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Abstract

To achieve interoperability, modern information systems
and e-commerce applications use mappings to translate
data from one representation to another. In dynamic en-
vironments like the Web, data sources may change not
only their data but also their schemas, their semantics, and
their query capabilities. Such changes must be reflected
in the mappings. Mappings left inconsistent by a schema
change have to be detected and updated. As large, com-
plicated schemas become more prevalent, and as data is
reused in more applications, manually maintaining map-
pings (even simple mappings like view definitions) is be-
coming impractical. We present a novel framework and
a tool (ToMAS) for automatically adapting mappings as
schemas evolve. Our approach considers not only local
changes to a schema, but also changes that may affect
and transform many components of a schema. We con-
sider a comprehensive class of mappings for relational and
XML schemas with choice types and (nested) constraints.
Our algorithm detects mappings affected by a structural
or constraint change and generates all the rewritings that
are consistent with the semantics of the mapped schemas.
Our approach explicitly models mapping choices made by
a user and maintains these choices, whenever possible, as
the schemas and mappings evolve. We describe an imple-
mentation of a mapping management and adaptation tool
based on these ideas and compare it with a mapping gen-
eration tool.

1 Introduction

A broad variety of data is available in distinct heterogeneous
sources, stored under different formats: database formats
(in relational and object-oriented models), document formats
(SGML/XML), browser formats (HTML), message formats
(EDI), etc. The integration, transformation, and translation of
such data is increasingly important for modern information
systems and e-commerce applications. Views, and more gen-
erally, transformation specifications or mappings, provide the
foundation for many data transformation applications.
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A mapping specifies how data instances of one schema
correspond to data instances of another. Mappings are often
specified in a declarative, data-independent way (for exam-
ple, as queries or view definitions). However, they necessar-
ily depend on the schemas they relate. When these schemas
change, the mappings must be updated or adapted to the new
schemas. In this work, we consider the adaptation and man-
agement of mappings as schemas evolve.

To motivate our work, we first consider a number of ap-
plications and environments in which mappings are used ex-
tensively. Our discussion highlights not only the ubiquity
of mappings in modern data management tasks, but also the
considerable effort that must be put into defining and veri-
fying mappings and their semantics. We will argue that we
can ill effort to recreate mappings as schemas change, but
should instead reuse previous mappings. Furthermore, map-
ping creation, although aided tremendously by modern tools
that suggest (syntactic) schema matches [22] and full (seman-
tic) mappings [21], still requires input from human experts. It
is the semantic decisions input by these experts that we will
especially try to manage and preserve in order to save the
most precious administrative resource, human time.
Data Integration. In data integration, a unified, virtual, view
is used to query a set of heterogeneous data sources [13]. The
process of creating this view is called schema (or view) inte-
gration. Numerous algorithms and tools have been proposed
to automate or semi-automate schema integration [23][and
others]. However, at its core, schema integration is a schema
design problem. Some integration choices will necessarily be
subjective and different users or designers may wish to make
different choices or alter a heuristic choice made by a tool.
Some tools anticipate this and for a limited set of alterna-
tive designs, will still produce a correct mapping between the
source schemas and the selected integrated schema [23]. Oth-
ers will permit users to use a set of composable schema trans-
formation operators to produce an integrated (transformed)
schema (with a composed mapping) [10]. However, these ap-
proaches in general do not permit arbitrary changes to the in-
tegrated schema. Even a simple horizontal decomposition of
an integrated table based on a user-defined predicate will typ-
ically require the designer to manually edit the mapping. Fur-
thermore, changes in the source schema (even modest ones)
are not supported. Such changes require the schema integra-
tion algorithm to be rerun.
Data Exchange. In data exchange, mappings are used to
transform an instance of a source schema into an instance of a
different target schema [6, 7]. The source and target schemas



may be inconsistent, so for a given source instance, there may
be no target instance that represents the same information.
While we have algorithms for detecting large classes of such
inconsistency, designers may wish to modify either the source
or target schema to make them consistent. This may be done
by cleaning inconsistent data in the source and adding a con-
straint to the source schema (or modifying its structure) or
by modifying the target. Efficiently and effectively adapting
a mapping to such constraint or structure modifications (in
either the source or target) has not yet been considered.
Physical data design. Physical storage wizards, which per-
mit the customization of physical schemas and storage struc-
tures, must maintain a mapping between the physical and log-
ical schemas. A common example of such wizards are tools
for customizing the relational storage of XML data [4]. Such
tools evaluate (or help a designer to evaluate) the relative cost
of different physical relational designs. However, they con-
sider only a fixed large set of physical schemas, each with a
built-in mapping to the given logical (XML) schema. To per-
mit a designer to suggest schema designs outside of this lim-
ited set, the tool would have to be able to adapt the XML to re-
lational mapping to the ad hoc user-proposed schema change.

Other applications that rely on mappings including mod-
eling of source descriptions [15], modeling of query capabil-
ities [24], and view management [3, 11]. In all of these appli-
cations, mappings provide the main vehicle for data sharing
and data transformation. Yet, current solutions in these areas
typically assume that the schemas are relatively static.

We advocate a novel framework that maintains the consis-
tency of mappings under schema changes by finding rewrit-
ings that try to preserve as much as possible the semantics of
the mappings. We call this problem mapping adaptation to
differentiate it from view adaptation [9], view synchroniza-
tion [12], and view maintenance [26]

One way to approach this problem is to have a predefined
finite set of interesting changes. Indeed, this is the approach
used in several of the application areas that we have men-
tioned, including in physical design tools. For each such
change, a modified mapping is stored (“hard-coded” if you
will). The advantage of this approach is that we will know
exactly how to handle each change. The disadvantage is that
the way in which the schema can evolve is restricted to a set
of predefined schemas. Though, if the set is rich enough, it
may embrace all the possible schemas that are important for a
specific application. A second alternative is to allow schemas
to evolve and then find the changes that took place by com-
paring the modified schema (S ′) to the original version S).
For example, we could using a matching tool to find corre-
sponding portions of the two schema versions [22] and then
use a mapping creation tool to add semantics to these corre-
spondences [21]. This will produce a mapping from S ′ to S
which can be composed with the original mapping. Such an
approach is complementary to the approach we consider here.

Our approach is to use a mapping adaptation tool in which
a designer can change and evolve schemas. The tool detects
mappings that are made inconsistent by a schema change and
incrementally modifies the mappings in response. This ap-
proach has the advantage that we can track semantic deci-
sions made by a designer either in creating the mapping or

in earlier modification decisions. These semantic decisions
are needed because schemas are often ambiguous (or seman-
tically impoverished) and may not contain sufficient informa-
tion to make all mapping choices. We can then reuse these
decisions when appropriate.

Our main contributions are the following. (i) We moti-
vate the problem of adapting mappings to schema changes
and we present a simple and powerful model for represent-
ing schema changes. (ii) We consider changes not only to the
structure of schemas (which may make the mapping syntacti-
cally incorrect [3]) but also to the schema semantics. The lat-
ter changes may make mappings semantically incorrect. (iii)
We develop an algorithm for enumerating possible rewritings
for mappings that have become invalid or inconsistent. The
generated rewritings are consistent not only with the struc-
ture but also with the semantics of the schema. (iv) We
consider changes not only in the source schemas but also in
the target. This is equivalent to adapting mappings to reflect
changes in both their interface and in the base schema. (v)
We support changes not only on atomic elements, but also on
more complex structures including relational tables or com-
plex (nested) XML structures. (vi) We present a mapping
adaptation algorithm that efficiently computes rewritings by
exploiting knowledge about user decisions that is embodied
in the existing mappings.

