
Int J Digit Libr (2000) 3: 208–220 / Digital Object Identifier (DOI) 10.1007/s007990000036

Original Articles

OnZ39.50wrapping and description logics∗

Yannis Velegrakis1,∗∗, Vassilis Christophides2, Panos Constantopoulos2,3

1Department of Computer Science, University of Toronto, 10 King’s College Rd, Toronto, Ontario, Canada M5S-3G4;
E-mail: velgias@cs.toronto.edu
2 Institute of Computer Science, FORTH, Vassilika Vouton, P.O. Box 1385, GR 711 10, Heraklion, Greece;
E-mail: {christop, panos}@ics.forth.gr
3Department of Computer Science, University of Crete, GR 71409, Heraklion, Greece

Published online: 22 September 2000 – Springer-Verlag 2000

Abstract. Z39.50 is a client/server protocol widely used
in digital libraries andmuseums for searching and retriev-
ing information spread over a number of heterogeneous
sources. To overcome semantic and schematic discrepan-
cies among the various data sources the protocol relies on
a world view of information as a flat list of fields, called
Access Points (AP). One of the major issues for building
Z39.50 wrappers is to map this unstructured list of APs
to the underlying source data structure and semantics.
For highly structured sources (e.g., database manage-
ment systems, knowledge base systems) this mapping is
quite complex and considerably affects the quality of the
retrieved data. Unfortunately, existing Z39.50 wrappers
have been developed from scratch and they do not pro-
vide high-level mapping languages with verifiable prop-
erties. In this paper, we propose a description logic (DL)
based toolkit for the declarative specification of Z39.50
wrappers. We claim that the conceptualization of AP
mappings enables a formal validation of the query trans-
lation quality (e.g., ill-defined mappings, inappropriate
APs, etc.) and allows one to tackle a number of Z39.50
pending issues (e.g., metadata retrieval, query failures
due to unsupported APs, etc.). Furthermore, our DL-
based approach allows the development of Z39.50 wrap-
pers enriched with a number of added-value services such
as conceptual structuring of flat Z39.50 vocabularies and
intelligent Z39.50 query assists. These services are quite
useful for profile developers, Z39.50 wrappers administra-
tors, and end-users.

Key words: Information retrieval – Z39.50 wrapping –
Description logics – Query rewriting

∗ This work was partially supported by the European project
AQUARELLE (Telematics Application Programme IE-2005) and
the CIMI Interoperability Testbed project.
∗∗ Work done while the author was at the ICS-FORTH.

1 Introduction

With the advances in digital processing and communica-
tion technologies an increasing number of organizations
and individuals are using the Internet for publishing,
broadcasting, and exchanging information all over the
world. The ability to share and manipulate information
from multiple sources is a fundamental requirement for
large-scale applications, e.g., digital libraries and muse-
ums. A widely used protocol for searching and retrieving
information in a distributed environment is Z39.50 [1].
To achieve interoperability [50], Z39.50 (Version 3) relies
on: (i) standard messages, formats, and procedures gov-
erning the communication of clients and servers (system
interoperability); (ii) a world view of information as a flat
vocabulary of fields, called Access Points (AP), that ab-
stracts representational details of source data (semantic
and schematic interoperability); and (iii) basic textual
search primitives to express Boolean queries in the form
of field-value pairs (query interoperability).

In order to evaluate Z39.50 queries, sources should
wrap their actual data organization, format, and query
capabilities according to the Z39.50 specifications estab-
lished for a specific application, community, etc. These
specifications are described in the various profiles (i.e.,
metadata) proposed by national or international bod-
ies (e.g., Library of Congress1, CIMI2, etc.). It should
be stressed that the quality of the established mappings
between the source and the Z39.50 view of information
is fundamental in order to ensure the quality of the re-
trieved data (i.e., accuracy, consistency, completeness,
etc.). Unfortunately, existing Z39.50 wrappers are de-
veloped using some programming language and they do

1 lcweb.loc.gov
2 www.cimi.org

Y. Velegrakis et al.: On Z39.50 wrapping and description logics 209

not provide abstract mapping languages with verifiable
properties [10, 51, 52]. In this paper, we advocate a De-
scription Logics3 framework [8] for the declarative speci-
fication of Z39.50 wrappers using high-level concept lan-
guages. We claim that modeling the required mappings
as first-class citizens, instead of hard coding them in the
wrappers: (i) allows the formal validation of the trans-
lation quality (e.g., ill-defined mappings, inappropriate
APs); and (ii) opens unexpected opportunities to tackle
a number of Z39.50 pending issues (e.g., metadata re-
trieval, query failures due to not mapped APs, multiple
answer sets handling, etc.).

Building a wrapper for an information source accord-
ing to a Z39.50 profile (e.g., for digital libraries [37, 38],
museums [23, 53], etc.) implies the translation of: (i) the
Z39.50Access Points to the underlying source data struc-
ture and semantics; (ii) the Z39.50 Boolean filters to
the source query language; and (iii) the returned source
data from their original format to a predefined Z39.50
record syntax (e.g., GRS-1, XML). For loosely struc-
tured sources (e.g., information retrieval systems) wrap-
ping is relatively simple. It essentially requires the defin-
ition of some renaming mappings from the APs to the
source attributes or tags (e.g., the AP AU to the field
author, etc.). However, for highly structured sources (e.g.,
database management systems, knowledge base systems)
this translation is considerably more complex. This is
mainly due to the significant mismatch that exists be-
tween the Z39.50 flat view of information and the under-
lying source data model (e.g., relation or class based). In
this context, what is really needed is to define for each AP
a view on the source data.

To address this issue we introduce an intermediate
level between the Z39.50 and the source world, based on
advanced knowledge representation and reasoning sup-
port, specifically Description Logics (DL). DL provide
declarative languages to represent and reason about in-
terrelated sets of objects using modeling primitives such
as concepts, roles, and individuals. Starting from a set of
primitive concepts and roles representing source data or-
ganization, we capture the semantics of the AP mappings
as derived concepts formed by primitive ones and stan-
dard DL concept constructors [4]. Since a DL can serve
both as a knowledge representation language and as a
query language [7, 12, 49], derived concepts essentially act
as views [14] against which Z39.50 queries can be evalu-
ated with the source data. Our contribution is twofold:
(i) we propose a toolkit for the declarative specification
of Z39.50 wrappers using standard DL reasoning mech-
anisms [25]; and (ii) we enrich the so developed Z39.50
wrappers with a number of added-value services such as
conceptual structuring of flat Z39.50 vocabularies and in-
telligent Z39.50 query processing. As we will see, these
services are quite useful for profile developers, Z39.50
wrappers administrators, and end-users.

3 dl.kr.org

The rest of the paper is organized as follows. In Sect. 2
we give an example of a cultural information source and
describe the encountered problems to wrap it according
to a digital museum Z39.50 profile. In Sect. 3 we briefly
recall the core DL we use for the declarative specification
and validation of Z39.50 APmappings. Section 4 presents
the Z39.50 query processing in our DL setting and Sect. 5
elaborates on the offered added-value wrapping services.
The architecture of the Z39.50 wrapper toolkit is pre-
sented in Sect. 6. Related work in Z39.50 wrapping and
DL-based mapping languages is presented in Sect. 7. Fi-
nally, we conclude and discuss future work in Sect. 8.

2 An example of a cultural information source

In this section we describe the contents and structure of
a cultural information source that will be used as run-
ning example in the rest of the paper. We focus on the
mismatch of the information conceptualization in our test
database and a Z39.50 profile for Digital Museums [23,
53], as well as on the problems we have encountered in
order to develop a Z39.50 wrapper in the context of the
AQUARELLE and CIMIzit projects [44, 45].

2.1 The CLIO system

Our testbed relies on the CLIO cultural documentation
system, developed at the Institute of Computer Science,
Foundation for Research and Technology-Hellas (ICS-
FORTH) in close cooperation with the Benaki Museum,
Athens and the Historical Museum of Crete, Heraklion.
CLIO supports the management of an evolving body of
knowledge about ensembles of cultural goods and ad-
dresses the needs of museum curators and researchers.
The functional kernel of CLIO is the Semantic Index Sys-
tem (SIS) developed by ICS-FORTH [24]. SIS is a persis-
tent storage system based on the object-oriented seman-
tic network data model TELOS [46].

