Chapter 1
Relational Technologies, Metadata and RDF

Yannis Velegrakis

Abstract Metadata plays an important role in successfully undedétgnand
querying data on the web. A number of metadata managemaricst have al-
ready been developed but each is tailored to specific kindsathdata. The Re-
source Description Framework (RDF) is a generic, flexibld ppwerful model
which is becoming the de-facto standard for metadata reptason on the Web.
Its adoption has created an exponential growth of the anufiavailable RDF data
calling for efficient management solutions. Instead ofgigisig such solutions from
scratch, it is possible to invest on existing relationahtemlogies by exploiting their
long presence and maturity. Relational technologies ctar efficient storage and
high performance querying at relatively low cost. Unfogtely, the principles of
the relational model are fundamentally different from #no§RDF. This difference
means that specialized storage and querying schemes ndsedpot in place in
order to use relational technologies for RDF data. In thiskwee provide a com-
prehensive description of these relational RDF storagersels and discuss their
advantages and limitations. We believe that through cllyedesigned schemes, it
is possible to achieve sophisticated high performancesysthat support the full
power of RDF and bring one step closer the materializatiothefSemantic Web
vision.

1.1 Introduction

Recent years have shown a tremendous proliferation ofregdteat make available
on the web data and information from almost every field of hoadivity, i.e., from

corporate environments and scientific domains to persordiarand social activi-
ties. Interaction with these systems is becoming incrghsicomplex, mainly due
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Metadata Approach
Atomic value annotations attached to a block of values
Annotations [21] within a tuple. They accompany the values as retrieved| Re-

lational algebra query language.

Atomic data values carry their provenance, which prgpa-
Provenance [11] gates with them as they are retrieved. Query language|sup-
ports predicates on provenance.

Data values are associated with quality parameters (accu-
Quality Parameters [28] racy, freshness, etc.). SQL is extended to retrieve datg si
these parameters.

Explicit modeling of schema and mapping informatipn,
and associations of it with portions of the data. SQL |ex-
tension to retrieve data and metadata that satisfy cqrtain
metadata properties.

Schema & Mappings [41,47]

Credential-based access control. System reads complex se-

Security [7] curity profiles and returns data results accordingly.

Loosely-coupled model of information elements, marks

nd links used to represent superimposed information. It
ﬁas no specific schema, but is in relational model and can
be queried using SQL.

Creation and modification time is recorded with the data
Time [13] and used in query answering. Query language supports
predicates on time values.

Super-imposed Information [26

Fig. 1.1: Metadata management approaches in relationademéstructured data systems

to the fact that their internal data has dramatically insegkin size, structural com-
plexity, semantic heterogeneity and interaction intjcd® cope with this issue,
and successfully query, discover, retrieve, integratenaaititain this data, metadata
plays an important role. The term metadata is used to refanycsecondary piece
of information that is separate in some way from the primatadin corporate en-
vironments, for instance, metadata regarding data qui@8y44, 46] can help in
detecting erroneous, inaccurate, out-of-date, or incetaplalues and can have sig-
nificant impact on the quality of query results [16]. In s¢iéo domains, whenever
data is collected from various sources, cleansed, integrand analyzed to pro-
duce new forms of data [36], any provenance [8], superimghasermation [26],
different forms of annotations [11, 21] or information o therformed transforma-
tions [4,41], can be important in order to allow users to ggpéir own judgment
to assess the credibility of the query results.

The relational model provides a clear separation betwetnwddues and meta-
data information. The metadata of a relational databaseeran the structure of the
data (i.e., the schema), constraints that may exist on ttee deatistics that are of
use by query optimizers, and information about time and pssions on the various
schema components. Additional types of meta-data cannetbity incorporated
in this model, and query languages, such as SQL, have noswovior meta-data
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based queries, i.e., queries involving meta-data termsr @e years, there have
been numerous research efforts to cope with this limitatiable 1.1 illustrates
some of these efforts along-side the way they have apprdabhkeroblem. A com-
mon denominator of these efforts is the extension of the dedel with special
structures to store the meta-data of interest and the eateakthe query language
with additional operators that are specifically designedafepecific kind of meta-
data.

A closer look of the works in Table 1.1 can also reveal the thigterogeneity of
the kinds of metadata that have been considered and the aigkealof specializa-
tion of each solution towards the specific meta-data it igeting. In particular, it
can be observed that some metadata is expressed as single aadues, e.g., the
creation time of an element in a database [13], while othave la more complex
structure, e.g., the schema mapping [41] or security [7¢i$ioation. Furthermore,
metadata may be associated either to individual data vflie$3, 28] or to groups
of values, i.e., set of attributes in a tuple [21]. As far asahcerns the query lan-
guage, it can be noticed that there is a clear distinctiowden data and metadata.
Either there are queries that return only metadata infdomate., the relations of
a database schema, or data-only queries, or queries rggudata accompanied by
their associated meta-data. However, in many real-woeta&gos, the distinction
between data and meta-data is blurred. The same piece afafion may be seen
by some as data and by others as metadata which means thair alisknction
between the kind of arguments (data or metadata) that a qyemnator can accept
may not be desired. It can also be observed that each solstioot directly ap-
plicable to other forms of meta-data, at least not withoatesonajor modifications.
Past attempts on building generic metadata stores (e.g3])have employed com-
plex modeling tools for this purpose: [23] explicitly repemted the various artifacts
using Telos [30], while the Microsoft Repository [6] empém/data repositories (in-
tended for shared databases of engineering artifactsynplsj elegant approach to
uniformly model and query data, arbitrary metadata and teociation has been
elusive.

In parallel to the database community, the Web communitydacsimilar need.
More than ever before, a model for the uniform represemaia querying of meta-
data on the Web had been apparent. The model had to be maehdwbte, flexible
and easily integrateable with existing web technologiabtanls. This led to the
introduction of RDF that is currently emerging as the domirstandard for repre-
senting interlinked meta-data on the Web. It is a represientianguage based on
directed labeled graphs in which nodes are called resoamesdges are called
properties. The graph structure is expressed through essefiriples, each repre-
senting an edge between two resources (the first and thirp@oemt of the triple)
with the second component of the triple being the identiffahe edge. RDF has
an XML syntax, which means that it is humanly and machine abd It allows
the representation of many different kinds of meta-data wighly heterogeneous
structures. Its wide adoption by organizations and indiald as the format for web
metadata publishing, brings the web one step closer to #ieadon of the Seman-
tic Web vision [37].
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The increased amount of RDF data has naturally called fariefii storage and
querying solutions, that has led to the development of a rummidifferent systems,
typically referred to atriple storeq3,5,10,12,22,33]. Unfortunately, the flexibility
that RDF offered, came at a price. Its triple-based natugaired special storage,
indexing, retrieval and update techniques. Early RDF systgtored triples in giant
three-column tables that were efficient for simple tripteséd queries, especially
in the presence of the right index structures, but had sersoalability issues in
complex graph-based queries.