2 Related Work
Schema evolution is a broad research area that includes prob-
lems related to schema changes. It has been studied in differ-
ent contexts and under different assumptions.

In object-oriented database management systems
(OODBMS) the main problem was how to minimize the cost
of updating the instance data when the schema was modified.
Banerjee et al. [2] gave a taxonomy of the changes that may
occur in OODBMS and provided an implementation for each
one of them. Those changes were local to a single type, e.g.,
renaming an attribute or changing the position of a class in
the class hierarchy. Lerner [14] extended the above work
to include complex changes that span multiple classes and
provided templates for the most common changes. None
of this work investigated how views were affected when the
schema is modified. Incremental view maintenance [5, 19] is
a problem closely related to ours and deals with the methods
for efficiently updating materialized views when the base
schema data are updated. View adaptation [9, 18] is a variant
of view maintenance that investigates methods of keeping
the data in a materialized view up-to-date in response to
changes in the view definition itself. View adaptation may be
required after mapping adaptation, hence, we view this work
as complementary to ours. In AutoMed [17], schema evolu-
tion and integration are combined in one unified framework.
Schema evolution is described as primitive changes that are
each accompanied by a query that describes the semantics
of the change. In our approach, we are trying to relieve
the user from the task of manually specifying such queries.
The EVE [12] system investigated the view synchronization
problem, that is how a view definition has to be updated
when the base relational schema is modified. This work is
very close to ours. However, in EVE, a user who defines a



view is required to specify how the system should behave
under changes. Furthermore, the supported changes are
restricted to only deletion and renaming. Changes such as
moving and copying attributes as well as constraint changes
on the target schema are not considered.

Our work can be seen within a general framework of
model management in which schemas and views or mappings
between them are considered and manipulated as first-class
citizens. Schema matching [22] is a common first step that
generates a set of syntactic correspondences between portions
of two schemas. A schema mapping tool like Clio [21] can
take those correspondences and (by using the semantics em-
bedded in the schemas) generate semantic mappings. Our
approach complements the above scenario. We take the map-
pings generated by a mapping tool or defined by a user and
adapt them when schemas are changed, in order to preserve
the mapping consistency.

3 Mapping System

We consider a very general form of mapping that subsumes
a large class of mappings used in a variety of applications.
A mapping m from a schema S (called the source schema)
to schema T (called the target schema), is an assertion of
the form: QS � QT , where QS is a query over S and QT

is a query over T [13]. Most commonly the queries are re-
stricted to (type compatible) queries that return sets of tuples
and the relation � is the subset-or-equals relation ⊆; such
mappings are called sound mappings [13]. Potential type
incompatibilities can be resolved through type transforma-
tion functions. Other types of mappings include complete
(QS ⊇ QT ) and exact (QS=QT ) mappings [8]. Note that
although the queries are restricted to return sets of tuples, the
schemas may be nested schemas and may contain complex
or abstract types. This form of mapping is very general and
includes as special cases the GAV (global-as-view) [13] and
LAV (local-as-view) [15] views used in data integration sys-
tems, or the GLAV (global-and-local-as-view) mappings used
in transforming data between independent schemas [21] and
in data exchange [6].

Definition 3.1 A mapping system is a triple <S, T ,M>
where S and T are source and target schemas and M is a
set of mappings between S and T .

Before defining mappings and schemas formally, we give
an example to show how mappings may determine or con-
strain the placement of source data in the target.

Example 3.2 Consider the mapping system of Figure 1. The
schemas are shown in a nested relational representation that
is used as a common data model. The specific model can sup-
port recursive data structures, allows efficient manipulation
of the schemas and mappings, and has standard formal se-
mantics. The left-hand schema S represents a source XML-
Schema with information about projects, grants, contacts,
companies and persons. Each project has a specific grant.
Each grant has a non-empty set of sponsors that are either
private individuals or a government sponsors. Companies
have an owner and a CEO. Relationships between different
schema elements are specified via foreign keys (shown with

contacts: Set of Rcd

holder

privProject: Rcd
privProjects: Set of Rcd

T: Rcd

sponsor
recipient
amount
gid

grants: Set of Rcd
source
budget
code

project: Rcd
projects: Set of Rcd

grant: Rcd

S: Rcd

f1

sponsor: Choice of

goverment
private

f3
f2

persons: Set of Rcd
person: Rcd

SSN
name

companies: Set of Rcd

owner
CEO

company: Rcd
cname

f5

f4

code

phone
email
cid

contact: Rcd cname
leader

company: Rcd
companies: Set of Rcd

phone
name

entry: Rcd
catalog: Set of Rcd

f6
sponsors: Set [1..    ] of Rcd

m1: foreach p in S.projects, g in S.grants
n in g.grant.sponsors
r in n.sponsor→private, c in S.contacts

where p.project.source=g.grant.gid and
r=c.contact.cid

exists i in T.privProjects, o in T.companies
where o.company.cname=i.privProject.holder

with i.privProject.code=p.project.code and
i.privProject.sponsor=c.contact.email

m2: foreach c in S.companies, p in S.persons,
where c.company.owner=p.person.SSN

exists o in T.companies
with o.company.cname=c.company.cname and

o.company.leader=p.person.name

m3: foreach c in S.contacts, p in S.persons,
where p.person.SSN=c.contact.cid

exists e in T.catalog
with e.entry.name=p.person.name and

e.entry.phone=c.contact.phone

Figure 1: A Mapping System.

solid lines in the figure). The right-hand schema T is a rela-
tional schema that also contains information about projects
and companies. However, it contains only projects with pri-
vate funds and associates each project with the company in
charge of the project. Three mappings (m1, m2 and m3) have
been defined from S to T. The mappings are also expressed in
a nested relational representation (defined formally below)
that can easily be transformed to other representations [21],
e.g., XQuery. Each mapping has the form QS�QT . In our
notation, the foreach clause (with the associated where) defines
QS while the exists clause (with the associated where) defines
QT . These mappings specify a containment assertion (⊆):
for each tuple returned by QS, there must exist a correspond-
ing tuple in QT . We use the with clause to make explicit how
the source and target elements relate to each other.

Mapping m2 specifies how to populate companies in the
target schema with a company name and the owner name as
the leader of the company. Mapping m2 is a GAV mapping.
Mapping m1 populates the target with projects that receive



private funds and is a GLAV mapping. Note that m1 respects
the foreign key on the target and requires that for each project
there should be an associated company with holder=cname.
However, a specific value for this company cname is not spec-
ified (it is only required to exist). So m1 constrains the target
but does not completely specify a target instance (a property
shared by many LAV and GLAV mappings). The third map-
ping m3 generates catalog entries in the target by joining
persons and contacts in the source.