Figure 1 illustrates some modeling primitives of our
SIS-based source namely multiple classification as well
as multi-valued and optional attributes. A museum ob-
ject is represented as an instance of the class “Museu-
mObject”. It may have (optional attributes) an owner
(class “Owner”) and be constructed with the use of one
or more (multi-valued attributes) materials (class “Mate-
rial”), processes (class “Process”), and techniques (class
“Technique”). Each museum object is associated to a se-
ries of events (class “Event”) characterized by their kind,
date, and involved actor. For instance, the saber of An-
droutsos (a hero of the 1821 Hellenic Revolution) is made
of shaped silver (multiple instantiation) and it was con-
structed by Filimon in 1815. Although not illustrated in
our example, SIS-TELOS also supports simple and mul-
tiple inheritance, unbounded classification, and treats at-
tributes as first-class citizens classified on their own.

210 Y. Velegrakis et al.: On Z39.50 wrapping and description logics

Attribute

Instance of

Creation

MuseumObject hasEvent

Actor

1815

Object Event
Kind

happenedIn

usingTechnique

ofKind

hasActor

hasActor

ofKind

ha
pp

en
ed

In

EventSaber

usingTechnique

hasEvent

Technique

Filimon
Shaped Silver

Process

usingProcess

Saber5691

Owner

ow
nedB

y

Material

usingM
aterial

usingProcess

Silver

Androutsos

ow
nedB

y

usingMaterial

TemporalPoint

Fig. 1. An example of a cultural information source

2.2 Z39.50 wrapping for digital museums

Z39.50 [1] is a session oriented and stateful application
protocol, based on standard client-server architecture. To
overcome semantic and schematic discrepancies among
the various data sources, Z39.50 relies on a common in-
formation model shared by all clients and servers. It
consists of a flat list of fields, called Access Points (AP)
(or more precisely Use Attributes), on which queries are
expressed. For instance, in the CIMI [23] and in the
AQUARELLE [53] profile, the supplied APs correspond
to general information categories likePeople (specific per-
sons or cultural groups), Dates of many sorts (including
dates of creation, acquisition, exhibition), Places (e.g.,
place of creation or provenance, places associated with an
event, etc.), Subject (exact description of depicted mate-
rial), Style (including movement and period), Method (in-
cluding process and techniques), Material, etc. (see [34]
for further details).

This vocabulary of fields is employed by a Z39.50
client in order to search for records in the underly-
ing sources and next, to retrieve some or all of them.
Z39.50 queries are formulated using Boolean connectors
(and, or, and-not), search terms (i.e., use attribute-value
pairs), and qualifiers specifying lexicographical compar-
isons (e.g., greater than), truncations (e.g., right, left),
etc. For instance, the following query searches for all the
museum objects related with Androutsos and created
after 1887:

Q1: PersonalName=“Androutsos” and
(DateOfCreation=1887 Relation=“GreaterThan”)

To answerQ1 a Z39.50 server should translate it into the
native query language of our testbed source (i.e., SIS).
This translation requires a wrapping module able, in a
first step, to map the involved APs to the corresponding
classes of our cultural scenario. According to Fig. 1, the
person Androutsos might be the creator (i.e., the actor
involved in a creation event), or the owner of the ob-
ject. Then, the wrapper should translate a query on the

AP PersonalName into source queries on the Actor and
Owner classes. Similarly, a query on the AP DateOfCre-
ation should be translated into queries on the Tempo-
ralPoint class and the associated Object_Event and Kind
classes. Finally, the retrieved museum objects informa-
tion from our source, should be formatted/converted by
the wrappers according to a common agreed record syn-
tax (e.g., GRS-1, XML) and structure (e.g., including the
elements ObjectId, Title, etc.). These records will be de-
livered by a Z39.50 server to the requesting clients.

The APs translation is relatively simple if the source
is an information retrieval system (IRS). We believe that
the underlying Z39.50 information model is more suitable
to query loosely structured text bases than highly struc-
tured data sources (e.g., DBMS, KBS). Indeed, due to the
significant mismatch between the Z39.50 and the source
models, most of the existing structure and semantic rich-
ness of the sources is not taken into account during query-
ing, while wrapping becomes considerably more compli-
cated. It becomes clear that an AP may be translated to a
source query on one or more classes or relations using one
or more attribute selections, joins, etc. In other words,
for each AP we essentially need to define a view over the
source data. Nothing guarantees that the semantics of
these views correspond to the intended meaning of the
APs in the Z39.50 profile: it may be included, partially
overlapped, etc. This is typically the kind of information
that is missing from existing Z39.50 servers in order to
ensure the quality of the retrieved data (i.e., consistency,
accuracy, completeness, etc.). As we will see in the next
sections the definition of AP views (i.e., mappings) using
formal languages allows reasoning about the quality of
the Z39.50 query translation. Two Z39.50wrapping issues
are worth further elaboration and they will be addressed
by our DL approach.

2.2.1 Unsupported access points

Since the AP meaning is defined in a Z39.50 profile with-
out prior knowledge of the source contents, it may be only
implicitly represented in the source or it may not corres-
pond at all to any source information. For example, our
cultural source contains objects from the gun collection
kept in the Benaki Museum and although not explicitly
stated, this information could be used to answer queries
on the AP Location. On the other hand, the AP Protec-
tion Status, dealing with buildings and monuments, is not
at all applicable. According to the protocol both APs are
considered as unsupported by our source, i.e., the source
cannot provide any information about the related AP
concepts. According to the protocol queries containing
unsupported APs will fail and the Z39.50 server should
return a diagnostic message to the requesting client. For
large scale applications where queries are generated by a
Z39.50 client without a knowledge of servers’ metadata
(i.e., mappings) it is very likely to exist at least one un-
supported AP per source. This will result in embarrassing

Y. Velegrakis et al.: On Z39.50 wrapping and description logics 211

query failures and users risk obtaining no answer from
the sources. A commonly used approach to cope with this
problem is to omit the unsupported APs from the broad-
casted query and try to answer only the supported part.
Obviously with this approach users are not aware if the
returned answers are obtained from the execution of the
full query or from a part of it. Moreover, in this solution
the semantics given to unsupported APs changes with
respect to the kind of the issued query, leading Z39.50
wrappers to behave in an unpredictable manner. For in-
stance, omitting an unsupported AP from a conjunction
implies that the AP is interpreted to any source object
while in the case of negations the AP is interpreted as the
empty set. It should be stressed that the same problems
arise when the search operators defined in a Z39.50 profile
(e.g., truncations) are not supported by the underlying
source.

2.2.2 Fixed collections of retrieved objects

The information returned in response to a client request
is always associated with a specific data collection in the
source (e.g., a persistence root). In the rest of the pa-
per we will call this root a central concept. No matter
what the queried APs are, the answer always corresponds
to central concept instances (e.g., museum objects). This
implies that all the queried fields are supposed to be
connected in a source with the Z39.50 central concept.
However, this is not the case with structured sources (re-
lational or object-oriented) where multiple collections are
supported and data relationships are not always explic-
itly stated in the schema (using external keys or object
paths). Furthermore, even when such paths are explicitly
stated, Z39.50 profiles usually support APs for express-
ing full-text queries that require navigation over sets of
paths. For instance, we may use the AP Any, to query
on term “Androutsos”, without specifying what exactly
the related APs are: “Androutsos” may correspond in our
cultural source to a person owning an object, a person
creating an object, a geographical location, etc. Unless
the native query language of the source supports gener-
alized path expressions [21, 22], these kinds of mappings
cannot easily be expressed in structured sources. It is up
to the Z39.50 server administrator to decide query evalu-
ation under these circumstances in a more or less ad hoc
way.

3 Specifying Z39.50 wrappers using DL

Description Logics (DL), also known as terminological
logics, are a family of logics which have been intensively
studied for more than a decade in the field of concep-
tual modeling. DLs provide quite expressive declarative
languages for the representation and reasoning about
classes of objects and their relationships, encompassing
other well-known formalisms such as entity-relationship

or class inheritance models [19]. Recently, DLs have re-
ceived considerable attention in the context of informa-
tion integration systems [2, 5, 17, 28, 30, 42] since it was
proved to provide powerful formalisms to model and rea-
son over a large number of data integration views [43]. We
follow the same approach to define the required AP map-
pings as views over source data. In the sequel, we briefly
recall the core DL we use to cope with the various Z39.50
wrapping issues presented previously and provide Z39.50
wrappers with formally verifiable mapping specifications.

3.1 The core description logic

Themain DLmodeling primitives are concepts, roles, and
individuals. A concept describes a class of individuals in
the domain of interest and it is defined by the conditions
that must be satisfied by the individuals to be members
of the class. An individual is a description of a real-world
entity. A role describes a relationship between two indi-
viduals. The two basic components of a DL system are
the terminological box (TBox) and the assertional box
(ABox). The former contains concept descriptions while
the latter contains assertions regarding the individuals.
There exist two types of concepts: primitive and derived.
The definition of a primitive concept specifies only the ne-
cessary conditions for an individual to be a member of
it. On the other hand, a derived concept states the ne-
cessary and sufficient conditions for an individual to be a
member of it. This implies that an individual has to be
explicitly defined a member of a primitive concept, while
individuals of derived concepts can be inferred by the
DL system.