In order to avoid building new native RDF solutions from scha it seemed
logical to invest on the many years of research and developthat has taken
place in the area of relational data management. Relatgyst¢ms have matured
enough and are prevalent, thus they can be easily adoptedliworld application
scenarios. Many popular systems such as Jena [12], OrafjieSésame [10] and
3store [22], are based on this idea. Of course, the tabutaranaf the relational
model cannot directly serve the graph-based query expressind data traversal
functionality that RDF requires. As such, special scheneedrto be designed in
order to alleviate that issue and improve query performance

In this work we provide an overview of the ways that the dasebend the web
communities have dealt with the issue of metadata manage®ection 1.2 is an
introduction to the relational model. Section 1.3 presentsugh categorization of
the metadata management techniques in the relational datagament community.
A quick overview of RDF and its basic modeling principles iade in Section 1.4.
Finally, Section 1.5 presents different modeling schenoestoring RDF data in
relational data management systems.

1.2 The Relational Model

Assume an infinite set of attribute namésnd a set of atomic types, e.tnieger,
String, etc., with pairwise disjoint domains. The name of an atoype is used to
represent both the type and its domain.

A relational database (or relational instance) [15] cdasi$a set of relations (or
relational tables). A relational table is a named set ofdsipA tuple is an ordered
set of(a,V) pairs, called attributes, witacL andvelntegeruStringu... The car-
dinality of a tuple is the number of attributes it containdl.tAe tuples in the same
relation must have the same cardinality, and all the atie#in the same position
of each tuple must have the same attribute name and valubs shtne type. The
schema of a relational table, denotedR{#\:T1,A2:To, ..., An:Ty), describes the
structure of its tuples. In particuldR is the name of the tabla,is the cardinality of
its tuples, and\: Ty is the name and type of the attributes in ke position of each
tuple in the table. The schema of a relational database isghef the schemas of
its relational tables.

A number of different languages have been proposed oveath¢hree decades
for querying relational data. The most popular is withoubalst SQL [19]. An SQL
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query is formed by &elect, afrom and awhere clause. Therom clause consists of a
set of variables, each associated to a relational tabléh Ea@able is bound to the
tuples of the table with which it is associated. TWrere clause contains a set of
conditions. Given a binding of the variables of a query, & tonditions in thehere
clause are satisfied by the tuples to which the variables anad the binding is
said to be drue binding. For each true binding, a tuple is generated in tissvan
set according to the expressions in thiect clause. Eackelect clause expression is
defined by the following grammar:

exp ::= constant variableattributeName f(expi,...,exm)

Since the output of an SQL query is a set of homogeneous tuges relational
table, queries can be composed to form more complex queigk. supports a
number of additional constructs for grouping, sorting agidoperations and others,
but we will not elaborate further on those since they are déuhe scope of the
current work.

The tabular form of the relational model makes it ideal fooresentation of
sets of data with homogeneous structures and the appmprdgx structures can
provide efficient tuple selection operations based orbaitei values.

1.3 Modeling Metadata in Relational Systems

There have been numerous efforts for storing metadatadtiorhl databases. These
efforts boil down to three main categories. The first is theafseparate specialized
structures that represent the metadata. The second isdloé insermixed structures
in which the same table contains both data and metadatahirdekind is the use
of intensional associations that allows metadata to becaged to data without the
need for the latter to be aware of that.

1.3.1 Separate Structures

This approach involved specially designed tables whosasgos are known in ad-
vance and are not considered part of the database schenstarde. They contain
meta-information about the stored data, and they can béegligsing the relational
query language supported by the system. However, they thenased for associ-
ating generic kinds of metadata to the data values. A clalssiample of this case
are the catalog tables of the relational DBMS.
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Restaurants
Name Name¢ City |City¢
Chinatown N.Y.|in USA
(@) Pizza Romgvery nice L.A.
Pizza Romgexpensive L.A.
Pizza Romdrom citySearclL.A. |[from citySearc
Restaurants Restaurants ¢
Name City Key Namec City ¢
(b) Chinatown |N.Y. Chinatown in USA
Pizza RomgL.A. Pizza Romgvery nice
Pizza Romgexpensive
Pizza Romgrom citySearclfrom citySearch
Restaurants
Name City |Namec|City ¢|value
Chinatown [N.Y. 1 |inUSA
© Pizza Romg_.A. |1 very nice
Pizza Romg_.A. |1 expensive
Pizza Romg_.A. |1 1 |from citySearc

Fig. 1.2: Schemes for storing annotations in relationa dat

1.3.2 Intermixed Context

In the case in which different kinds of metadata need to beciested to specific data
values, a different mechanism is needed. Data annotatierdassical examples of
such metadata. An annotation may vary from security inféionato data quality
parameters, with the simplest and most prevalent kind obtation being the user
comments.

A possible scheme for data annotations is used in the DBNwyt&tem [8]. For
every attributed, in a data table, a second attribétgis introduced to keep the an-
notation of the value i\. An example of this scheme is illustrated in Figure 1.2(a).
AttributesName; andcity. contain the annotations of the values in attribuiese
andcity, respectively. A limitation of the scheme is that in the dasehich a value
has more than one annotation, the whole tuple needs to bategh®nce for every
annotation. This is the case of tReza Roma restaurantin the example. Note how
the tuple Pizza Roma, L.A. ] has to be repeated three times to accommodate the
three different annotations of the valBegza Roma . Furthermore, if an annotation
is referring to more than one attributes of a tuple, the aaiiait has to be repeated
for every attribute. For instance, the annotafrom citySearch  in theRestaurants
table is repeated in both columrame, andcityc.
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Restaurants Comments
References Comment |Date |Author
select * Ithas |03/06John
e Type City St from Restaurantg 7% tax
Chinatown |ChinesgN.Y. 8 \g?e_r“el_ A
Pizza Rpma Itali_an L.A. 30 se?/ect’; - Tipis |06/08Mary
The I_nd|a Ind_lan San Josg5 from Restaurants 15%
Yo-Min ChineseN.Y. 22 where
Spicy Home Indian |L.A. 25 city="N.Y”"
Noodle plathChineS(iN.Y. 15 select C|ty Isin 01/04 Kathy
Curry Indian |San JosR0 | |from Restaurantgthe US
where
city="L.A.”
select * Notto |06/059Nick
from Comments |trust
where aur
thor="John"

Fig. 1.3: A database instance with intensional associgtion

To avoid the redundancy a variation of the described schemée used. The
variation is based on the existence of keys or of row idengifi;n particular, the
scheme assumes that for every tabléhere is a tabld; that stores the annotations.
The attributes of the tabl& are basically the attributel; of the previous scheme,
with one additional attribute, used to reference the keydgerid) of the respective
data tuple. This variation is illustrated in Figure 1.2(f)ple repetition may still be
required in case of multiple annotations on a value, butisxdhse the wasted space
is only for the repetition of the row identifier (or the key)danot for the whole data
tuple values.