Schemas. We use a nested relational data model as a common
platform to represent both relational and XML-Schemas. The
model is based on the well-studied relational model with ex-
tensions to support the nested structures and constraints that
appear in XML Schemas. A schema is a set of labels (called
roots), each with an associated type. For example, S and T
in Figure 1 are such roots for the source and target schema
respectively. A type τ is defined by the grammar: τ ::= String |
Int | SetOf τ | Rcd[l1:τ1, . . . , ln:τn] | Choice[l1 : τ1, . . . , ln:τn].
Types Int and String are called atomic types, Set is a col-
lection type and the types Rcd and Choice are complex
types. With respect to XML Schema, we use Set to model
repeatable elements (or repeatable groups of elements), while
Rcd and Choice are used to represent the ”all” and ”choice”
model groups. For each set type SetOf τ , τ may be an atomic
(String or Int) type, a choice or a record type. We do not con-
sider order. A Set type represents an unordered set. An
XML-Schema “sequence” is modeled as a (unordered) Rcd
type (as with “all”).

For queries we adopt the OQL select-from-where syn-
tax [1] enhanced with choice type selections. An expression e
is defined by the grammar e ::= S|x|e.l where x is a variable,
S a schema root, l a record label and e.l a record projection.
Queries have the following form where e i, ci and c′i are ex-
pressions containing only variables xi that are bound in the
from clause:

select e0, e1, ..., em

from x0 in P0, x1 in P1, ... xn in Pn

where c0=c′0 and c1=c′1 and ... and ck=c′k
Each Pi in the from clause is either: (1) an expression e with

type SetOf τ ; in this case, the variable xi will bind to individ-
ual elements of the set e, or (2) e→l (where e is an expression
with a type Choice [. . . , l : τ, . . .]) representing the selection
of attribute l of the expression e; in this case, the variable x i

will bind to the element (if any) of type τ under the choice l
of e. The query is well formed if the variable (if any) used
in Pi is defined by a previous in clause. The conditions in
the where clause are optional. The ’*’ symbol can be used in
the select clause to denote all the valid expressions with an
atomic type that can be in the select clause. In mappings of
the form QS � QT the select clause of the queries is a ’*’
and has been omitted for better readability.

Following XQuery and OQL convention, we will use
queries to identify elements within schemas. A schema el-
ement is identified with the path query that can be used (intu-
itively) to retrieve all the instances of that element.

Definition 3.3 A schema element in schema S is a path
query, that is a query of the form:

select en+1 from x0 in P0, x1 in P1, ... xn in Pn

where each Pk with k≥1 uses variable xk−1, P0 is an expres-
sion starting at a schema root in S and expression en+1 uses
variable xn.

If the details of the from clause are unimportant, we refer
to a schema element using the notation select e from P .

Example 3.4 For the source schema in Figure 1, the schema
elements amount and private under grant are formally de-
fined, respectively, by the following two path queries:

a1 select g.grant.amount from g in S.grants
a2 select s from g in S.grants, n in g.grant.sponsors

s in n.sponsor→private

Constraints. For schema constraints we consider a very gen-
eral form of referential constraints called nested referential
integrity constraints (NRIs) [21] extended to support choice
types. NRIs capture naturally relational foreign key con-
straints as well as the more general XML Schema keyref con-
straints.

Example 3.5 The foreign key f2 on the source schema of Fig-
ure 1 is expressed as the following NRI.

f2: foreach g in S.grants, n in g.grant.sponsors
r in n.sponsor→private

exists c in S.contacts
where c.contact.cid= r

The simplest form of NRI relates two schema elements
select e1 from P1 and select e2 from P2. Such a constraint has
the form foreach P1 exists P2 with e1 = e2. This is a simple
unary inclusion constraint. More generally, and as in XML
Schema, an NRI is relative (i.e., local) to a given schema ele-
ment (the ”context” element) select e0 from P0. Hence, an NRI
has the general form: foreach P0 [foreach P1 exists P2 with C],
where P1 and P2 are now relative to (i.e, start from) the last
variable of P0. In this expression, C is a conjunction of one
or more equalities e1 = e2 where e1 and e2 are expressions
that use the last variable of P1 and P2, respectively. Note
that such constraints can also be written as foreach X exists Y
with C, where Y may be relative to some variable of X .

4 Semantically Valid Mappings

When a schema changes, we need to rewrite the affected map-
pings. Our goal is to find rewritings that are consistent with
the semantics of the new schema and with the current seman-
tics of the mapping. To achieve the former (consistency with
the new schema), we use an extension of the Clio mapping
creation framework [21] in which mappings are created based
on the semantics of the schemas. While Section 5 will give
the algorithms necessary for adapting such mappings when
schemas change, in this section we describe in detail the map-
pings that we consider.

We define the notion of association to describe a set of
associated atomic type schema elements. Intuitively, an as-
sociation is a query that returns all the atomic type elements
mentioned in a query.

Definition 4.1 An association is a query on schema S:
select * from x1 in P1, x2 in P2, ... xn in Pn

where e1=e′1 and e2=e′2 and ... and en=e′n



Example 4.2 To identify the element private in Schema
S, we use the query a2 from Example 3.4. The following
(similar) query defines an association containing not only
private, but also the atomic elements gid, amount, and
recipient.

A2 select * from g in S.grants, n in g.grant.sponsors
s in n.sponsor→private

Associations are simply collections of atomic elements and
can be used in mappings. So for our schemas, mappings are
simply very general referential constraints between a source
and target association.
Definition 4.3 A mapping is a constraint foreach AS

exists AT with C, where AS is an association on a source
schema S, AT is an association on a target schema T and
C is a non-empty conjunction of equality conditions relating
atomic type expressions over S with atomic type expressions
over T .
Correspondences. A correspondence is a specification that
describes how the value of an atomic target schema element
is generated from the source. A correspondence can be rep-
resented as simple inter-schema referential constraints. A
correspondence from a source element select eS from PS to
a target element select eT from PT is an inter-schema NRI
foreach PS exists PT with eS=eT . Correspondences are im-
plicit in the mappings (and view definitions) and can be easily
extracted from them.
Example 4.4 The correspondence between the name in the
source schema and the leader in the target (depicted in Fig-
ure 1 with a dotted line) is:

v: foreach e in S.persons
exists c in T.companies
with c.company.leader= e.person.name

To understand and reason about mappings and rewritings
of mappings, we must understand (and be able to represent)
relationships between associations. We use renaming func-
tions to express a form of query subsumption between asso-
ciations.
Definition 4.5 An association A is dominated by associa-
tion B (noted as A

.
�B) if there is a renaming function h from

the variables of A to the variables of B such that the from and
where clauses of h(A) are subsets, respectively, of the from
and where clauses of B.
Domination can naturally extend to mappings as follows.
Mapping m1: foreach AS

1 exists AT
1 with C1, is dominated

by mapping m2: foreach AS
2 exists AT

2 with C2 (denoted as
m1

.
�m2) if AS

1

.
�AS

2 , AT
1

.
�AT

2 and for every equality condi-
tion e=e′ in C1, h1(e) = h2(e′) is in C2 (or implied by C2),
where h1 and h2 are the renaming functions from AS

1 to AT
1

and from AS
2 to AT

2 respectively.
There are three ways in which semantic relationships be-

tween schema elements can be encoded. The first is through
the structure of the schema. Elements may be related by
their placement in the same record type or more generally
through parent-child relationship in nested schemas. An as-
sociation containing elements that are related only through
the schema structure is referred to as a structural association.
Structural associations correspond to the primary paths used
in [21] where it is shown that they can be computed by one
time traversal over the schema.