The interpretation of a DL knowledge base Σ is I =
(I(∆), I(·)) where I(∆) denotes a non-empty set of indi-
viduals (the domain) and I(·) an interpretation function,
mapping every concept to a subset of I(∆), every role
to a subset of I(∆)×I(∆), and every individual to an
element of I(∆) such that I(a)�=I(b) for different indi-
viduals a, b (Unique Name Assumption). Intuitively, the
interpretation of a concept C (denoted as I(C)) is the set
of individuals that have either been inferred or declared
explicitly to be instances of C. A concept C1 is said to be
subsumed by another concept C2 (denoted as C1

.
≤C2) if

and only if I(C1) ⊆ I(C2) for all interpretations. Based
on this subsumption relation, a set of concepts can form a
taxonomy having a bottom (⊥), and top () concept. The
⊥ concept is the concept for which I(⊥)≡∅, and the	 the
concept for which I()≡∆.

ATBox is defined by a finite set of axioms having one
of the forms: A

.
≤D (i.e., I(A) ⊆ I(D)), C |R|D, and a fi-

nite set of concept definitions of the formK
.
=E, where A,

C,D are primitive concepts,K is a derived concept,R is a
role (note the domain and range restrictions of roles), and
E is a concept obtained using other concepts and the con-
structors shown in Table 1. Similarly to the roles, we can
also have attributes on concepts. Disjointness of primi-

212 Y. Velegrakis et al.: On Z39.50 wrapping and description logics

Table 1. Concept- and role-forming operators

Name Syntax Semantics

Concept name A I(A)

Top 	 ∆

Bottom ⊥ ∅

Union AC {d1 | d1 ∈ I(A)∪I(C)}
Intersect A�C {d1 | d1 ∈ I(A)∩I(C)}
Existential ∃R.C {d1 | ∃d2 : (d1, d2) ∈ I(R)
quantification ∧d2 ∈ I(C)}
Universal ∀R.C {d1 | ∀d2 : (d1, d2) ∈ I(R)
quantification → d2 ∈ I(C)}
Negation ¬A {d1 | d1 /∈ I(A)}
OneOf { i, j, ...} { I(i), I(j), ...}
Role name R I(R)

Role A|R|B {(d1, d2) | (d1, d2)∈(I(R)

restriction ∩(I(A)×I(B)))

Role reversion R−1 {(d1, d2) | (d2, d1) ∈ I(R)

tive concepts in theTBox is given by axioms of the form:
A‖C (i.e., I(A)∩I(C) ≡ ∅). Finally, cycles in the con-
cept definitions are not allowed.4 Hence, an acyclic set of
concept definitions can be unfolded by iteratively substi-
tuting every concept and role name with its definition.

The ABox is defined from a finite set of declarations
having one of the forms: C(a) and R(a, b). The first one
(unary predicates) declares that individual a belongs to
the interpretation of the concept C and the second one
(binary predicates) declares that there exists a roleR from
a to b (respectively belonging to the interpretations of
concepts C and D in the definition of R). The main rea-
soning services [25] offered by a DL system Σ are the
following:

– Concept satisfiability (Σ�|=C≡⊥) checking if a con-
cept has no empty interpretation

– Subsumption checking (Σ|=C1
.
≤C2) checking if a

concept C2 subsumes C1
– Instance checking (Σ|=C(a)) checking if an individ-
ual a belongs to the interpretation of concept C.

The above setting corresponds to an almost standard
DL framework (ALEUCOIF) [25], actually supported by
several DL systems5 e.g., CRACK,6 CICLOP,7 KRIS,8

etc.

4 A cycle is defined as a chain of concepts C0, C1, ...,Cn such
that Cn = C0, and for 0 < k < n−1 it holds that concept Ck+1
appears in the definition of concept Ck [47].
5 The only subtle issue here is the introduction of restricted and

inverse roles as in [18, 31].
6 www.cs.man.ac.uk/ franconi/crack
7 www-ensais.u-strasbg.fr/LIIA/ciclop/ciclop.htm
8 www.dfki.uni-sb.de/̃ tacos/kris.html

3.2 DL concept languages for Z39.50 AP mappings

In a very natural way, source structure and semantics can
be represented as primitive concepts and roles [9, 12, 35],
and the AP mappings as derived concepts defined on
top.

The part of the TBox that contains the primitive
concepts is usually called the schema part while the
one that contains the derived concepts is called the
view part [14]. Figure 2 illustrates the primitive concepts
(TBox-schema part) representing our cultural source
schema given in Fig. 1 while the derived concepts (TBox-
view part) correspond to the established mappings for
the APs of the CIMI-AQUARELLE profile [23, 53]. The
objects of our cultural source are represented by the indi-
viduals (ABox) of the DL system. Note that this is only
a logical view of information from the Z39.50 wrappers
(see Sect. 6) and there is no need to actually load source
objects into the DL system (virtualAbox).

Recall that in the core DL framework previously pre-
sented, cycles are not allowed in the definition of the
derived concepts. However, this restriction does not ex-
clude the existence of cycles in the source schema that can
be easily represented by primitive role definitions (e.g.,
define a role Related with domain and rangeMuseumOb-
ject). Moreover, the acyclic definition of derived concepts
do not limit the expressiveness of our DL setting in order
to map APs to source schemas since we do not need to
introduce recursive definitions of derived concepts (i.e.,
views).

In the following examples we illustrate how the pro-
posed DL concept language (see Table 1) can capture the
various kinds of translations involved in Z39.50 wrapping
for structured sources (see Sect. 2). In addition, as we will
see in the next section, this language can be also used to
capture the semantics of core Z39.50 Boolean queries.

Creation

hasEvent

Actor

1815

Object Event
KindusingTechnique

ofKind

hasActor

hasActor

ofKind

ha
pp

en
ed

In

EventSaber

usingTechnique

hasEvent

Technique

Filimon
Shaped Silver

Process

usingProcess

Saber5691

Owner

ow
nedB

y

Material

usingM
aterial

usingProcess

Silver

Androutsos

ow
nedB

y

usingMaterial

TBox (View part)

What

TBox (Schema part)

ABox

Location

Protection Status

Corporate Name

Method

MuseumObject

Personal Name

Date

DateOfCreation

Event

Any

hap
pen

ed
In

TemporalPoint

Fig. 2. Modeling an information source and Z39.50 APs mappings
in DL

Y. Velegrakis et al.: On Z39.50 wrapping and description logics 213

Example 1: Perhaps the simplest case to map an AP is
when its semantics corresponds exactly to one concept of
the source schema. For instance, the AP Date is trans-
lated as follows:

Date
.
= TemporalPoint

Example 2: In most practical cases, APs should be map-
ped by combining more than one source concepts using
the DL Union and Intersect concept-forming operators.
For instance, information about persons in our cultural
source is represented by the concepts Actor and Owner,
and the AP PersonalName is mapped as follows:

PersonalName
.
= Actor Owner

Similarly, the mapping of the AP Method is defined as:

Method
.
= Process � Technique

Furthermore, mappings of abstract APs likeWho describ-
ing any personal or corporate name that can be found in
our source, are defined by using other AP derived con-
cepts such as:

Who
.
= PersonalName CorporateName

Any
.
= Who What When Where

Finally, APs like Any, for full-text queries are easily
mapped by considering the definitions of abstract APs
like Who, What, When, and Where (the 4W APs).

Example 3: More complicated situations arise when the
AP mapping requires a traversal over the roles associated
with aggregated source concepts. For example, to map
the AP DateOfCreation we need to define the following
derived concept using the DL Inverse Role operator:

DateOfCreation
.
=

∃(happenedIn)−1.(∃ofKind.{“Creation”})

The above expression has three parts: (i) the bracket ex-
pression corresponds to a concept having as interpreta-
tion only the individual Creation, i.e., subsumed byKind;
(ii) the parenthesis expression represents the related cre-
ation Events; and (iii) the whole expression captures the
Dates associated with these events. Note that the restric-
tion of a role to and from values obviates the need to verify
that the returned individuals actually belong to the inter-
pretation of Date.