In certain practical scenarios, an annotation may needassigned to more than
one tuple attributes as a block and not to each attributeithatilly. The Mondrian
system [21] uses a different variation of the previous sahémachieve this. It
assumes a coluny, of typebit for every attributeA of the data table, and a column
value, in each data table. When an annotation needs to be placedgooup of
attributes in a tuple, the annotation value is inserted évilue column, and the
bit columns of the respective attributes are set to 1. An gtars illustrated in
Figure 1.2(c) in which the annotatidiom citySearch  is assigned to both values
Pizza Roma andL.A.
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1.3.3 Intensional Associations

The two schemes presented have three main limitationg, #iey require explicit
association of every metadata entry with its respectiva datries. This is not prac-
tical in cases in which multiple data elements share the saetadata informa-
tion. For instance, assume the existence of a tdalaurants with information about
restaurants as illustrated in Figure 1.3, and a user thatsneeannotate all the
restaurants in N.Y. city with some comment about them. Afiteding all the tu-
ples in therestaurant table for whichcity="N.v", an explicit association will have to be
made between each such tuple and the the respective conmrhergecond limita-
tion is that future data cannot be handled automatically.ifstance, assume that
ten new New York restaurants are inserted infb®aurants table and that the com-
ment the user needs to add is generic and applies to every ewr¥staurant.
An association between the user comment and each of theseestaurants will
again have to be explicitly made. The third limitation of $@hemes described in
the previous subsections is that the data table is fully ewéthe existence of the
metadata. Any metadata value change to be implementedesaqdcess to the ta-
ble that the data values are also stored. This is somethaigrhy not always be
possible since owners of data and meta-data may be diffengities with different
privileges.

To overcome these limitations, an instensional associ&tionework [34] can be
put in place. The idea is to replace the traditional valugebaassociation between
tables with associations based on queries. An exampleuiriited in Figure 1.3.
Table comments contains comments that various users have made over time. Co
umn References iS Of a special type that contains, instead of a regular ataalue
referring to the key of the data table, a query expressior. @aluation of this
query expression determines the data values that the tespescmment is about.
For instance, the first tuple in tlmments table is about all the restaurants in Los
Angeles (L.A.). Note that one metadata tuple is enough t@wcall the restaurants
on which the comment applies. In real systems where the sateata value may
have to be assigned to multiple data tuples, this schemeeealrtd significant sav-
ing in terms of space. Furthermore, assuming that a newurgsteopens in L.A.
and the respective tuple is inserted in thataurants table. The tuple will be auto-
matically associated to the first entry in thenments table, since it will satisfy the
specifications of the query in thReferences column of the metadata tuple.

By using queries as attributes one can assign metadataaavithbut any modi-
fication on the data tables. Furthermore, 4fiect clause of the query can be used to
assign the metadata information to a subset of the columtheafata tuple, as is the
case with the third tuple in theomments table in Figure 1.3. An additional feature is
that the queries used as values can reference tuples inldeyrtahe database, even
in their own. One such example, is the fourth tuple of th@ments table that rep-
resents a comment that applies on the first tuple of the sdntee Ehe modeling of
this scheme allows for a uniform management of data and rattahd facilitates
the construction of metadata hierarchies, i.e., metadsigred to other metadata.
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Of course, the presence of queries as values require mditifisaof the query
evaluation engine. Some first steps have already been deaed®evaluation tech-
niques [32, 39], and index structures [38].

1.4 RDF

RDF (Resource Description Framework) [22] has been intteduas a mean to
represent metadata on the web. It views web data as a m=tmfrcesthat may also
be related to each other. Any web entity is considered a respuniquely identified
by its Unique Resource Identifier (URInformation about web entities is expressed
throughRDF statementsAn RDF statemenspecifies a relationship between two
resources. It is a triple of the forfsub ject predicate object. Thesubjectis a
URI representing a web artifacttatemenis a label, andb jectis either another
URI or a literal. The information, for instance, that W3C lie towner of the web
page http://www.w3.0rg/RDF, can be expressed throughttiteraent
(http://www.w3.0rg/RDF, “owner”, http://www.w3.0}g
assuming that the URI of the W3C is http://www.w3.0rg.

Web metadata may not always be about web entities but abiertimetadata. To
facilitate this kind of information, statements themsslaee considered resources,
thus, they can be used in statements like any other resource.

By representing every statement as an edge that conneatssitierces that ap-
pear in its subject and object and is labeled with its predjcane can generate a
graph representation of any RDF data. Since statementésareesources, an edge
can connect not only nodes but also edges, thus, the geti@natph structure is
actually a hyper-graph.

A set of RDF triple statements form &DF base More formally, we assume
the existence of an infinite set @fsource$/, each with ainique resource identifier
(URI), an infinite set of labels4, and an infinite set diterals £. Each literal can
be considered a resource having itself as its actual URkofertyis an association
between two resources which is also a resource. A propempigsented by a triple
(s, p,0), wherep is the URI of the property whileando the URIs of the resources
it associates. The URJ of a property(s, p,0) is denoted by RI(p) or simply p.

Definition 1.1. A RDF baseX is a tuple(l,P), wherel Cl{ is a set of individuals,
PCIxUxI is a set of properties andh{URI(p) | pcP}=0.

To describe and/or control the structure or RDF data, W3drtesducedRrDF
SchemaRDFS) [42]. RDFS is a set of constructs that allows the didimiof
schematic, i.e., typing, information about RDF data. It mledi classes as a way to
group together RDF resources that have common structufiesedtiates between
a property and a non-property resources, allows the defindf inheritance and
enables the definition of constraints on the resources thabgerty is allowed to
associate.
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RDFS assumes that gétcontains the following special resourcesifs:Literal ,
rdfs:Property, rdfs:Class, rdf:Thing , rdfs:type, rdfs:domain, rdfs:range, the
rdfs:subClassOfand therdfs:subPropertyOf.