P S
1 : select * from p in S.projects

P S
2 : select * from g in S.grants, n in g.grant.sponsors

r in n.sponsor→private
P S

3 : select * from g in S.grants, n in g.grant.sponsors
m in n.sponsor→goverment

P S
4 : select * from a in S.contacts

P S
5 : select * from c in S.companies

P S
6 : select * from i in S.persons

P T
1 : select * from p in T.privProjects

P T
2 : select * from p in T.companies

P T
3 : select * from p in T.persons

Figure 2: Source and target structural associations

Definition 4.6 A structural association is an association
select * from x1 in P1, x2 in P2, ... xn in Pn

with no where clause and where the expression P1 must start
at a schema root and every expression Pk, k>0 starts with
variable xk−1.

The schema structure encodes a set of semantic relation-
ships that a designer chose to model explicitly. A second way
of encoding semantic associations is in a mapping. A map-
ping is an encoding of a pair of source and target associations
(which may or may not be explicitly present in the schema
structure). A mapping may use associations provided by a
user or mapping tool. Such mappings may expose hidden se-
mantic relations between schema elements.

Definition 4.7 Let M be a set of given mappings. A user
association is an association that has been provided to the
system via a mapping m∈M .

Example 4.8 Mapping m3 joins contacts and persons

based on the SSN and cid which indicates that a person can
be associated with its contact information through the SSN.
This generates the user association:

select * from c in S.contacts, p in S.persons,
where c.contact.cid=p.person.SSN

A third way to semantically relate elements is through
schema constraints. Chasing is a classical relational
method [16] that can be used to assemble elements that are
semantically related through constraints. A chase is a series
of chase steps. A chase step of association R with an NRI
F : foreach X exists Y with C, can be applied if, by definition,
the association R contains (a renaming of) X but does not
satisfy the constraint, in which case the Y clause and the C
conditions (under the respective renaming) are added to the
association. The chase can be used to enumerate logical join
paths, based on the set of dependencies in a schema. We use
a variation of a nested chase [20] that can handle choice types
and NRIs. Our extensions to the chase are defined formally
in an extended version of this paper [25].

Definition 4.9 A logical association R is the result of chas-
ing a structural or a user association P with the set X of all
the NRIs of the schema (denoted as chaseX (P )).1

Example 4.10 The fact that name, CEO, and owner are all un-
der the company element indicates that they are semantically
associated since they all refer to the same company. These

1In general, the chase may produce multiple logical associations, in
which case chaseX (P ) is a set.



A1: select *
from p in S.projects, g in S.grants,

n in g.grant.sponsors
r in n.sponsor→private, c in S.contacts

where c.cid=r and g.gid=p.source
A2: select *

from p in S.projects, g in S.grants,
n in g.grant.sponsors
r in n.sponsor→goverment, c in S.contacts

where c.cid=r and g.gid=p.source
A3: select *

from g in S.grants, c in S.contacts,
n in g.grant.sponsors
r in n.sponsor→private,

where c.cid=r
A4: select *

from g in S.grants, c in S.contacts,
n in g.grant.sponsors
r in n.sponsor→goverment

where c.cid=r
A5: select * from c in S.contacts
A6: select *

from c in S.companies, p in S.persons, w in S.persons
where c.company.CEO=p.person.SSN and

c.company.owner=w.person.SSN
A7: select * from c in S.persons
A8: select *

from c in S.contacts, p in S.persons,
where p.contact.cid=p.person.SSN

B1: select *
from p in T.privProjects, c in T.companies
where p.privProject.holder=c.company.cname

B2: select * from c in T.companies
B3: select * from c in T.persons

Figure 3: Logical associations for schemas S and T and the
set of mappings m1, m2, m3.

three elements form the structural association P S
5 of Figure 2.

This figure gives all the structural associations of the schemas
in Figure 1. As another example of structural association, P S

2
and P S

3 represent the associations that exist between a grant
and the two kinds of sponsors. The cardinality constraint on
the sponsors has been used to infer that there cannot be a
structural association containing grants but no sponsors. The
foreign key f5 on the source schema indicates that a person
and a company can be associated through an owner relation-
ship. Similarly, the foreign key f4 indicates that they can also
be related through the CEO. Chasing structural relation P S

5
with the constraints f5 and f4 results in the logical associa-
tion A6 of Figure 3. Logical associations A1 to A7 and B1 to
B3 are the logical associations that resulted from the chase
of structural associations of Figure 2 with all the constraints
that are defined on the two schemas. Finally, the user asso-
ciation we mentioned in Example 4.8 cannot be chased with
any constraints, thus, it is a logical association (indicated in
Figure 3 as A8).

We can now give a formal definition of a semantically
valid mapping:
Definition 4.11 Let S and T be a pair of source and target
schemas and M a set of mappings between them. Consider C
to be the set of correspondences specified by mappings in M .
A semantically valid mapping is an expression of the form
foreach AS exists AT with D, where AS and AT are logical
associations in the source and the target schema correspond-
ingly, and D is the conjunction of the conditions of the cor-

respondences in C that are covered by the pair <AS , AT >
(provided that at least one such correspondence exists). A
correspondence v: foreach P S exists PT with D is covered by
the associations <AS , AT > if PS

.
�AS and P T

.
�AT .

Example 4.12 The two correspondences of the mapping m2

are covered by the pair <A6, B2> in two ways. Each one
generated a different semantically valid mapping. The first
gives:

mu: foreach c in S.companies, p in S.persons, p’ in S.persons
where c.company.CEO=p.person.SSN and

c.company.owner=p’.person.SSN
exists o in T.companies
with o.company.cname=c.company.cname and

o.company.leader=p.person.name

which is a semantically valid mapping that is equivalent to

mo: foreach c in S.companies, p in S.persons
where c.company.CEO=p.person.SSN

exists o in T.companies
with o.company.cname=c.company.cname and

o.company.leader=p.person.name

The second way gives mapping m2 of Figure 1. The differ-
ence between mo and m2 is that mo takes the CEO to be the
leader of the company while m2 takes the owner. This exam-
ple shows how our approach captures different join paths in
the schema to produce semantically different mappings.

We have to note here that the semantically valid mappings
set includes the mappings produced by the mapping genera-
tion tool Clio [21] with the addition of those based on user
choices and those including choice types. This set will be our
search space when looking for possible rewritings when the
schemas change.

Definition 4.13 Given a source and a target schema S and
T , along with a set of mappings M from S to T , a mapping
universe UM

S,T is the set of all the semantically valid map-
pings.

5 Handling Schema Evolution
Schemas usually evolve to adapt to new data requirements
and semantics. When a schema changes, we need to rewrite
the affected mappings in a way that is consistent with the
semantics of the new schema and with the semantics of the
existing mappings. To achieve the former we exploit infor-
mation provided by the schema structure and semantics (con-
straints) by extending the algorithm presented in [21]. We
provide algorithms to efficiently (re)compute the schema se-
mantics incrementally when a change to the schema struc-
ture or constraints occurs. For the latter, we present new
techniques for modeling and reusing the semantics embed-
ded within a mapping. When the semantics of a mapping
must change, we make the minimum changes necessary to
achieve a mapping that is consistent with the new schema.