Example 4: For APs corresponding to information not
explicitly stated in a source, the DL OneOf concept-
forming operator is used to translate them. For instance,
although not given in our example source, it is known that
all objects belong to the Benaki Museum (Athens) gun
collection, and hence the APs CorporateName, Location,
and Collection, are mapped as follows:

CorporateName
.
= {“Benaki Museum”}

Location
.
= {“Benaki Museum Athens”}

Collection
.
= {“Benaki Gun Collection”}

This implies that CorporateName, Location, and Collec-
tion are concepts whose interpretation contains only one

individual, respectively “Benaki Museum”, “Benaki Mu-
seum Athens”, and “Gun Collection”.

Example 5: In the case where there is no information in
the source corresponding to a specific AP, the related de-
rived concept is defined to be equivalent either to the
Bottom, i.e., the concept with an empty interpretation or
the Top, i.e., the concept whose interpretation contains
all the individuals. The decision depends on the expected
precision and recall: the former favors precision while the
latter recall. More precisely, according to the semantics of
APs in a Z39.50 profile, we consider that the Top for AP
mappings is the AP concept Any previously defined (see
Example 2). For instance, the AP ProtectionStatus which
is used for preserved buildings and cannot be mapped to
our cultural source of museum objects, is translated as
follows:

ProtectionStatus
.
= ⊥ (or ProtectionStatus

.
= Any)

In both cases, wrappers are able to smoothly incorporate
unsupported APs into the query processing by avoiding
ad hoc omissions of unsupported APs. For instance, the
following query is equivalent to the first conjunct only if
ProtectionStatus is mapped to ⊥ (see Sect. 5.2):

PersonalName= “Androutsos” and-not
ProtectionStatus= “Preserved”

3.3 Formal validation of Z39.50 wrapping quality

Having defined the mappings of the Z39.50 APs as de-
rived concepts (i.e., views) on top of a source schema,
standard DL reasoning services like Concept Satisfiabil-
ity can be used to infer if some or all of the APs map-
pings are ill-defined. Consider, for instance, that the con-
cept Material of our culture source is disjoint with the
concepts Technique and Process (see Fig. 2). Then, the
following mapping of the AP Method (see Example 2) is
inconsistent:

Method
.
= Material � Process � Technique

Indeed, due to the disjointedness, the derived concept
Method describes a necessarily empty set. In our DL
framework we can formally check whether Σ �|=Method
≡ ⊥, i.e., Method has a contradictory description (in-
tentional semantics). More generally, we can verify the
consistency of all the established mappings (i.e., that
are well defined and not mapped to the bottom) by
simply checking whether the TBox has at least one
model: Σ�|=.

To conclude this section we should note that model-
ing the AP mappings as DL-derived concepts allows one
to develop Z39.50 wrappers with formally verifiable prop-
erties. More precisely: (i) APs whose meaning is not at
all or only implicitly represented in the source can be
effectively mapped and smoothly incorporated into the
query processing; and (ii) consistency of the established
APs mapping can be easily checked without accessing the

214 Y. Velegrakis et al.: On Z39.50 wrapping and description logics

source data (virtual Abox). These added value services
are quite useful for both Z39.50 wrappers’ administrators
and end-users.

4 Z39.50 query processing using DL

Since DL can serve both as a knowledge representa-
tion language and as a query language [7, 12, 49], Z39.50
queries can also be modeled as derived concepts. More
precisely, a query can be seen as a description of the ne-
cessary and sufficient conditions that have to be satisfied
by the individuals corresponding to the objects in the
query answer. Conversely, primitive (i.e., source) or de-
rived concepts (i.e., AP mappings) can be used for data
querying by considering their interpretation. In the se-
quel, we show how the Z39.50 Boolean filters can be:
(i) translated by the wrappers using the same DL con-
cept language employed to map the Z39.50 APs; and (ii)
rewritten by taking into account the defined AP views
and the fixed central concept of the objects actually re-
turned by a source (see Sect. 2).

4.1 Translating core Z39.50 queries

As we have seen in Sect. 2, Z39.50 queries are essen-
tially composed of search terms with APs and qualifiers
for comparisons, truncations, etc., eventually combined
using Boolean connectors. Consider, for instance, the fol-
lowing simple query (i.e., no qualifiers):

Q2: PersonalName= “Androutsos”

Recall that PersonalName is an AP, mapped as de-
rived concept (CAP) to the Actor and Owner concepts,
and “Androutsos” a value considered as individual (a).
Q2 can be translated into a basic query to the DL know-
ledge base Σ using the Instance Checking reasoning ser-
vice (CAP (a)):

Σ|=PersonalName(“Androutsos”)

If the individual “Androutsos” belongs to the inter-
pretation of the concept PersonalName (after unfolding
the derived concept to its constituents Actor and Owner
primitive concepts), the knowledge base returns a pos-
itive answer and the answer set contains only the indi-
vidual “Androutsos”. Otherwise the answer set will be
empty. Generally speaking, core Z39.50 queries can be
translated into elementary DL queries that correspond
to new derived concepts (Tbox-query part). These query
concepts will be evaluated with source individuals (vir-
tualAbox) as follows:

Definition 1. Given a DL knowledge base Σ, an AP-
derived concept CAP and a core Z39.50 query q of the form
AP = a, the answer set of q is given by the interpretation
of the concept Cq: I(Cq)= {a ∈OΣ| Σ |= CAP (a)}, where
OΣ denotes the individuals of theAbox of Σ.

Note that query answering relies here on a closed-
world assumption (CWA) form [32]. In the style of [26] we
make the realistic assumption about complete knowledge
of the DL assertional part (closed-domain assumption)
and thus consider in the interpretation of concepts only
their known individuals. This assumption is justified by
the fact that in our Z39.50 wrapping context, query an-
swering takes place at the source side which provides com-
plete descriptions about its actual objects. We will come
back to Z39.50 query answering in the next section.

Now let us see howwe can express Z39.50 queries using
relation or truncation qualifiers, such as:

Q3: PersonalName=“Andr” Truncation=“Right”

These search operators are not directly expressed in a
standard DL framework, but they can be captured as ex-
ternal functions. The DL operator TEST-C allows one
to call various test functions outside of a DL system. This
operator is essentially an escape method from the lim-
its of the DL expressiveness allowing one to manipulate
individuals using external functions written in some pro-
gramming language (see, e.g., CLASSIC9 [11]). A test
function f gets an individual as argument and returns
TRUE or FALSE if it satisfies the conditions specified
in the body of the function. The interpretation of the
expression TEST-C(f) is then all the individuals which,
given as argument, the TRUE value is returned by f .
Only monotonic functions are considered in this respect.
Q3 can then be translated into the following elementary
DL query:

Σ |=(PersonalName�TEST-C(rtrunc“Andr”))

where rtrunc“Andr” is a test function supported by our ex-
ample source, which performs right truncation on string
“Andr”.

Finally, the concept-forming operators �, , and ¬
(see Table 1) can be straightforwardly used to capture the
Z39.50 Boolean connectors and, or, and and-not.

It should be stressed that when the search operators
defined in a Z39.50 profile are not supported by the un-
derlying source, we are confronted with the same prob-
lems as in the case of unsupported APs (see Sect. 2.2).
To cope with these problems we map unsupported Z39.50
search operators either to the true or false test functions.
The former favors recall, since it returns all the individ-
uals of the queried AP concept, while the latter favors
precision, since it returns the empty set. In both cases,
wrappers are able to smoothly incorporate unsupported
search operators into the query processing.

4.2 Rewriting Z39.50 queries

Unfortunately, the previous translation into DL is not
sufficient to express the exact semantics of Z39.50 queries
as defined in a profile. As we have seen in Sect. 2, the re-
sult of a Z39.50 query is the set of relevant individuals

9 www.research.att.com/sw/tools/classic

Y. Velegrakis et al.: On Z39.50 wrapping and description logics 215

belonging to a central concept of interest (e.g., the root
of museum objects), rather than the set of individuals be-
longing to the involved AP concepts.

To cope with this problem we need to rewrite the ob-
tained elementary DL queries (or more precisely their
unfolded form) in order to take into account the con-
cept path expressions (PAP) connecting, through roles,
the individuals of the central concept (CC) with those of
the AP-derived concepts involved in a query. CC is also
defined in the Tbox as a derived concept (e.g., CC

.
=

MuseumObject). For instance, for the AP concept Date-
ofCreation used inQ1 we consider the following path (see
Fig. 2):

PCreationDate
.
= ∃hasEvent.(∃happenedIn.TemporalPoint)

Since DateofCreation is only a simple case and AP-
derived concepts are usually defined by more than one
primitive concept (e.g., PersonalName), what is really
needed is to declare, for each of its constituents concepts
(e.g., Actor, Owner), the corresponding paths to the cen-
tral concept, e.g., (see Fig. 2):

PPersonalName1
.
= ∃hasEvent.(∃hasActor.Actor)

PPersonalName2
.
= ∃ownedBy.Owner

Note that composite AP concepts which are defined
in terms of others (e.g., the 4W APs), do not require
the definition of paths for their constituent concepts.
They are simply inferred during query rewriting. More
formally:

Definition 2. A path expression PAP is a sequence
of elements p = e1e2 . . . en−1en such that for i ∈ [1, n−
1] : ei ∈ {∃}∪{∀}∪R., where R is the set of the primi-
tive role names (suffixed by “.”) and en ∈ C is the set of
primitive concepts.