Typing information is modeled through thefs:type property. All the resources
associated to a resour€ethrough therdfs:type property are said to bestances
of C. Every resource is an instance of the resoudé& hing . Each resourc€ that
can have instances is itself an instance of the resadfsgClass. All such instances
are referred to aslassesResourcesdfs:Property, rdfs:Literal , rdfs:Class and
rdf:Thing are classes. The instances of the claffs:Literal are all the literal
values. Every instance of a class that is not an instanceasbudfs:Property is
referred to adndividual A partial order can be defined among classes, through
properties that are instancesrdfs:subClassOf If a class is a subclass of another,
then the set of instances of the first is a subset of the sestHrine of the second.
The subclass relationship forms a lattice hierarchy ambegctasses, with class
rdf:Thing being at the top of the lattice.

Every property resource is an instance giraperty classProperty classes are
used to restrict the resources properties can associgpeogerty classis an in-
stance of classdfs:Property and is associated through propertieés:domain
andrdfs:range to two other classes. When a property is an instance of a ggope
class, the resources it associates must be instances dfriesrdand range classes
of its property class.

A partial order sub-property relationship can be definedvbet the property
classes, similarly to the subclass relationship that cadedimed among classes.
The sub-property relationship is defined throughriiifs:subPropertyOf. When a
property is a sub-property of another, then the domain angeralasses of the first
must be subclasses of the domain and range of the second.

Definition 1.2. A RDF/RDFS base is a tuple (I,P,C,P,T,T¢, <¢, <p), Where
ICU is a set of individuals, andP is a set of properties withPCl xU/ x| and
IN{URI(p) | peP}=0. C is a set of classes that includeifs:Class, P is a set
of property classes that includedfs:Property, 1/l -C and1p|P—P; are typing
function, <. is a partial order relationshpon C with rdfs:Class as the root, and

=pis a partial order relationshipn P with rdfs:Property as root.

1.5 Using Relational Systems for RDF Storage

The current RDF storage and retrieval landscape reminisibts Although there
are proposals for native RDF storage, a great majority héedapwards the use

1 The names of the properties are their URIs. For simpliciyna-spaces have been omitted from
the discussion.

2 Representing the subclass relationships
3 Representing the sub-property relationships
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SPARQL Queries .
RDF2Rel —

.
>

H"
RDF Data [

SQL Queries
Relational Data

Fig. 1.4: The generic architecture of systems that emplogie¢ional data management solutions
for storing, querying and retrieving RDF data.

of relational data management systems. This trend comes sinprise. Develop-
ment of new solutions from scratch requires significant amofd effort, time and
money. Relational technologies, on the other hand, have &@aind for more than
three decades, have great achievements to demonstrateeadwhginating the mar-
ket. They can offer numerous of-the-shelf solutions witeagrquery performance
and good scalability. Unfortunately, using a relationadteyn for that purpose is
not a straight forward task, mainly due to the different fdational principles be-
tween the RDF and the relational model. Special schemamlesig RDF-tailored
query answering techniques need to be put in place for sucupling to work.
The following sections provide an overview of the differeschemes that can be
used for that purpose. Many of them are already adopted byrrR&)F stores, such
as Jena [12], Oracle [14], RDFStore [3], Sesame [10], 39&2F DLDB [33] or
Hexastore [45]. A typical architecture consists of a reladl system with an addi-
tional layer that stands between the relational reposaad/the user or application
interface. The layer is aware of the storage scheme usee ielitional repository
and is responsible for translating the RDF queries posedsbyswor applications
to queries on the relational structures. The architectigraphically depicted in
Figure 1.4.

The length of the URIs is one of the first issues faced in rahati RDF storage.
A URI typically consists of a web address followed by somectiory path and the
name of the intended resource. Although storing and rétrgdeng strings is not an
issue in modern DBMS, it is becoming an issue in indexing. WYiadexing mecha-
nisms use a maximum of 256 or 512 characters as key valuasghly the first 256
or 512 characters of the URIs will be used in the index. TrtingdURIs makes the
index useless since the truncated URIs may become non-airfigavoid this issue,
URIs can be stored in a reverse form, so that any possibledtiom occurs only on
its head. Alternatively, URIs can be mapped to unique sysfenerated identifiers,
preferably of numerical nature. Comparisons on numeriglaies are more efficient
than string comparisons, thus, such a mapping offers signifiperformance im-
provements. In what follows, we assume that such a mappalg/&sy/s possible and
we will treat URIs and their respective system generategtifiers as synonyms.
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<?xml version="1.0"?>
<rdf:RDF  xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#" @
xmins:mns="http://www.myWebSite.org/myNameSpace#">

<rdf:Description rdf:about="mns:couple”>
<mns:husband rdf:resource="John"/> m @
<mns:wife rdf:resource="Mary”/>

</rdf:Description>

<rdf:Description rdf:about="John">

<mns:fullName>John Smith</mns:fullName> @
</rdf:Description>
<rdf:Description rdf:about="Mary”>

<mns:fullName>Mary Wilkinson</mns:fullName>
</rdf:Description>

</rdf:RDF>

Fig. 1.5: XML syntax (top left) of some RDF structure (tophtjyand the tree representation of its
XML syntax (bottom)

A similar technique based on hash encoding is used by 3S2atelf particular,
for every URI or atomic value that exists in the database,sh lkay is computed
and used instead of a URI or a literal. The selection of thiettigish functions can
significantly reduce the time required to compare two vdluBss, and can lead to
considerable query performance improvements.

1.5.1 Storing RDF as XML

Since RDF has an XML syntax, any XML storage mechanism carsbd to store
RDF data. Currently, there is a rich literature addressirggissue of storing and
querying XML data in relational databases. Several mapgpiragegies have been
proposed, and many systems have already been develop&dasuStored [18],
Edge [20], Interval [17], XRel [49], XPERANTO [40], or Legd®[9]. Further-
more, most major commercial relational DBMSs, e.g., IBM 0B8], Oracle [24]
and Microsoft SQL Server [29], are currently supporting ieedding, storing,
querying and retrieving of XML documents.