Our algorithm accepts as arguments a pair of schemas S,
T and a set of mappings M from S to T . It consists of two
phases. The first is a preprocessing step in which the map-
pings are analyzed and turned into semantically valid map-
pings (if they are not). In particular, the set C of correspon-
dences described by the mappings M are first extracted and



then the mappingsM are analyzed. For each mapping m∈M
of the form foreach AS exists AT with D, associations AS and
AT are taken apart and are chased with the schema constraints
to produce new associations AS

1 , ..., AS
n and AT

1 , ..., AT
l re-

spectively. This brings in additional joins that the user may
not have been known existed. For each pair <AS

i , AT
j > a

new mapping mij of the form foreach AS
i exists AT

j with D′ is
created, where D′ includes the conditions D, plus the condi-
tions of all the correspondences that are covered by the pair of
larger associations <AS

i , AT
j > but were not covered before.

Note that the set of all those semantically valid mappings m ij

is a subset of the mapping universe UM
S,T .

The second phase of the algorithm takes the set of seman-
tically valid mappings generated during the first phase and
maintains them through schema changes. In particular, for
each kind of change that may occur in the source or the tar-
get schema, each mapping is modified as appropriate. This
is done for each mapping independently. Note that mappings
generated in the first phase are potentially more complete than
those entered by a user. Hence, we use the generated map-
pings within the adaptation algorithm since they extent the
user mappings with the semantics embedded in the schema
structure and constraints. In the following subsections, we
present the algorithms that adapt the mappings for each kind
of change that may occur on the schemas. Each algorithm
accepts as input a set of semantically valid mappings M and
return the set of adapted semantically valid mappings M ′.
We have identified the number of primitive schema changes
that are usually met in practice and we have categorized them
in three main categories. The first one contains operations
that change the schema semantics by adding or removing con-
straints. The second includes modifications to the schema
structure by adding or removing elements, while the third cat-
egory includes changes that reshape the schema structure by
moving, copying or renaming elements.

To make the presentation less verbose we will often as-
sume that the schema changes occur in the source schema.
However, the algorithms apply equally in the case in which
the changes occur in the target schema.

5.1 Constraint modifications

Adding Constraints: Adding a new constraint on a schema
does not make any of the existing mappings invalid, i.e., syn-
tactically incorrect. However, it may make some of the map-
pings inconsistent, in the sense that they will no longer reflect
the semantics of the schema. More precisely, a mapping may
fall out of the mapping universe (recall Definition 4.13) as a
result of adding a constraint. Let <S, T ,M> be a mapping
system, and C be the set of correspondences extracted from
the mappings M. Assume that a new constraint F : foreach X
exists Y with C is added in the source schema.

We first detect the mappings that are affected by the
change, that is mappings that are not semantically valid any
more according to the new requirements of the schemas. A
mapping m: foreach AS exists AT with D, with m∈M of a
mapping system <S, T ,M> needs to be adapted after the
addition of a source constraint foreach X exists Y with C if X

is dominated by AS (X
.
�AS), with a renaming h, but there

is no extension of h to a renaming from X∪Y ∪C to AS . In
other words, the addition of the new constraint caused AS not
be closed under the chase. AS is not a logical association.

If mapping m: foreach AS exists AT with D, with m∈M
of the mapping system <S, T ,M> needs to adapt, the as-
sociation AS is chased with the set of the old schema con-
straints enhanced with the new constraint F . Note that it is
not enough to chase only with F since the result of that chase
step may allow further chasing with some old constraints that
was not possible before. The result is a set of new logical
associations. For each such association A, a new mapping is
generated in the form mc: foreach A exists AT with D′. The
set D′ consists of the conditions derived from the correspon-
dences in C that are covered by the pair <A, AT >. Since A
is generally a larger logical association than AS , naturally,
D⊆D′. Each mapping mc generated by the above proce-
dure, for which m

.
�mc, is added to M and mapping m is

removed. Algorithm 5.1 gives a brief description of the steps
taken when a new constraint is added.

Example 5.1 Assume that the following new constraint is
added in the source schema of Figure 1:

f7: foreach g in S.grants
exists c in S.companies
with c.company.cname = g.grant.recipient

allowing each grant to specify the company that receives the
grant. Mappings m2 and m3 will not be affected since the
foreach part of the constraint is not dominated by the foreach
part of those mappings. Indeed, the fact that we can now
determine the company that receives each grant has nothing
to do with those two mappings that deal with companies and
persons only. On the flip side, this change greatly affects map-
ping m1. Remember that the specific mapping was populat-
ing the target schema with projects receiving private funds
and the associated companies, but the information of what
company is related to each project was not available in the
source schema. After the addition of the new constraint, this
information becomes available, so mapping m1 needs to be
adapted to the new schema semantics. We detect this by ver-
ifying that the foreach clause of the constraint is dominated
by (contained in) association A1 used in mapping m1 but the
union of the exists and with clause is not. When chased with the
new set of constraints that includes F , association A1 gives
a new logical association:

A1a: select * from p in S.projects, g in S.grants,
n in g.grant.sponsors
r in n.sponsor→private, c in S.contacts
o in S.companies, e in S.persons,
e’ in S.persons

where p.project.source=g.grant.gid and
r=c.contact.cid and
g.grant.recipient=o.company.cname and
o.company.CEO=e.person.SSN and
o.company.owner=e’.person.SSN

This association generates, in turn, two rewritings for m1,
depending on the way the value of leader in the target can
be obtained: as the name of the CEO of a company or as the
name of the owner of the company. (In Algorithm 5.1 terms,
we say that there are two coverages of the pair <A1a, B1>
by the correspondence from person name to company leader.
The first rewriting (after a step of join minimization) is:



m′
1a: foreach p in S.projects, g in S.grants,

n in g.grant.sponsors
r in n.sponsor→private, c in S.contacts
o in S.companies, e in S.persons

where p.project.source=g.grant.gid and
r=c.contact.cid and
g.grant.recipient=o.company.cname and
o.company.CEO=e.person.SSN

exists j in T.privProjects, m in T.companies
where j.privProject.holder=m.company.cname

with m.company.cname=o.company.cname and
m.company.leader=e.person.name and
j.privProject.code=p.project.code and
j.privProject.sponsor=c.contact.email

while the second mapping m′
1b is the same as m′

1a
apart from the last condition in the first foreach where
clause that is o.company.owner=e.person.SSN instead of
o.company.CEO=e.person.SSN. This means that the first map-
ping populates the target schema with private projects and
companies, using the CEO as the leader of the company while
the second uses the owner.

Choosing one mapping rewriting in favor of another can-
not always be done using the available information. All the
rewritings are consistent with the new schema and the previ-
ously defined mappings (i.e., they are valid members of the
new mapping universe).

A special, yet interesting, case is when the chase will not
introduce any new schema elements in the association but
only some extra conditions. Those conditions will introduce
new ways (join paths actually) to relate the elements in the
association. Despite the fact that this adds new semantically
valid mappings to the mapping universe, none of the existing
mappings is adapted and no new mapping is generated. The
intuition behind this is that there is no indication that the new
mappings are preferred over the existing mappings. Neither
the existing mappings nor the schemas and constraints can
specify that. Hence, since our goal is to maintain the seman-
tics of existing mappings as much as possible, we perform no
adaptation unless necessary.