These paths are used during the Z39.50 query rewrit-
ing phase to capture the exact answer set (CAnswer)
with the individuals of the central concept. It should be
stressed that our choice to introduce the concept path ex-
pressions during this phase is justified by the fact that the
two alternative representations of AP mappings present
some serious drawbacks. On one hand, if we model the
AP mappings as derived concepts extended with the cor-
responding paths, we will obtain incorrect Z39.50 queries.
Indeed, the used search terms (e.g., PersonalName =
“Androutsos”) will be evaluated against the individuals
of the central concept (e.g.,MuseumObject) instead of the
individuals of the involved concepts (e.g., Owner and Ac-
tor). On the other hand, if we model the AP mappings
as derived roles connecting through path expressions the
involved schema concepts with the central one, we will in-
crease the complexity of the underlying DL [18, 31] (for
role instance checking, subsumption, etc.). For these rea-
sons, we consider the following rewriting steps:

1. Core Z39.50 queries are initially translated into ele-
mentary DL query concepts as described in the previ-
ous section. For instance, the preliminary translation
ofQ1 presented in Sect. 2 is:

PersonalName(“Androutsos”)�
(DateofCreation�TEST-C(gt“1887”))

2. The obtained DL expressions are unfolded by itera-
tively substituting the involved AP-derived concepts
(Tbox-view part) with their constituent primitive
ones (Tbox-schema part). For instance,Q1 is rewrit-
ten as follows:

(Actor(“Androutsos”)Owner(“Androutsos”))�
(∃happenedIn−1.∃ofKind.Kind(“Creation”)

� TEST-C(gt“1887”))

3. The final expression for Z39.50 query answers
(CAnswer) is then obtained by introducing the cor-
responding path expressions (PAP) for the involved
primitive concepts and by considering in the answer
only the individuals of the central concept (CC):

CAnswer = {a ∈ OΣ | Σ|=(MuseumObject(a)�
((∃hasEvent.(∃hasActor.Actor(“Androutsos”))

∃ownedBy.Owner(“Androutsos”))�
∃hasEvent.

(∃happenedIn−1.∃ofKind.Kind(“Creation”)
� TEST-C(gt“1887”))}

The above translations are considered under a canon-
ical form of a conjunction of concept expressions such
as C(a) (primitive concept), ¬C(a) , ∃R1 . . . Rn.C(a),
∀R1 . . .Rn.C(a).

It is worth noticing that for Z39.50 queries using full
text APs like Any, our rewriting will result in a DL ex-
pression comprising the paths to the central concept of
all the source schema concepts. This rewriting essentially
captures the translation at the source schema level [22] of
the generalized path expressions (e.g., MuseumObject(y)
@P (x)) involved in the AP Any. Indeed, the resulting
expression corresponds to a set of standard queries, i.e.,
without path variables. Furthermore, before evaluating
it with source data, this expression is a subject of op-
timization by the wrappers taking into account concept
subsumption. This is quite useful, especially for com-
posite APs whose unfolding results in expressions com-
prising several times the same primitive concepts (e.g.,
TemporalPoint will be included in the translation of all
temporal APs), and will be addressed in the next section.

5 Advanced Z39.50 wrapping services

In Sect. 3 we showed the benefits of modeling Z39.50 AP
mappings as DL concepts (i.e., views) in order to formally
validate their consistency. In this section, we focus on the
capability of DL-based wrappers to reason about the rela-
tionships between the AP views as well as between these
views and Z39.50 queries (also represented as DL con-
cepts). Specifically, we show: (i) how a flat Z39.50 list of
APs can be organized in a subsumption taxonomy thus
rendering their source-specific conceptual structure; and
(ii) how Z39.50 queries can be optimized with respect

216 Y. Velegrakis et al.: On Z39.50 wrapping and description logics

to their intentional semantics without accessing actual
source data (virtualAbox).

5.1 Conceptual structuring of flat Z39.50 vocabularies

Despite the simplified world view of information as a
flat list of APs, Z39.50 profiles are usually developed
according to an implicit conceptual structure of the infor-
mation requested by the users. Indeed, the APs defined
in a profile represent real world entities for a particular
application, function, or community, at various abstrac-
tion levels and with different relationships between them.
For example, in the CIMI-AQUARELLE profile [23, 53]
we can observe a wide range of APs: from very abstract
APs like Any, to general ones like What, Who, When,
and Where, (the 4W APs) until more specific like Date
or DateOfCreation. Making explicit their relationships
in the context of a specific source, is very useful for
both end-users and third-party metadata providers. It
essentially allows one to understand why the concep-
tual structures of information in a source and a profile
differ in order to improve the design of APs, query pre-
cision, interpretation of results, etc. This is one of the
main motivations of ongoing projects (e.g., the Mozilla
RDF/Z39.50 Project10) aiming at the integration of
Z39.50 with advancedWeb metadata standards (i.e., sup-
porting schemas with classes/properties hierarchies) like
RDF [13, 36].

We rely on the DL Subsumption Checking reasoning
service to organize in a taxonomy the derived concepts
capturing the AP mappings for a source. For instance,
given the definition of Date and DateOfCreation (see

Sect. 3) it can be inferred that DateOfCreation
.
≤Date.

In the simplest case, the subsumption relationships are
hand-crafted by wrappers administrators in the defini-
tions of composite AP concepts, e.g., the 4W APs.

Figure 3 illustrates the subsumption taxonomy of sev-
eral CIMI-AQUARELLE APs as they are mapped to our
example source (Tbox-view part). This taxonomy serves
as advanced knowledge support about wrapped sources
(i.e., metadata) which can be exploited online or offline.
In both cases the Z39.50 Explain service11 can be used
in order to retrieve the mapping of a specific AP or of

10 www.mozilla.org/rdf/doc/z3950.html
11 A service allowing Z39.50 clients to retrieve metadata about
servers

Date of Creation Date of Publication

Period
Date

WHEN

Personal Name Corporate Name

WHO

Type/Classification

Name Local Classification

Title

WHERE

ANYTBox-View Part

WHAT

Location Fig. 3. Structuring a flat vocabulary
of Z39.50 APs

the whole Tbox-view part. Note that exchanging source
metadata is not a simple task due to the different tech-
nologies (DBMS, KBS, etc.) employed by the sources
and the various implementation choices made by wrapper
administrators. We believe that a DL concept language
can also be used to facilitate metadata retrieval (i.e., AP
mappings) in a way commonly understood by all clients
and independent from the underlying source/wrapper
technology.

5.2 Intelligent query processing

In Sect. 4 we have seen that DL concept languages used
to capture the schema of a source and define Z39.50 APs
mappings as views on top of it, can also be employed to
express the Z39.50 queries against these views. Not sur-
prisingly Z39.50 queries can then be classified into the
concept taxonomy using the subsumption relationships
between them and the other primitive or derived concepts
(Tbox-query part). The first benefit from this classifica-
tion is to determine if a Z39.50 query can be effectively
evaluated against the existing source schema and AP
views. Indeed, after the translation of Z39.50 queries into
a canonical DL form, wrappers are able to check whether
the description (intention) of a query is contradictory
without accessing the source data (virtual ABox). For
instance, the following query can be detected as inconsis-
tent since it uses the AP ProtectionStatus mapped to the
bottom concept.