There are two main drawbacks in following such a stratege. fiiist is the mis-
match between the syntactic variations of the XML represtéorn and the RDF data
model. In particular, the tree representation of the XMLtayrof some RDF struc-
ture may involve additional elements that may not corredponany of the RDF
structures. For instance, Figure 1.5 illustrates an RDFehmpresening a couple
where John Smith is the husbant and Mary Wilkinson the wifee Top left-hand-
side of the figure is the XML syntax of the RDF model, while tbp tight-hand side
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is its graph representation. The lower part of the figure ésttbe representation of
the XML data of the top left-hand side. It can easily be natittee differences be-
tween the two graph representations, which means thategugmithe RDF structure
will have to be translated accordingly if the RDF structuaes stored according to
the XML representation.

A second drawback of the strategy is the mismatch betweeXthe and the
RDF query patterns. XML queries are based on the tree steiofuXML and typ-
ically involve root-to-element paths or subtree sele®idRDF resources, on the
other hand, lack such a hierarchy. They are structured astdit graphs, and natu-
rally, RDF queries typically involve random graph travéssa

1.5.2 Vertical Table

Since an RDF base is expressed as a set of triple stateméésfofm(subject, pred-
icate, object), @ straight-forward solution is to use a 3-attribute tablestoring the
statements. This schema is referred to asséréical tablescheme. Each tuple in a
vertical table represents a triple statement, with itsetattributes corresponding to
the subject, the predicate and the object part of the tripgpectively. Figure 1.6
illustrates a vertical table that models a part of an RDF base

Assume that a user is interested in finding whe@®avanese has any publica-
tions and poses the SPARQL query:

select?subjectvhere { ?subject author Calvanese }

To retrieve the answer, the SPARQL query is translated téofloeving SQL expres-
sion:

select Subject

from Statements

where predicate=author " and object="Calvanese ”
which can be efficiently answered in the presence of indemek@attributes of the
tablestatements.

On the other hand, to answer queries like, for instance, tieetbat looks for
the journals in whiciMecca andAtzeni have sent a publication together, requires
multiple self-joins over thetatements table which leads to significant performance
issues. The particular query, for instance, can be answredgh the relational
query:

selects3.objecfrom Statements s1, Statements s2, Statements s3

where s1.predicate=duthor " and s1.object=Mecca” and
s2.predicate=duthor ” and s1.object=Atzeni ” and
s3.predicategburnal " and s1.subject=s2.subjeahd
sl.subject=s3.subject

The advantage of the vertical table scheme is that it isltsigifar storing highly
heterogeneous data. It can easily model resources with amper of properties.
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Statements
subject |predicate |object
1 type article

title LAURIN
author [Catarci
author [Santucci
author [Calvanese
journal  |WWW

year 2001

file CSCO1.pdf

type book

author [Codd

title The Relational Model
year 1990
publisher|Addison-Wesley

type book

title Principles of DB Systern|s
author  [Vianu

author  [Hull

author  [Abiteboul

year 1995

publisher|Addison-Wesley
type article

title Web-Based Data
author  [Atzeni

author  [Merialdo

author [Mecca

journal |IEEE Int. Comp.
file AMMO2.pdf

BB BB DO WW W W W WNINNNN P PP PP P -

Fig. 1.6: A vertical table.

The scheme facilitates statement-based queries, i.eriegumnsisting of a triple
statement that lacks one or two parts and returns the resoofdhe triples com-
plementing the missing parts, like, the example query aBaluénese above. This
is because statement-based queries get translated toisglaelational queries
which can be efficiently answered in the presence of the ifglex structures. On
the other hand, due to the joins that need to be performed ltatvsing and path
queries on the RDF structures are costly to implement.

In the presence of schema information, the vertical tabfebsaused to answer
schema queries, i.e., queries related to RDF metadatachkee® stores the schema
information in triples as it does with the rest of the data][Zhus, it is easy, for
instance, to answer whether a class is a direct subclassottienlt will be hard,
however, to answer whether a class is a subclass of anotter general case, since
the system will have to search and combine many triple sttésn
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Class (classname, pre, post, depth)
Property (propertyName, domain, range, pre, post, depth)
Resource (resourceName, ppathlD, datatype)
Triple (subject, predicate, object)
Path (pathID, pathexp)
Type (resourceName, className)

Fig. 1.7: Relational schema for a graph-based RDF storage

1.5.3 Graph-Based Storage

Since the RDF model is basically a directed graph, a largebeurof queries
are about detecting subgraphs satisfying some path expmes3 he vertical table
scheme has poor performance for this type pof queries betheg require multiple
join operations.

To overcome this problem, the design of the relational &abé be based on the
paths that are most likely to be used [27]. To cover all thesjixbs cases, one can
extract for each resoureall the path expressions to every other resource reachable
from e and explicitly store them. This precomputation avoids egdee joins during
guery answering and improves significantly the query respdime. An important
requirement, however, is that the data contains no cycticpa

To reduce the size of the tables, an idea is to use differblesdo represents dif-
ferent parts on the RDF graph [27]. In particular, one careexdifferent subgraphs
based on the class hierarchy, the properties, etc., anel stawh one of them in its
own table. That way, depending on their kind, queries willlvected and answered
on the respective tables. The extraction of the subgraphbeaased on the special
RDF properties. For instance, tikass inheritance property, type domain-range
and generic subgraphs can be extracted from the RDF grapH baghe properties
rdf:subclassOf, rdfs:subPropertyOf, rdf:type, rdfs:domain/range andrdfs:seeAlso/isDefinedBy re-
lationships. Clearly, the structure of each such graph ishmiesss complex that the
structure of the whole RDF graph which leads to better respdimes. Further-
more, based on the characteristics of each such graphetiffeechniques can be
used for the representation of the different graphs in tliomal tables.

A possible schema of the relational tables for a graph-bR¥f storage is il-
lustrated in Figure 1.7. Relatiomsass andProperty are used to store the classes and
properties of the RDF Schema. Attributes, pos anddepth represent the Li and
Moon [25] encoding of each class/property in the RDF gragte Li and Moon
encoding is a numbering scheme that has been extensivelyirugge XML litera-
ture to check ancestor/decedent relationships. It astigrech node three numbers.
The first and the second, represent the pre-order and thepest position of each
node in the XML tree. The third determines the depth of eaatenoomputed as
the length of the path from the root to the specific node. Tymapply the specific
numbering scheme on an RDF graph gives rise to two main isbure since RDF
graphs are directed acyclic graphs and not trees, it is ®atr evhat node should
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serve as the root from which the numbering should start. i8&cuaultiple different
paths may have a common start and end nodes, and choosingarenother may
have conncequences. To overcome these issues, nodes-géhree equal to 0 can

be characterized &sots” and paths can be computed from each such node to any
other. Furthermore, in the case of multiple paths to a nodgtjpie copies of that
node can be created, one for each different path.