Algorithm 5.1 - Constraint addition

Input: Set of mappingsM
New constraint F : foreach X exists Y with C in schema S

Body: X ← constraints in S , M′←∅
C ← compute correspondences fromM
For every m←(foreach AS exists AT with D) ∈M

if (X
.
�AS with renaming h and h(X ∪ Y ∪ C)�

.
�AS )

For every A∈chaseX∪{F}(AS)

For every coverage of <A, AT > by D′⊆C
mr← foreach A exists AT with D′

if (m
.
�mr) M′←M′ ∪ {mr}

else M′←M′ ∪ {m}
Output: New set of mappingsM′

Removing Constraints: Similarly to adding a constraint, re-
moving one has no effect on the validity of the existing map-
pings but may affect the consistency of their semantics. The
reason is that mappings may have used assumptions that were
based on the constraint that is about to be removed. As before,
we assume that a source constraint is removed. (The same
reasoning applies for the target case.) We consider a mapping
to be affected if its source association uses some join con-
dition(s) based on the constraint being removed. More pre-
cisely, a mapping m: foreach AS exists AT with D, with m∈M

of a mapping system <S, T ,M>, needs to be adapted after
the removal of a source constraint F : foreach X exists Y with C

if X∪Y ∪C
.
� AS .

Once we detect that a mapping m needs to be adapted, we
apply the following steps. (Algorithm 5.2 provides a succinct
description of these steps.) The intuition of Algorithm 5.2
is to take the maximal independent sets of semantically as-
sociated schema elements of the affected association used by
the mapping. We start by breaking apart the source associ-
ation AS into its set P of structural associations, that is, we
enumerate all the structural associations of the source schema
that are dominated by AS . We then chase them by consider-
ing the set of schema constraints without F . The result is a
set of new logical associations. Some of them may include
choices (due to the existence of choice types) that were not
part of the original association AS . We eliminate such as-
sociations. The criterion is based on dominance, again: we
only keep those new logical associations that are dominated
by AS . Let us call this set of resulting associations A′. By
construction, the logical associations in A′ will contain only
elements and conditions that were also in AS , hence, they will
not represent any additional semantics. For every member Aa

in A′ and for every way Aa can be dominated by associa-
tion AS (i.e., for every renaming function h:Aa →AS) a new
mapping ma is generated of the form foreach Aa exists AT

with D′. The set D′ consists of those correspondences that are
covered by the pair <Aa, AT > and such that their renaming
h is included in D or implied by it. In other words D ′ consists
of the correspondences of D that are covered by <Aa, AT >
and <AS , AT > in the same way. Let us call M ∗ the set of
mappings ma. From the mappings in M ∗ we need to keep
only those that are as close as possible to the initial mapping
m. This is achieved by eliminating every mapping in M ∗

that is dominated by another mapping in M ∗. The following
example illustrates the algorithm.

Example 5.2 Consider the mappings m′
1a, m′

1b, m2 and m3

in Example 5.1 and let us remove the constraint f7 we added
there. It is easy to see that mappings m2 and m3 are not af-
fected because they do not include a join between S.grants
and S.companies. However, both m′

1a and m′
1b are affected.

Consider the mapping m′
1a (the other is handled in a similar

way). Its source association, A1a of Example 5.1, is bro-
ken apart into the structural associations (recall Figure 2):
PS

1 , P S
2 , P S

4 , P S
5 , and P S

6 . Those structural associations
are chased and result in a set of logical associations. P S

1
results in (recall Figure 3) A1 and A2, but the latter is elim-
inated since it is not dominated by the original association
A1a which requires the existence of private sponsor inde-
pendently of the existence of a goverment sponsor. The chase
of P S

2 , P S
4 , P S

5 and P S
6 will result to associations A3, A5, A6

and A7 respectively. Each of the resulting associations will
be used to form a new mapping. A1 generates mapping m1

(which is the one we started with in Example 5.1). Associ-
ation A6 generates mappings (recall Example 4.12) mo and
m2. However, mo covers the correspondence on the leader

through a join on the CEO while m2 does it through a join on
the owner. Since the initial mapping m′

1a covers the leader

through a join on the owner, mapping mo is eliminated. The
mappings generated by A3 and A5 are dominated by map-



ping m1, while the one generated by A7 is dominated by m2.
Hence, those mappings are eliminated and the final result of
the algorithm, for the case of m′

1a, consists of the mappings
m1 and m2.

Algorithm 5.2 - Constraint Removal

Input: Set of semantically valid mappingsM
Constraint F : foreach X exists Y with C of schema S

Body: X ← constraints in S , M′ ← ∅
For every m←(foreach AS exists AT with D) ∈M

If (X ∪ Y ∪C
.
� AS ) {

P←{P | P structural association ∧ P
.
� AS}

A′←{A | A∈chaseX−{F}(P ) ∧ P∈P ∧ A
.
�AS}

M∗ ← ∅
For every Aa∈A′ and every renaming h:Aa→AS

D′← {e1=e2 | e1 (e2) well defined expressions over
Aa (AT ) ∧ “h(e1)=e2” in or implied by D }

ma← (foreach Aa exists AT with D′)
M∗ ←M∗ ∪ {ma}
M∗∗ ← {m′ |m′∈M∗ ∧ � ∃m′′∈M∗: m′ .

�m′′}
M′ ←M′ ∪M∗∗

else include m inM′
Output: New set of mappingsM′

5.2 Schema pruning or expansion

Among the most common changes that are used in schema
evolution systems are those that add or remove parts of the
schema structure, for example, adding a new attribute on a
relational table or removing an XML-Schema element.

When a new structure is added to a schema, it may intro-
duce some new structural associations. Those structural asso-
ciations can be chased and generate new logical associations.
Using those associations new semantically valid mappings
can be generated, hence the mapping universe is expanded.
However, they are not added in the set of existing mappings.
The reason is that there is no indication of whether they de-
scribe any of the intended semantics of the mapping system.
This can be explained by the fact that there is no correspon-
dence covered by any of the new mappings that is not covered
by any of those that already exist. On the other hand, since
the structure and constraints used by the existing mappings
are not affected, there is no reason for adapting any of them.

Example 5.3 Consider the case in which the source schema
of Figure 1 is modified so that each company has nested
within its structure the set of laboratories that the company
operates. This introduces some new mappings in the mapping
universe, for example, a mapping that populates the target
schema only with companies that have laboratories. Whether
this mapping should be used is something that cannot be de-
termined from the schemas, or from the existing mappings.
On the other hand, mapping m2 that populates the target with
companies, independently of whether they have labs, contin-
ues to be valid and consistent.

In many practical cases, a part of the schema is removed
either because the owner of the data source does not want to
store that information any more, or because she may want
to stop publishing it. The removal of an element forces all
the mappings that are using that element to be adapted. An
element is used in a mapping because it participates either in

a correspondence or in a constraint (or both). In the relational
world this is equivalent to attributes and relations that are used
in the select clause of a view definition query or in the where
clause as parts of a join path. We consider first the removal
of atomic type elements.

