
the data repository. This can help in understanding why a
structure in the repository is considered as a sample.

Selecting a sample from the list and then the option “So-
lutions” from the top menu-bar, the user can observe all
the solutions that the system has generated for the selected
sample, i.e., the structures that are considered related to
the sample. The list of solutions is ranked according to the
believed relevance to the sample. Clicking a solution in the
list displays in the canvas its structure, so that a participant
can understand why a specific solution has been selected.

Retrieving documents related to each of these solutions
generates the set of documents returned as an answer to the
exemplar query and are shown on the main page (Figure 3
left-hand side) under the search text field.

5. DEMONSTRATION SCENARIO
The demo will start with a very brief introduction on the

idea of exemplar queries followed by a series of exemplar
query executions and the explanation of the retrieved re-
sults. This will be done mainly on the main screen of the
XQ Engine. The first exemplar queries to be executed will
be proposed by the demonstrators (with the very first being
the one described in Section 2) and will be particular queries
that will help the audience in quickly and fully understand-
ing the notion of exemplar queries. Then, the audience will
have the opportunity to try their own queries and evaluate
the quality of the retrieved results.

As a dataset for the demonstration, we will be using free-
base, which is a knowledge base modeled as an RDF graph
containing around 53 million nodes and 213 million edges.
All the queries tried during the demonstration will be exe-
cuted at real-time, with no pre-computed results used.

For every query executed in our system, we will be able
to show the computation that has taken place in each of
the processing steps of the exemplar query evaluation algo-
rithm. This will be done through the panels “Samples” and
“Solutions” described in the previous section.

Statistics about execution time and data characteristics
will also be available to the demonstration audience to show
the challenging performance issues ands solutions. The par-
ticipant will be able to change the � parameter of the ranking

function and observe the behavior of the algorithms.
In a separate window, we will also send the user queries to

be executed by one or more search engines (either semantic
or traditional), and look at the results they return along-
side other complementary information they provide such as
related searches or related entities. We will compare this
cumulative information to the results that our system re-
turns as an answer to the exemplar queries, and highlight
the di↵erences between the two approaches.

[Demonstration Goals] The main goal of the demonstra-
tion is to introduce the SIGMOD community to this new
form of query answering and highlight its benefits. Through
the executed queries the participant will realize the oppor-
tunities that this new form of query answering has to o↵er.

Furthermore, through the direct comparison with existing
search engines, it will be shown how hard, or even impossi-
ble, is to obtain these results using existing technologies.

At the same time, the current demonstration has a highly
educational goal. It aims at raising awareness of the tech-
nical challenges that this form of query answering brings on
the table, how they have been solved in the current version
of the system, initiate interesting discussions and exchange
of ideas, and, hopefully, stimulate a number of researchers
on working on the topic.

6. REFERENCES
[1] S. Bergamaschi, E. Domnori, F. Guerra, R. Trillo Lado, and

Y. Velegrakis. Keyword search over relational databases: a

metadata approach. In SIGMOD, pages 565–576, 2011.

[2] G. Jeh and J. Widom. Scaling personalized web search. In

WWW, pages 271–279, 2003.

[3] A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and

S. Tao. Neighborhood based fast graph search in large

networks. In SIGMOD, pages 901–912, 2011.

[4] N. Lao and W. W. Cohen. Fast query execution for retrieval

models based on path-constrained random walks. In KDD,

pages 881–888, 2010.

[5] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas.

Exemplar queries: Give me an example of what you need.

PVLDB, 7(5), 2014.

[6] D. Mottin, A. Marascu, S. B. Roy, G. Das, T. Palpanas, and

Y. Velegrakis. A probabilistic optimization framework for

the empty-answer problem. PVLDB, 6(14):1762–1773, 2013.

[7] D. Mottin, T. Palpanas, and Y. Velegrakis. Entity Ranking

Using Click-Log Information. IDA Journal, 17(5):837–856,
2013.