In the relational schema of Figure 1.7, taligle is used to model all the RDF
statements and is used to efficiently answer predicateepiefablerype is used to
record for every resource instance the RDF schema claskitdse The attributes
of these two tables are self-explanatory.

Materializing the different paths from the roots to the n®idaalso an issue, since
the paths can be of variable size. To avoid expensive joinatipas, every path can
be encoded as a string of labels and resource names separatggh some special
character, i.e., “/". The role of tablath andresource is to materialize this encoding.
The former encodes every path along with a unique identiftee. latter, associates
every node, i.e., resource, in the RDF graph with its pathisérath table.

Finding the resources reachable through a path can be at\wgrselecting
from thepath table those tuples for which thethexp attribute is equal to the path
specified in the query. This selection can be performed fastHash or B+ tree
index is available. Since the paths recordedaifexp are all paths starting from a
root, the specific selection can work only if the path speifiethe query also starts
from aroot. If it starts from a non-root node, then the tafate needs to be searched
for the tuples with aathexpr attribute value ending with the requested path. Such
an operation cannot exploit the index, and is based on séqueoan. To avoid
sequential scan, paths can be storegdathexp in reverse order, i.e., starting from
the ending node and ending with the root. That way, the in@exte exploited to
improve searching for paths ending to a node.

1.5.4 Graph Schema - Vertical Data

An approach similar to the graph-based storage has beenruB&Suite [3], but
with further improvements and features. The general idéaéxploit to the maxi-
mum the RDF Schema information whenever this is availalbe. Sets of relational
tables are needed. The first is used to represent the RDF &dh&rmation and
the second the actual RDF data.

To represent the RDF schema information, and in partichkictass and prop-
erty hierarchies, four tables are used, namely ¢h@s, Property, SubClass and
SubProperty. The Class and Property tables hold the classes and properties defined
in the RDF Schema, respectively. TBabClass and thesubpProperty tables, store
the rdfs:subClass and rdfs:subProperty relationships that exist between the
classes and the properties, respectively. A special tgbdeis used in which the
build-in classes defined in RDF Schema [42],iidés:Class  orrdfs:Property
and the literals, i.e.string  or integer , are hard-coded into its contents. The
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Class

Propert
1 Vehicle 1 licence 1 4
2 Truck 22 privateLicence 2 6
3 Car 33 businessLicence | 3 5
4 License
5 Private Subclass Subpropert
2 1 22 11
3 1 33 1
Instance Propertylnstance Type
[ ciasi | R
100 |2 100 brand 500 500 | MAN
200 |3 200 brand 501 501 | VW
300 |5 200 privateLicence 300 600 | rdfs:Class
301 |6 100 businessLicence | 301 601 | rdfs:Property

3 5 brand rivateLicence
2 6

200 S0t businessLicence
URI URI o to

Fig. 1.8: A Graph Schema Vertical Data encoding example.

schema of the tables along with a small fraction of the taloletents are illus-
trated in Figure 1.8. Note that tabbess is a unary table, while tablesibClass and
SubProperty are binary since they store the relationship between tlssetaand prop-
erties that exist in the tablesass andproperty, respectively. Theroperty table on the
other hand is a ternary relationship since it provides fargproperty, the domain
and range classes:"Btree indexes are required on every attribute in theseddble
achieve satisfactory performance.

For representing the RDF data, an idea similar to the véttibée scheme can be
used. In particular, a tablestance with two attributes is required. The first attribute
of a tuple in that table keeps the URI of an instance resoundetlze second the
URI of the class that the instance belongs. A similar apgrasitised to represent
the properties of the instances, througbraverty table with three columns: two for
keeping the URIs of the instances that the property relatres,one for storing the
name of the property. A fraction of thestance and Propertyinstance tables is illus-
trated in Figure 1.8. As before,™Btree indexes are constructed for every attribute
in these tables.

The instance and therropertyinstance tables may get too large and affect perfor-
mance. An alternative modeling is to use one table for thairtes of each different
class. The name of each such table is the name of the clastheaples it con-
tains are the URIs of the instances of the respective cldsstdbles in Figure 1.8
that have a number as a name are examples of this variatiensdrhe applies for
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the property instances, but this time the table is labeled thie name of the prop-
erty and it must have two columns that record the two rescuittat the property
instance associates.

Having separate tables for instances and properties @fdiit classes may lead
to more efficient query answering since fewer tuples may tabe scanned. How-
ever, this option is not applicable in cases that the numbelasses are extremely
large, since this will require the definition of an extremiglsgge number of tables.
Although the number of tables supported by the majority ofiera relational sys-
tems is large enough, there are RDF bases that require tagocr®f more than
300.000 tables, which even if supported by the relationstiesy, it will have seri-
ous performance and management issues.

1.5.5 Property Table

An alternative to the vertical table schema that aims ateigdLthe number of joins
required during query answering is to cluster the propedfehe resources and find
groups of entities that share the same set of propertiescdinenon properties can
then be modeled as attributes of the same table, referredapraperty table This
modeling makes explicit the association of the differemiparties, eliminating the
need for joins. A property table consistshfattributes. The first functions as a key
and is typically a URI. The remaining—1 attributes represent a setidf-1 prop-
erties that are commonly found to all the resources, or at ke majority of them.
For instance, by studying the RDF data of Figure 1.6, one otineithat properties
type andtitle appear to all the four resources, while the propesty appears in the
majority of them, i.e., it appears in all resources apantfeb. Thus, we can con-
struct a relational table with four attributes, the firstresponding to the resource
URI and the rest to the attributege, tite andyear. The table is illustrated on the
left-hand side of Figure 1.9.

Note that resource 4 in Figure 1.6 hasyeer property, and this is reflected in
the property table of Figure 1.9 through a NULL value on the respectivelaitte.
The property table could have also included attribjt@sal andfile for storing the
data of the respective properties. However, since thegeepies appear to only few
resources, they would have required the respective coltonns padded with a lot
of nulls, resulting to an unjustified waste of space. To avbis, a different table,
referred to as thexcess tables instead introduced. Its schema and functionality
is the same as the table in Figure 1.6. The context of thie tal# shown on the
right-hand side of Figure 1.9.