An atomic element e: select en+1 from x0 in P0,
x1 in P1, ... xn in Pn is used in constraint F : foreach X
exists Y with C if there is a renaming function f from the vari-
ables of e to the variables of F and expression f(en+1) is
used in the condition C of F . A similar condition applies for
an element to be used in an association. When atomic element
e is removed each constraint F in which e is used is removed
by following the procedure described in Section 5.1. Sim-
ilarly, an atomic element e participates in a correspondence
V : foreach PS exists PT with C if there is a renaming function
g from the variables of e to the variables of V and g(en+1)
is used in the condition C. If the atomic element e to be re-
moved is used in a correspondence V then every mapping
m that is covering V has to be adapted. More specifically,
the equality condition in the with clause of the mapping that
corresponds to V is removed from the mapping. If mapping
m was covering only V , then the with clause of m becomes
empty, thus m can be removed. If the atomic element e is
used neither in a correspondence, nor in a constraint, it can
be removed from the schema without affecting any of the ex-
isting mappings. Algorithm 5.3 describes the steps followed
to remove an atomic element. To remove an element that
is not atomic, its whole structure is visited in a bottom up
fashion starting from the leaves and removing one element at
a time following the procedure described in Algorithm 5.3.
A complex type element can be removed if all its attributes
(children) have been removed.

Algorithm 5.3 - Atomic Element Deletion

Input: Mapping System <S,T ,M>
Atomic element e

Body: While exists constraint F that uses e
remove F

∀m←(foreach AS exists AT with D) ∈M
D← {q | c is correspondence covered by m ∧

c is not using e ∧
q is the with clause of c }

if D=∅ remove m from M
Output: The updated set M

Example 5.4 In the mapping system of Figure 1 removing el-
ement topic from project will not affect any mappings since
it is neither used in a constraint, nor in a correspondence.
On the other hand, removing code will invalidate mapping
m1 that populates the target with project codes and the spon-
sor of privately funded projects. After the removal of code the
element projects does not contribute to the population of the
target schema. However, according to our algorithm the only
modification that will take place in mapping m1 will be the re-
moval of the condition i.privProject.code=p.project.code
from the with clause. This reflects the basic principle of our
approach to preserve the semantics of the initial mappings by
performing the minimum required changes during the adap-
tation process.

Another common operation in schema evolution is updat-
ing the type of an element e to a new type t. This case will
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Figure 4: Updating constraint when element moves

not be considered seperately since it can be shown that this is
equivalent to removing element e and then adding one of type
t and with the same name as e.

5.3 Schema restructuring

One way a schema may evolve is by changing its structure
without removing or adding elements. There are three com-
mon operations of this kind of evolution that we consider:
rename, copy, and move. The first renames a schema ele-
ment, and it is mainly a syntactic change. It requires visiting
all the mappings and updating every reference to the renamed
element with its new name. The second operation moves a
schema element to a different location while the third does
the same but moves a replica of the element instead of the
element itself. When an element is copied or moved, it is car-
rying with it design choices and semantics it had in its origi-
nal location, i.e., schema constraints. Mapping selections and
decisions that were used in the original location, should also
apply in the new one.
Adapting schema constraints. Assume that a schema ele-
ment e is to be moved to a new location. Due to this move,
constraints that are using the element e become invalid and
must be adapted. A constraint F uses element e if there is a
renaming from the variables of the path query P e that iden-
tifies e to the variables of F . To realize how F is affected
by the change, we have to consider the relative position of e
with respect to the context element of F . (In more technical
terms, we have to consider where the image of the last vari-
able of the path Pe, under the above mentioned renaming, is
within F .) Recall that F has the form foreach P0 [foreach P1

exists P2 with C] where the path queries P1 and P2 start from
the last variable of the path query P0 which represents the
context node. Moreover, C is of the form e1=e2 where e1

and e2 are expressions depending on the last variable of path
P1, respectively, P2. Figure 4 provides a graphical explana-
tion of how F has to be adapted to the move of the element
e. In the figure, for constraint F , we use c, o, and d to denote
(both before and after the move) the context element, the el-
ement identified by the path select e1 from P0, P1 (also called
the origin element) and, respectively, the element identified
by the path select e2 from P0, P2 (also called the destination
element). If element e is an ancestor of the context node c,
then the nodes c, o, and d move rigidly with e. The modified
constraint will have the form foreach P ′

0 [ foreach P ′
1 exists P ′

2
with C ] where P ′

0 is the path to the new location of the context
node c. The path P ′

1 is the same as P1 except that the start-
ing expression is updated so that it corresponds to the new
location of the context node (a similar change applies to P ′

2
as well). If the context node is an ancestor of e then e is ei-

ther used in P1 or in P2. Assume that it is used in P1 (the
other case is symmetric). This case is shown in the second
part of the figure. Then the node o moves rigidly with e to a
new location, while d remains in the same position. We then
compute a new context node as the lowest common ancestor
between the new location of o and d. The resulting constraint
is then foreach P ′

0 [foreach P ′
1 exists P ′

2 with C′] where P ′
0 is the

path to the new context node and P ′
1 and P ′

2 are the relative
paths from P ′

0 to (the new location of) o and d. The condition
C′ is the result of changing C so that it uses the end points of
paths P ′

1 and P ′
2

Example 5.5 Assume that the schema owner of schema S
in the mapping system of Figure 1 has decided to store the
grants nested within each company so that each company
keeps its own grants. This translates to a move of the element
grants under the element company. Consider the constraint
f2 of Example 3.5 specifying that each grant having a private
sponsor refers to its contact information. Once the grants are
moved, this constraint becomes inconsistent since there are
no grant elements under the schema root S. To adapt the con-
straint, we use the previously described algorithm: we are in
the second case shown in Figure 4, in which the element that
moves is between the context element c (the root, in this case)
and o. The element grants in its new location is:

select a.company.grants from a in S.companies

The variable binding of a does not exist in f2 so it is appended
to it and every reference to expression S.grants is replaced
by the expression a.company.grants. The final form of the
adapted constraint f2 is shown below. (The path in the exists
clause need not be changed, since the new context element
continues to be the root.)

foreach a in S.companies, g in a.company.grants,
n in g.grant.sponsors, p in n.sponsor→private

exists c in S.contacts
with c.contact.cid=p

Adapting mappings. When an element is moved to a new
location, some of the old logical associations that were us-
ing it become invalid and new ones have to be generated. To
avoid redundant recomputations by regenerating every asso-
ciation, we exploit information given by existing mappings
and computations that have already been performed. In par-
ticular, we first identify the mappings that need to adapt by
checking whether the element that is moved is used in any of
the two associations on which the mapping is based. Let A
be an association that is using the element e that is about to
move, and let t be the element in its new location. More pre-
cisely, assume that e and t have the following forms:

e = select en+1 from x0 in e0, x1 in e1, ..., xn in en

t = select tm+1 from y0 in t0, y1 in t1, ..., ym in tm
We first identify and isolate the element e from association A,
by finding the appropriate renaming from the from clause of e
to A. For simplicity, assume that this renaming is the identity
function, that is, A contains literally the from clause of e. In
the next step, the from clause of t is inserted in the front of
the from clause of A. We then find all usages of en+1 within
A, and replace them with tm+1. After these replacements, it
may be the case that some (or all) of the variables x0, . . . , xn

have become redundant (i.e. not used) in the association. We
eliminate all such redundant variables. Let us denote by A ′

the resulting association.