Q4: PersonalName= “Androutsos” and
ProtectionStatus= “Preserved”

If now a query is semantically well-defined it can be ap-
propriately classified by determining the set of its imme-
diate subsumers and subsumees, i.e., the concepts found
above or below in the taxonomy. Note that we are limited
here to queries without comparison predicates (e.g.,<,>,
etc.). This classification opens interesting optimization
opportunities since it induces a set of semantic transform-
ations in order to locate the exact place of concepts in the
taxonomy [6]. Consider, for instance, the following query
where the derived concept Who subsumes PersonalName
(see Fig. 3):

Q5: PersonalName=“Androutsos” or
Who=“Androutsos”

Q5 will be rewritten into the following semantically
equivalent query that will be actually executed by the
source:

Y. Velegrakis et al.: On Z39.50 wrapping and description logics 217

Q5’: Who = “Androutsos”

Recall that the result of Z39.50 queries contains only
individuals from a central concept (CC) like MuseumOb-
ject. Therefore Z39.50 queries likeQ5 will be always clas-
sified under CC defined in the Tbox-view part. This en-
ables an intelligent caching of query results [3, 29, 39] by
the wrappers and a consequent optimization of Z39.50
queries. If the concept representing a query is found to be
equivalent to one already existing in the taxonomy, the
interpretation of that concept can be returned as an an-
swer set instead of evaluating it. This is the case of Q5
assuming that the equivalent query Q5’ has been previ-
ously evaluated and cached. Alternatively, the interpreta-
tions of all the immediate subsumers have to be checked
against the query conditions. This is extremely useful,
since Z39.50 is a stateful protocol and the results of previ-
ously executed queries can be kept in the server in order
to be reused by subsequent queries. Consider the follow-
ing example:

Q6: Q5’ and When= 1815

In this case Q5’ subsumes Q6 and only the second
part of the query needs to be executed by the source (in-
tersection is performed locally by the wrapper). Finally,
the results of Q6 could also be cached in the wrapper.
This implies that the cached interpretation of concept
Q5’ will now contain only its proper individuals, i.e.,
those not belonging to the interpretations of its imme-
diate subsumees like Q6. Note that supporting several
query answer sets proves to be quite expensive with cur-
rent implementations of Z39.50 wrappers [10, 51, 52] since
they rely on results replication.

The Z39.50 query processing and optimization tech-
niques presented in this paper raise simplified versions
of well-studied problems in the databases and know-
ledge representation literature. More precisely, the DL
query subsumption checking corresponds to the well-
known problem of query containment [20] while the opti-
mization we propose can be considered as a form of query
answering using views [41] where cached queries play the
role of materialized views. Since we are limited to queries
using standard DL unary and binary relations (i.e., with-
out Horn rules and built-in predicates) both problems are
decidable [15, 16], while the complexity of subsumption
and instance checking of our language is PSPACE [8, 48].
Finally, as proven in [25] more interesting complexity re-
sults may be achieved for both reasoning services under
the closed domain assumption.

6 The DL-based Z39.50 wrapper toolkit

The architecture of the DL-based toolkit we have de-
veloped [54] is shown in Fig. 4. It is composed of the fol-
lowing five modules:

Module 1 is responsible for network communication
with the client and is based on the Yaz toolkit [33].

Result Set id
& Cardinality

Result Set id
& Cardinality

Internet

(2)

Z39.50 Request

Z39.50 Response
(1)Z

39
.5

0
C

lie
nt

Module

Search

D
es

cr
ip

tio
n

L
og

ic V
ie

w
 P

ar
t

DL Query

(4)

(5)
Mapping

Element

Record Request

Result Record (in C)

Retrieve Request

Z39.50 Query

Result Record (in GRS-1)

Files
Configuration

(Yaz Toolkit)

Communication

Module

(3)

Module
Retrieval

D
at

a
So

ur
ce

Fig. 4. The Z39.50 wrapper toolkit architecture

When it receives a search request it decodes it into ap-
propriate C structures. More specifically, it produces
the syntax tree of the query that is included in the
search request and sends it toModule 2. When a re-
sponse has to be sent back to the client, this module is
responsible for the transformation of the answer to the
appropriate network format.

Module 2 is used only during the search process. When
it receives the syntax tree of a Z39.50 query, it trans-
lates it to a preliminary DL expression (see Sect. 4)
that is sent toModule 4. After the query execution, it
receives the id and the cardinality of the result set (not
the data themselves) and forwards this information to
Module 1 to be sent back to the client.

Module 3 is used only during the retrieval process.
After receiving a Z39.50 result set id it communicates
with Module 5 to get the retrieved records in the
form of C++ structures. The task of Module 3 is
then to encode the returned C++ structures in one of
the record formats defined in the Z39.50 profile (i.e.,
GRS-1, USMARC or XML) in order to send the re-
trieved records back toModule 1.

Modules 4 and 5 essentially form theDL-based wrapper
for the underlying source (see dotted line in Fig. 4).
Module 4 loads the source schema and the AP map-
pings (Tbox) from a configuration file while the data
reside in the source (virtual Abox) and can only be
cached in the DL system. When it receives a DL query
fromModule 2, it rewrites it according to the defined
AP mappings and the paths to central concept of in-
terest (see Sect. 4) and forwards the resulting expres-
sion for evaluation to the underlying source. Finally,
Module 5 converts the retrieved objects of the cen-
tral concept by taking into account the mappings of
the Z39.50 Record Elements to the source data. Al-
though not presented in this paper, these mappings
are defined similarly to the APs.

All modules are operational while Module 4 actu-
ally supports the DL-based Z39.50 query rewriting and
sources built on top of the SIS-Telos [24]. For the pur-

218 Y. Velegrakis et al.: On Z39.50 wrapping and description logics

poses of AQUARELLE and CIMIZit projects, we have
developed from scratch only the DL Instance Checking
service (see [54] for more details). However, we are cur-
rently working on the redesign of Module 4 using avail-
able DL systems that support the constructs of our map-
ping language (e.g., CICLOP, CRACK). Due to the sim-
ilarities between the DL and SIS-Telos query models, the
translation of the resulting DL query expressions into our
cultural source is straightforward. We plan to extend this
interface ofModule 4 for other data source technologies,
especially relational and object DBMSs (SQL, OQL), as
already studied in [9, 12, 35].

To conclude, the modular architecture of the proposed
toolkit allows one to significantly reduce wrapper de-
velopment and maintenance costs. First, the DL-based
Module 4 can be reused in order to wrap the same source
according to multiple, possibly overlapping profiles (e.g.,
AQUARELLE-CIMI andDublin Core). This obviates the
need to merge different Z39.50 profiles into one, in order
to be supported by the existing wrappers. In our ap-
proach, the profile becomes a characteristic of the client
query, rather than a characteristic of the source. Sec-
ond, the same Z39.50 server can support several wrapped
sources. This is due to the fact thatModules 1, 2, and 3
need not be aware of the Z39.50 APs (or Element) map-
pings. This information is requested only by Module 4,
i.e., the source wrapper. Hence, a server can support
simultaneously sources of different technology, as well as
Z39.50 profiles with different APs mappings in each data
source.

7 Related work

Wrapping information sources is an essential step in order
to tackle data heterogeneity issues (e.g., schematic, syn-
tactic, system, etc.) in different application contexts:
digital libraries, Web sites and portals, information inte-
gration systems, etc. The various wrapping approaches
differ on: a) the nature of data provided by the underly-
ing sources (e.g., from well-structured data in databases,
loosely-structured data in document bases until unstruc-
tured data on the Web); b) the middleware model on
which queries as formulated and result data are returned
(e.g., structured or semi-structured models); c) the sup-
ported functionality (e.g., mappings, query translation,
caching, etc.). In most of the cases, wrappers are used
to transform source data from their native format and
structure into a more expressive middleware model for
further processing (e.g., analysis, consolidation, etc.).
In our context, we are obliged to do the opposite, i.e.,
transform semantically and structurally rich data from
DBMS or KBS sources into a flat Z39.50 information
model. None of the existing approaches has addressed this
issue.

In digital libraries, wrappers are used to adapt an ex-
isting search facility of a source to a specific retrieval

protocol like Z39.50. Several prototype and commercial
Z39.50 servers/wrappers are available12 for sources built
on top of an IRS, e.g., Bull Mistral [52], SSL Index+ [52],
Information Dimensions Basis Plus [27], etc. Since there
is no significantmismatch between the Z39.50 and the un-
derlying IRS models (i.e., both support Boolean queries
on flat textual records), query translation is straightfor-
ward. It essentially requires mapping the Z39.50 APs to
the source record fields (i.e., queried attributes) and re-
trieval facilities (i.e., right/left truncations, proximity op-
erations, etc.) using a configuration file. When such a
mapping is not possible, the corresponding AP is not sup-
ported by the Z39.50 server. Compared to our approach,
the supplied mapping languages are quite poor, since each
AP can be mapped only to one queried field of the source
(i.e., no fields combinations are possible) while unsup-
ported APs lead to query failures.