A requirement of the property table scheme is that the pt@seused in the
property table are not multi-valued. In the RDF example gjué 1.6, certain re-
sources have more than one author. Since the relationallrisooheFirst Normal
Form [2], such multi-values attributes cannot be modeletiénproperty table, and
unavoidably will be included in the excess table.
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Property Table Excess Table
URI|type |[title year URI|predicate |object
1 [article]LAURIN 2001 1 |author |Catarci
2 |book |The Relational Model 1990 1 J|author |[Santucci
3 |book |Principles of DB Systen]4995 1 |author |Calvanese
4 |article| Web-Based Data NULL 1 J|journal [WWW
1 |file CSCO01.pdf
2 |author |[Codd
2 |publisher{Addison-Wesley
3 |author |Vianu
3 |author |Hull
3 |author |Abiteboul
3 |publisher|Addison-Wesley
4 lauthor |Atzeni
4 |author |Merialdo
4 |author |Mecca
4 |journal |IEEE Int. Comp
4 |file AMMO2.pdf

Fig. 1.9: A property table scheme.
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A variation of the property table scheme is one that consideiltiple property
tables. Howe many such tables and with what attributes is#unyg that is deter-
mined by the property clustering technique. For instangendiicing that although
there is ngournal property for every resource in the RDF data, for those ressur
that exist, propertyile is also present. Thus, a second property table can be created
for only the propertiegurnal andfile.

The advantage of the property table scheme is that quene$s/ing popular
attributes in the cluster, can be answered without joins.iRkstance, asking for
the article with the title “LAURIN” published in 2001, can tsnswered with a
selection query on the property table. Of course, querieshiing attributes that
have not been modeled in the property table and are locatbe iexcess table will
unavoidably require joins.

The property table scheme makes no use of schema inform#tiomit can be
used for schema-less data. However, the existence of RDéngctlean offer new
opportunities for optimizing the encoding. In particulsince classes are used to
cluster together resources with the same structure, onle cse the classes as a
guide for generating multiple property tables, for ins@nane for each class. The
properties encoded in each such table will be the propestidse respective class,
and the table will be referred to asclass property tableFor example, assuming
that for the RDF data of Figure 1.6 there are two main clase®s forarticles and
one forbooks. The data can then be represented into two class propetgstab
illustrated in Figure 1.10. Note that even in this case, thdtimalued properties
continue to be an issue and still requireeatess table in order to be stored. On the
other hand, all the other properties will be accommodatezht®or more property
tables. The case in which a property is modeled in more tharpooperty tables, is
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Excess Table

AJ;‘:I‘“: Prope:ttyll Table fi _ I URI|predicate |object
ype utle year |lte journa 1 |author |Catarci
1 |article] LAURIN 2001 [CSCO1.pdf |(WWW 1 Tauthor _1Santucai
4 |article) Web-Based DatdNULL |AMMO2.pdf{IEEE Int. Comp T lauthor _[Calvanese
2 |author |Codd
3 |author [Vianu
3 |author |Hull
Book P ty Tabl -
O0C oPey e0= = 3 |author [Abiteboul
URI|type |title year |publisher ) h Atzeni
2 |book The Relational Model (1990 Addison-Wesley 7 author Mzgnll d
3 |book|Principles of DB Systen]4995/Addison-Wesley author enaldo
4 author [Mecca

Fig. 1.10: A property table scheme with class property &ble

the one in which the property is shared by more than one cdaBse instance, the
property title appears in both property tables of Figuré®1This is a fundamental
difference between the property tables based on the RD&chad the property
tables based on property clustering. In the latter caseyoypepty gets repeated in
more than one table.

Although the property table scheme may be proved to be effiéee many ap-
plications, there are cases in which it may under-perforne 6f these cases is the
one in which the data from different class property tablesdseto be combined.
For instance, assume that one is interested in finding ths ye@vhich publications
have taken place. In the case of class property tables, thisamslate to the union
query that selects the years from the two class propertgsalbhe scheme performs
well if the data is highly structured data, i.e., conformsdémne schema. This mini-
mizes, and in the best case eliminates, the number of piepénat are recorded in
the excess table. However, we should not forget that oneeafridin reasons of the
RDF popularity is its ability to model highly heterogenealasa, which means that
a large majority of the data of interest is of such nature.

1.5.6 Vertical Partitioning

The property table clusters together properties that amenoon to a group of re-
sources, but those properties that cannot be accommodadey icluster will have
all to be stored in the excess table. A different scheme ihat at tackling this lim-
itation is the vertical partitioning. The idea of the vedlipartitioning scheme [1] is
similar to the idea of column-store in databases. It groagsther properties of the
same type and store each such group in a separate table.tahkesecan be linked
together based on the resource URIs. More specificallyhallsubject-predicate-
object triples that have the same predicate value form apgstared under a two-
column relational table named after the name of the preeliddte first column is
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type title year author
URI|value URI|value URI|value URI|value
1 |article] 1 |LAURIN 1 (2001 1 |Catarci
2 [book 2 |The Relational Model 2 (1990 1 |Santucci
3 [book 3 |Principles of DB Systenis |3 |1995 1 |Calvanese
4 |article 4 |Web-Based Data 2 |Codd

3 |Vianu

3 |Hull
journal publisher file 3 |Abiteboul
URI|value URI|value URI|value 4 |Atzeni
1 [WWW 2 |Addison-Wesley 1 |CSCOl.pdf| |4 [Merialdo
4 |IEEE Int. Comp} |3 |Addison-Wesley 4 |AMMO2.pdf| [4 |Mecca

Fig. 1.11: A vertical partitioning scheme example.

the URI of the resource, i.e., the subject, and the secoimng igalue of the property,
i.e., the object. In total, there will Hesuch tables, wheileis the number of different
properties that the RDF data contains. A vertical partitigrexample for the RDF
data of Figure 1.6 is illustrated in Figure 1.11.

URI attributes cannot be keys for the tables in the vertieatifioning scheme,
unless the represented property is not a multi-valued ptppgé¢owever, since joins
are based on the URIs, the existence of indexes on all the tiHitides is required.
Furthermore, indexes can also be constructed ondhe attribute for facilitating
selection based on property values. If the tuples in eadb tak sorted by the URI
attribute, then joins between two tables can be performed iefficient manner us-
ing merge-joins [35]. This also means efficient handling eftinvalued properties
since all the entries of a multi-valued property will be siiconsecutively in the
respective property tables.

The defragmentation of the set of triples into sets that sreed into separate
tables can significantly improve query answering for queetii@t require searching
to only few properties, since the data access is neededydtmntables of interest.