Since the element t in the new location may participate in
its own relationships (based on constraints) with other ele-
ments, those elements have to be included as well in the new
adapted version of association A′. We do this by chasing A′

with the schema constraints. The chase may produce mul-
tiple associations A′

1, . . . , A
′
k (due to the choice types). Fi-

nally, any mapping using the old association A, say foreach
A exists B with D, is removed from the list of mappings and
is replaced with a number of mappings m i: foreach A′

i exists
B with D′ one for each association A′

i. The conditions D′

correspond to the correspondences in D plus any additional
correspondences that may be covered by the pair <A ′

i, B>
(but not by the original pair < A, B >).

As an important consequence of our algorithm, all the
joins that were in use by the original mapping and that are still
well-formed are still used, unchanged, by the new, adapted,
mapping. Hence, we preserve any design choices that might
have been made by a human user based on the original
schemas. We illustrate the adaption algorithm with the fol-
lowing example.

Example 5.6 Assume that in the mapping system of Figure 1
grants are moved under company as in Example 5.5. This
change affects neither mapping m3, nor mapping m2. (Re-
call from Section 5.2 that just the addition of new struc-
ture (grants, in this case) for m2 does not require m2 to
be adapted). However, mapping m1, based on the logical
association A1 (see Figure 3), is affected. First, schema
constraints are adapted as described in Example 5.5. Then
we run the mapping adaption algorithm described above,
for e: select S.grants from and t: select o.company.grants
from o in S.companies (we denote here by the empty from
clause). The clause o in S.companies is added in the from
clause of A1. Next, all occurrences of S.grants are replaced
by o.company.grants. After this, the resulting association is
chased with the source schema constraints. The (adapted)
constraints f1, f2, and f3 are already satisfied, and hence not
applicable. However, f4 and f5 will be applied. The chase
ensures coverage of the two correspondences on cname and
name, the last one in two different ways. Hence, two new map-
pings are generated. The first is:
m′

1a: foreach o in S.companies, p in S.projects,
g in o.company.grants, n in g.grant.sponsors
r in n.sponsor→private,
c in S.contacts, e in S.persons,

where p.project.source=g.grant.gid and
r=c.contact.cid and
o.company.CEO=e.person.SSN

exists j in T.privProjects, m in T.companies
where j.privProject.holder=m.company.cname

with m.company.cname=o.company.cname and
m.company.leader=e.person.name and
j.privProject.code=p.project.code and
j.privProject.sponsor=c.contact.email

while the second is the one that considers the owner of the
company as a leader instead of the CEO. Note how the algo-
rithm preserved the choice made in mapping m1 to consider
private projects, and how the initial relationships between
projects and grants, as well as grants and contacts in
mapping m1 were also preserved in the new mapping.

In the above analysis we considered the case of moving an
element from one place in the schema to another. In the case

that the element is copied instead of being moved, the same
reasoning takes place and the same steps are executed. The
only difference is that the original mappings and constraints
are not removed from the mapping system as in the case of
a move. Schema constraints and mapping choices that have
been made, continue to hold unaffected after a structure in the
schema is copied.

6 Mapping adaptation experience

To evaluate the effectiveness and usefulness of our approach,
we have implemented a prototype tool called ToMAS 2 and
we have applied it to a variety of real application scenarios.
The experiments were conducted on a number of publicly
available schemas that vary in terms of size and complexity.
Their characteristics are summarized in Table 1. The size is
shown in terms of schema elements and within the brackets
is the number of schema constraints. We used two versions
of each schema to generate mappings from the first version to
the second. The different versions of each schema were either
available on the web (representing two different evolutions of
the same original schema), or whenever a second version was
not available, it was manually created. Using the Clio map-
ping generation tool a number of correspondences were used
to generate the set of semantically meaningful mappings (the
last two columns of Table 1 indicate their exact numbers).
From them, two mappings were selected as those represent-
ing the intended semantics of the correspondences.

A random sequence of schema changes was generated and
applied to each schema. Even for only two mappings, due
to the large size of the schemas it was hard for a user to re-
alize how the mappings were affected by those changes and
how they should adapt. We considered two alternative adap-
tation techniques. The first was to perform all the neces-
sary modifications on the schemas and at the end use a map-
ping generation tool (e.g. Clio) to regenerate the mappings.
Due to the fact that the names of the attributes might have
changed and elements might have moved to different places
in the schema, it was hard to use schema matching tools to
re-infer the correspondences. This means that the correspon-
dences had to be entered manually by the user. Once this
was done, the mapping generation tool produced the com-
plete set of semantically meaningful mappings and the user
had to browse through all of them to find those that were de-
scribing the initial semantics. The second alternative was to
perform the schema changes and let ToMAS handle the main-
tenance of the mappings. ToMAS returns only a small num-
ber of mappings since it utilizes knowledge about choices that
were embedded in the initial set of mappings. At the end,
the user would have to go through only the small number of
adapted mappings and verify their correctness. We performed
and compared both techniques experimentally. In terms of
performance, ToMAS made the computations in time that is
very close to the time of Clio as reported in [21], even though
it uses none of the auxiliary structures that Clio does (which
means that every computation had to be made on demand ev-
ery time it was needed). We also compared the user effort
required in the two approaches. In the first approach where

2ToMAS stands for Toronto Mapping Adaptation System



Figure 5: Benefit of ToMAS use

Schema Size Corresp/ces Mappings

ProjectGrants 16 [6] 6 7
DBLP 88 [0] 6 12
TPC-H 51 [10] 10 9
Mondial 159 [15] 15 60
GeneX 88 [9] 33 2

Table 1: Test schemas characteristics

mappings have to be regenerated from scratch, the effort of
the user was measured as the number of correspondences that
have to be re-specified, plus the number of mappings that the
mapping generation tool produces and which the user has to
browse to select those that describe the intended semantics
of the correspondences. On the flip side, if ToMAS is used,
the effort required is just the browsing and verification of the
adapted mappings. As a comparison measurement we used
the following quantity that specifies the advantage of ToMAS
against the “from-scratch” approach. A value 0.5, for exam-
ple, means that ToMAS requires half of the effort required
with the other alternative.

1 − mappings generated by ToMAS
mappings generated by Clio + correspondences

Figure 5 provides a graphical representation of how the above
quantity changes for the various schemas during our experi-
ments as a function of the number of changes. It can be no-
ticed that as the number of changes becomes larger, and the
modified schemas become much different than their original
version, the advantage of ToMAS is reduced. Furthermore,
we have noticed that as the number of mappings that are to be
maintained becomes closer to the number of all the semanti-
cally meaningful mappings that exist, ToMAS also becomes
less preferable. However, the rate of reduction is small and in
practice schemas do not change radically. The new evolved
schemas are not dramatically different from their original ver-
sion and the number of mappings that are to be maintained is
relatively small. In these cases, ToMAS would be the right
tool to use.

7 Conclusion
In this paper, we identified the problem of mapping adapta-
tion in dynamic environments with evolving schemas. We
motivated the need for an automated system to adapt map-
pings and we described several areas in which our solutions
can be applied. We presented a novel framework and tool
that automatically maintains the consistency of the mappings

as schemas evolve. Our approach is unique in many ways.
We consider and manage a very general class of mappings
including GLAV [13] mappings. We consider changes not
only on the schema structure but also on the schema seman-
tics (i.e., schema constraints) either in the source or in the
target. Finally, we support schema changes that invlove mul-
tiple schema elements (e.g., moving an attribute or subtree
from one type to another).
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