More interesting mapping languages are provided by
Z39.50 servers/wrappers for ODBC-compliant RDBMS
sources [51]. They essentially use the SQL view mechan-
ism to define the AP mappings as views over the source
data. In this way, an AP can be mapped to several
database fields combined by appropriate joins. Informa-
tion about each AP view is stored in special-purpose ta-
bles. Dedicated tables are also used in order to store the
query results for subsequent use, given the stateless na-
ture of SQL. However, as in the previous cases, unsup-
ported APs lead to embarrassing query failures. On the
other hand, our DL-based wrapping allows one not only
to capture a wide range of Z39.50 mapping cases (includ-
ing unsupported APs) but also to reason (e.g., for consis-
tency, subsumption) about the defined AP views as well
as the issued Z39.50 queries on top.

It should be stressed that this kind of added-value
services is usually provided by intelligent information in-
tegration systems [2, 5, 17, 28, 30, 42]. In these systems,
domain modeling and reasoning issues are addressed at a
higher layer in the integration architecture, i.e., bymedia-
tors, using an appropriate KRRS middleware technology
(e.g., DL). Compared to this work, our context is quite
different: (i) Z39.50 wrapping involves only one source at
a time (vs. mediation of several sources); and (ii) Z39.50
world view of information is intrinsically flat (vs. middle-
ware structured models). As a matter of fact, the main
contribution of this paper was to push some of the intel-
ligent mediator’s functionality to the Z39.50 wrappers in
a standard client-server architecture.

The whole Dl-based framework for Z39.50 wrapping is
reminiscent of the Global as View (GAV) approach pro-
posed in information integration systems [40]. The defin-
ition in our approach of the AP mappings over source
concepts, is similar to the specification for each relation R
in the mediated (global) schema of a query over the source
relations, indicating how to obtain R’s tuples from the
sources. The main advantage of the GAV approach is that

12 http://lcweb.loc.gov/z3950/agency/register/entries.html

Y. Velegrakis et al.: On Z39.50 wrapping and description logics 219

query reformulation is very simple, because it reduces to
rule unfolding. However, adding new sources to the data
integration system is non-trivial. In particular, we need to
consider the possible interaction of the new source with
each of the existing sources, and this limits the ability of
the GAV approach to scale to a large collection of sources.
In contrast, in our Z39.50 wrapping context, the global
concepts, i.e., the APs, have been defined in advance, in-
dependently from the underlying source schemas. There-
fore, the established mappings do not enrich the global
schema with new concepts while they are used exclusively
by the wrappers and not the mediator (avoiding the scal-
ability problems of the GAV approach).

8 Conclusion and future work

In this work we have addressed the declarative specifi-
cation of Z39.50 wrappers. We have presented a wrap-
per generation toolkit based on DL concept languages to
map the Z39.50 world view of information to the under-
lying source data structure and semantics. The proposed
DL mapping language offers a number of advantages: (i)
the required views over source data can be easily defined
while a wide range of Z39.50 translation cases can be ex-
pressed; (ii) it comes equipped with formally verifiable
properties allowing to check the consistency of the defined
views and therefore ensure the quality of the retrieved
data; (iii) it enables reasoning about the relationships be-
tween these views and thus rending explicit to Z39.50
profile developers, end-users, etc., the conceptual struc-
ture of the Z39.50 vocabularies for a specific source; and
(iv) it can serve to translate Z39.50 queries, which opens
interesting opportunities for semantic query optimization
and caching of results, exploiting as much as possible the
stateful nature of the protocol.

Currently, the developed toolkit supports only the DL
Instance Checking service for evaluating queries against
sources built on top of SIS-Telos [24]. We are planning
to provide full-fledged DL reasoning services by integrat-
ing our toolkit with one of the available DL systems13

(studying expressiveness of offered languages, existing
APIs support etc.). Furthermore, we intend to validate
our approach with several Z39.50 profiles and extend the
wrapping facilities to other data source technologies (e.g.,
DBMS, IRS, etc.). Last but not least, we plan to ap-
ply the ideas presented in this paper at a higher level
of information integration, in order to build intelligent
Z39.50 mediators instead of wrappers. More precisely, we
are currently working on the problem of mapping detec-
tion by developing appropriate algorithms for assisting
the user in the mapping definition task, offering automa-
tion and validation services.

Acknowledgements. We are grateful to the AQUARELLE and
CIMI Consortium for their technical support. We also thank

13 www.ida.liu.se/labs/iislab/people/patla/DL/systems.html

A. Analyti, D. Plexousakis, Y. Tzitzikas, and M. Döerr for helpful
comments on preliminary versions of this paper.

References

1. ANSI/NISO: Z39.50 (versions 2 and 3) Information Retrieval:
Application Service Definition and Protocol Specification,
1995

2. Arens, Y., Chee, C.Y., Hsu, C.-N., Knoblock, C.A.: Retriev-
ing and Integrating Data from Multiple Information Sources.
International Journal of Cooperative Information Systems
2(2):127–158, 1993

3. Ashish, N., Knoblock, C.A., Shahabi, C.: Intelligent Caching
for Information Mediators: A KR Based Approach. In: Proc.
of the 5th Workshop. KRDB’98, Seattle, Washington, 1998,
pp. 3.1–3.7

4. Baader, F., Bürckert, H., Heinsohn, J., Hollunder, B., Mül-
ler, J., Nebel, B., Nutt, W., Profitlich, H.: Terminological
Knowledge Representation: A Proposal for a Terminological
Logic. In: Nebel, B., Luck, K., Peltason, C. (eds.): Proc. of
the First Int. Workshop on Terminological Logics. Dagstuhl,
Germany, 1991. DFKI

5. Bergamaschi, S., Castano, S., Vincini, M.: Semantic Integra-
tion of Semistructured and Structured Data Sources. SIG-
MOD Record Special Issue on Semantic Interoperability in
Global Information 28(1): March 1999

6. Bergamaschi, S., Sartori, C., Vincini, M.: DL Techniques for
Intensional Query Answering in OODBs. In: Proc. of the 2nd
Workshop. KRDB’95. Bielefeld, Germany, September 1995

7. Borgida, A.: Description Logics for Querying Databases. In:
Proc. of the 1st Int. Workshop on Description Logics. Bonn,
Germany, May 1994, pp. 95–96

8. Borgida, A.: Description Logics in Data Management. IEEE
Transactions on Knowledge and Data Engineering 7(5):671–
682, October 1995

9. Borgida, A., Brachman, R.J.: Loading Data into Description
Reasoners. In: Proc. of the ACM SIGMOD Conf. on Manage-
ment of Data. SIGMOD’93. June 1993, pp. 217–226

10. Bouthors, V., Dupuis, J., Huu, N.T.: Z39.50 Gateway for Mis-
tral and ARF DTD Specification. Aquarelle project, deliver-
able 5.2, INRIA, France, September 1997

11. Brachman, R., McGuinness, D., Schneider, P.P., Resnick, L.A.,
Borgida, A.: Living with CLASSIC: When and How to use
a KL-ONE-like language. In: Sowa, J.F. (ed.): Principles of
Semantic Networks – Explorations in the Representation of
Knowledge, Morgan Kaufmann, 1991, pp. 401–456

12. Bresciani, P.: Querying Databases from Description Logics. In:
Proc. of the 2nd Workshop. KRDB’95. Bielefeld, Germany,
September 1995

13. Brickley, D., Guha, R.V.: Resource Description Framework
(RDF) Schema Specification 1.0, W3C Candidate Recom-
mendation. Technical Report CR-rdf-schema-20000327, W3C,
Available at http://www.w3.org/TR/rdf-schema, March 27,
2000

14. Buchheit, M., Donini, F., Nutt, W., Schaerf, A.: Terminolog-
ical Systems Revisited: Terminology=Schema + Views. In:
Proc. of the First Workshop. KRDB’94. Saarbrücken, Ger-
many, September 1994

15. Calvanese, D., Giacomo, G. De, Lenzerini, M.: On the Decid-
ability of Query Containment under Constraints. In: Proc. of
the 17th ACM Symposium on Principles of Database Systems.
PODS’98, June 1998, pp. 149–158

16. Calvanese, D., Giacomo, G. De, Lenzerini, M.: Answering
Queries Using Views in Description Logics. In: Proc. of the 6th
Int. Description Logic Workshop. DL’99. Linköping, Sweden,
July 1999

17. Calvanese, D., Giacomo, G. De, Lenzerini, M., Nardi, D.,
Rosati, R.: Description Logic Framework for Information In-
tegration. In: Proc. of the 6st Int. Conference on Principles
of Knowledge Representation and Reasoning. KR’98. Povo-
Trento, Italy, June 1998, pp. 2–13

18. Calvanese, D., Giacomo, G. De, Rosati, R.: A Note on Encod-
ing Inverse Roles and Functional Restrictions in ALC Know-