Despite its advantages, the vertical partitioning schenmet free of limitations.
The most critical one is that queries with conditions on saveroperties will re-
quire joins of multiple tables, which although can be spepadvith the right index-
ing and join technique, itis not as efficient as sequentie¢ss to tables that contain
all the attributes of interest. Another limitation is thaetnames of the properties
are not recorded as data, but as meta-data in the names péithielial tables. This
means that the data can be access only if the names of thetiesg@operties are
known. Thus, queries requiring the discovery of all the rtips that a specific re-
source may have, cannot be directly answered. A solutioo issé the meta-data
information offered by relational DBMSs, in particular thatalog tables, in order
to obtain a list of the available tables. Even with such a Kedge though, to find
all the properties that a particular resource may have,regjlire a separate query
to be sent to every table in the database in order to discokether it contains a
tuple for the specific resource of interest.
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1.5.7 Smart Indexing

In recent years, a new query model has emerged on the wels ssrnot have
complete knowledge of the data they are querying since iigisiyh heterogeneous
and its structure difficult to communicated. In such an envinent, queries are
mainly of exploratory nature and, in some cases, underfpeckor this kind of
queries, schema-based approaches like the verticaipairiy or the property tables
may not be the preferable solution.

For efficiently answering queries that look for propertiéa given resource, the
triple nature of RDF can be exploited to build specializedeixes [45]. Since RDF
data is described by a list of triples of the fofsubject predicate objec}, there
are 6 different ways one can retrieve that data, each camekipg to one of the 3!
different ways that the componerstisbject predicateandobject can be combined.
For example, one combination is to first provideudoject retrieve all thepredicates
of thatsubjectand for each sugbredicateretrieve theobjectsof the triples that have
the specifisubjectandpredicate Given the six different ways the three components
can be combined, there are six differentindexes that cansuicted, one for each
combination. Each such index, consists of a list of listsesources. A graphical
illustration of such a structure is depicted in Figure 1. A8ume that this figure
is the index for the combinatiasubjectpredicateobject Since thesubjectis first,
the first horizontal list has as many elements as the diffendnjectvalues that can
be found in the RDF data triples. Each element correspondsi¢osuch values
and points to another list. Singeedicateis the second component in teabject
predicateobjectcombination, the pointed list consists of as many elementba
number of differenpredicatevalues that are found in the RDF data triples veits
asubject Each of these elements corresponds to pmeelicatevalue p and points
also to a list. That list contains all thabjectvalues that can be found in the RDF
data triples that haveas asubjectand p as apredicate This kind of lists are those
depicted vertically in Figure 1.12.

An index structure like the one described above is congduftir each of the
six different combinations adubject predicateandobject in order to cover all the
possible orders they may be queried. Each index has all tbemation that can be
found in the list of triples, thus no additional storage iguieed. Since each index
hold all the triple information, one would expect the totadjuired space to be six
times the size of the set of triples. This is not actually tfTiee reason is that the
lists of the third component in a combination are the samepeddently of the
order of the first two components, thus, there is no need doingt them twice. For
instance, the lists for thebjectvalues in the combinatiopredicatesubjectobject
is the same as the list objectvalues in the combinatiosubjectpredicateobject

The materialization of a specific combination of the indexdure in a relational
system requires a number of two-column and a number of sitwjlemn tables. In
particular, a two-column table is needed to model the listHe first component of
the combination, i.e., the top horizontal list in Figure2..The first column of the
table contains the values of the component that the lisesgmts, and the second
column contains the reference to the table that models tgeontive list of the



1 Relational Technologies, Metadata and RDF 67

‘§1‘52‘s3‘ ‘sq‘
s1 s1 s1 s1
S P,
Y Y l
s1-p1 s1-p2 s1-pk
01 01 01
o s1-p1 o s1-p2 o s1-pk
2
s1-p1
om
s1-pk
Oi
s1-p2
0n

Fig. 1.12: One of the six triple-based indexing structures.

second component. The latter has also a two-column steuctine first column
contains the values of the second component in the combmadti each tuple of
that table, the second attribute is a reference pointerabla materializing the list
with the respective values of the third component, i.e.,rttegerialization of the
vertical lists depicted in Figure 1.12.

Among the advantages of this scheme is its natural supportdti-valued prop-
erties, the lack of any need for nulls, and the reduced numbl® operations to
access the data of interest. The main limitation, howeséng space. Every value in
the triples is indexed twice. For instance abjectvalue of a triple is indexed by the
subjectpredicateobjectand by thepredicatesubjectobjectcombination structure.

The RDF-3X [31] system is following a similar approach foethanagement
of RDF data. RDF-3X is not based on relational technologlyak been built from
scratch, and is tailored specifically to RDF data. It storB§Rata as a list of triples,
as in the case of a vertical table (ref. Section 1.5.2), aild$an top of it a series of
specialized indexes for the various query operators. Bheflitriples, however, can
easily be stored in a relational database if needed. Likadtexe, it builds indexes
for all the six different permutations of the three dimensithat constitute an RDF
triple, but it goes beyond this by constructed additiondkixes oven aggregation
operators on them. The constructed indexes can be comgriesae efficient way
and can lead into a space requirement that is less than thefdhe actual triple
data. Query answering in RDF-3X is also based on merge-jménators performed
over sorted index lists.
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1.6 Conclusion

The goal of this chapter was to explore the links between da¢égamanagement,
RDF and relational technologies. The first part introduagdtional systems and
presented the main directions that have been followed imstand querying meta-
data in such systems. The second part introduced RDF whtble ismerging stan-
dard for metadata representation on the web. It presergadtional of its introduc-
tion, the reasons for its success and its main modelingiptex: It was recognized
that building native RDF solutions from scratch requirestaoff effort and under
the current rate that the web evolves, any delay is a luxuyctmmunity cannot
afford. Efficient and effective solutions are needed rigiwnThe exploitation of the
relational technology appears as a promising option. Relak systems have been
around for decades. They are mature enough, easily acgessihoffer great per-
formance and scalability. However, the different prinegpbetween the RDF and the
relational model makes the use of relational systems for RidFage and retrieval
a complicated task. We presented alternative schemes dhattieen proposed in
the scientific literature, and we have described the adgastand disadvantages of
each one. From the descriptions it is becoming clear thaeé tiseno such thing as
golden rule or best solution. Each technique is best suiteddrtain cases. The de-
cision on which technique one could use, highly depends erciiaracteristics of
the RDF data to be stored and the kind of queries that are tekezla
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