220 Y. Velegrakis et al.: On Z39.50 wrapping and description logics

ledge Bases. In: Proc. of the 5th Int. Description Logic Work-
shop. DL’98. Povo-Trento, Italy, June 1998, pp. 11–20

19. Calvanese, D., Lenzerini, M., Nardi, D.: Description Logics
for Conceptual Data Modeling. In: Chomicki, J., Saake, G.
(eds.): Logics for Databases and Information Systems. Kluwer,
1998

20. Chekuri, C., Rajaraman, A.: Conjunctive Query Contain-
ment Revisited. In: Afrati, F., Kolaitis, P. (eds.): Proc. of the
Sixth Int. Conference on Database Theory. ICDT’97. Delphi,
Greece, January 1997, pp. 56–70

21. Christophides, V., Abiteboul, S., Cluet, S., Scholl, M.: From
Structured Documents to Novel Query Facilities. In: Proc.
of the ACM SIGMOD Conf. on Management of Data. SIG-
MOD’94. Minneapolis, Minnesota, May 1994, pp. 313–324

22. Christophides, V., Cluet, S., Moerkotte, G.: Evaluating
Queries with Generalized Path Expressions. In: Proc. of the
ACM SIGMOD Conf. on Management of Data. SIGMOD’96.
Montreal, Canada, June 1996, pp. 413–422

23. CIMI, The CIMI Profile Release 1.0h: A Z39.50 Profile for
Cultural Heritage Information. Technical report, Consortium
for the Computer Interchange of Museum Information, Avail-
able at http://www.cimi.org/documents/HarmonizedProfile/
HarmonProfile1.htm, November 1998

24. Constantopoulos, P., Doerr, M.: The SIS System: A brief pre-
sentation. ICS-FORTH, http//www.csi.forth.gr/isst, May
1993

25. Donini, F.D., Lenzerini, M., Nardi, D., Schaerf, A.: Reasonig in
Description Logics. In: Brewka, G. (ed.): Proc. of the Fourth
Int. Conference on Principles of Knowledge Representation
and Reasoning. KR’96. Studies in Logic, Language and Infor-
mation, CLSI Publications, 1996, pp. 193–238

26. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: Queries,
Rules and Definitions as Epistemic Sentences in Concept
Languages. In: Lakemeyer, Gerhard, Nebel, Bernhard (eds.):
Foundations of Knowledge Representation and Reasoning.
Vol. 810 of Lecture Notes in Artificial Intelligence, Springer
Verlag, Berlin, 1994, pp. 113–132

27. Finsiel, Zeta suite. Available at http://zeta.tlcpi.finsiel.it/
zetasuite/, Italy, 1998

28. Goasdoué, F., Lattes, V., Rousset, M.-C.: The Use of CARIN
Language and Algorithms for Information Integration: The
PICSEL Project. In: Proceedings of the Second International
and Interdisciplinary Workshop on Intelligent Information In-
tegration, 1998

29. Goni, A., Illarramendi, A., Mena, E., Blanco, J.M.: An Opti-
mal Cache for a Federated Database System. Journal of Intel-
ligent Information Systems (JIIS) 9(2):125–155, 1997

30. Goni, A., Mena, E., Illarramendi, A.: Information Modelling
and Knowledge Bases, chapter Querying Heterogeneous and
Distributed Data Repositories using Ontologies, IOS Press,
1998, pp. 19–34

31. Horrocks, I., Sattler, U.: A Description Logic with Transitive
and Inverse Roles and Role Hierarchies. In: Proc. of the 5th
Int. Workshop on Description Logics. DL-98. Povo-Trento,
Italy, June 1998

32. Hustadt, U.: Do we need the Closed World Assumption in
Knowledge Representation? In: Proc. of the 1st Workshop
KRDB’94, Saarbrücken, Germany, September 1994

33. Index Data, Available at http://www.indexdata.dk/yaz. Yaz
User’s Guide and Reference Manual, version 1.4 edition,
1997

34. Janney, K., Sledge, J.: A User Model for CIMI Z39.50 Appli-
cation Profile . Available at http://www.cimi.org/documents/
Z3950_app_profile_0995.html, September 1995

35. Kessel, T., Schlick, M., Speiser, H.-M., Brinkschulte, U., Vogel-
sang, H.: C3L+++: Implementing a Description Logics Sys-
tem on Top of an Object-Oriented Database System. In: Proc.
of the 3nd Workshop. KRDB’96. Budapest, Hungary, August
1996

36. Lassila, O., Swick, R.: Resource Description Framework (RDF)
Model and Syntax Specification, W3C Proposed Recommen-
dation. Technical Report REC-rdf-syntax-19990202, W3C,
Available at http://www.w3.org/TR/REC-rdf-syntax, Febru-
ary 22, 1999

37. LC, Z39.50 Profile for Access to Digital Collections. Tech-
nical report, Library of Congress, Available at http://lcweb.
loc.gov/z3950/agency/profiles/collections.html, 1996

38. LC, Application Profile for the Government Information Lo-
cator Service (GILS). Technical report, Library of Congress,
Available at http://www.gils.net/prof_v2.html, 1997

39. Lee, D., Chu, W.W.: Semantic Caching via Query Matching
for Web Sources. In: Proc. of the Eighth Int. Conf. on Infor-
mation and Knowledge Management. CIKM’99. Kansas City,
Missouri, November 1999

40. Levy, A.: Combining Artificial Intelligence and Databases for
Data Integration. To appear in a special issue of LNAI: Ar-
tificial Intelligence Today; RecentTrends and Developments,
1999

41. Levy, A.: Answering Queries Using Views: a Survey, submitted
for publication 1999

42. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying Heteroge-
neous Information Sources Using Source Descriptions. In:
Proc. of the Int. Conf. on Very Large Databases. VLDB’96.
Bombay, India, September 1996, pp. 251–262

43. Levy, A.Y., Rousset, M.C.: Using Description Logics to Model
and Reason About Views. In: Wahlster, W. (ed.): Proc. of the
12th European Conf. in Artificial Intelligence. ECAI’96. Bu-
dapest Hungary, John Wiley & Sons, Ltd., August 1996

44. Michard, A., Christophides, V., Scholl, M., Stapleton, M., Sut-
cliffe, D., Vercoustre, A-M.: The Aquarelle Resource Discovery
System. Journal of Computer Networks and ISDN Systems
30(13):1185–1200, August 1998

45. Moen, W.E.: Accessing Distributed Cultural Heritage Infor-
mation. Comm. of ACM 41(4):45–48, April 1998

46. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos:
Representing Knowledge About Information Systems. ACM
Transactions on Information Systems 8(4):325–362, 1990

47. Nebel, B.: Terminological Cycles: Semantics and Computa-
tional Properties. In: Sowa, J.F. (ed.): Principles of Seman-
tic Networks. Morgan Kaufmann, San Mateo, 1991, pp. 331–
362

48. Schaerf, A.: Query Answering in Concept-Based Knowledge
Representation Systems: Algorithms, Complexity, and Seman-
tic Issues. Ph.D. thesis, Dipartimento di Informatica e Sis-
temistica Univerita di Roma:La Sapienza, 1994

49. Schild, K.: The use of Description Logics as Database Query
Languages. In: Proc. of the 2nd Workshop KRDB’95, Biele-
feld, Germany, September 1995

50. Sheth, A.: Changing Focus on Interoperability in Infor-
mation Systems: From System, Syntax, Structure to Se-
mantics. In: Goodchild, M.F., Egenhofer, M.J., Fegeas, R.,
Kottman, C.A. (eds.): Interoperating Geographic Information
Systems. Kluwer Academic Publishers, February 1999

51. Signore, O., Loffredo, M.: Z39.50-SQL Gateways: Technical
Description. Aquarelle project, deliverable 5.1, CNR-CNUCE,
Italy, April 1997

52. SSL, Z39.50 version of Index+: Technical Description. Aqua-
relle project, deliverable 5.3, System Simulation Ltd, UK,
October 1997

53. SSL, Aquarelle Z39.50 Profile. Technical report, Aquarelle:
The Information Network on Cultural Heritage, Available at
http://aqua.inria.fr/Aquarelle/Public/EN/profile-2.0.html,
May 1998

54. Velegrakis, Y.: Declarative Specification of Z39.50 Wrappers
using Description Logics. Technical Report FORTH-ICS-TR-
225, Computer Science Institute, Foundation of Research and
Technology (ICS-FORTH) – Hellas, July 1998. M. Sc. thesis,
Computer Science Department, University of Crete

