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Abstract. In dynamic environments like the Web, data sour-
ces may change not only their data but also their schemas, their
semantics, and their query capabilities. When a mapping is left
inconsistent by a schema change, it has to be detected and up-
dated. We present a novel framework and a tool (ToMAS)
for automatically adapting (rewriting) mappings as schemas
evolve. Our approach considers not only local changes to a
schema but also changes that may affect and transform many
components of a schema. Our algorithm detects mappings af-
fected by structural or constraint changes and generates all
the rewritings that are consistent with the semantics of the
changed schemas. Our approach explicitly models mapping
choices made by a user and maintains these choices, when-
ever possible, as the schemas and mappings evolve. When
there is more than one candidate rewriting, the algorithm may
rank them based on how close they are to the semantics of the
existing mappings.

1 Introduction

A broad variety of data is available in distinct heteroge-
neous sources, stored under different formats: database for-
mats (in relational and object-oriented models), document for-
mats (SGML/XML), browser formats (HTML), message for-
mats (EDI), etc. The integration, transformation, and transla-
tion of such data is increasingly important for modern informa-
tion systems and e-commerce applications. Views, and more
generally transformation specifications or mappings, provide
the foundation for many data transformation applications.

A mapping specifies how data instances of one schema
correspond to data instances of another. Mappings are often
specified in a declarative, data-independent way (for example,
as queries or view definitions). However, they necessarily de-
pend on the schemas they relate. When these schemas change,
the mappings must be updated or adapted to the new schemas.
In this work, we consider the adaptation and management of
mappings as schemas evolve.

To motivate our work, we first consider a number of ap-
plications and environments in which mappings are used ex-
tensively. Our discussion highlights not only the ubiquity of

mappings in modern data management tasks but also the con-
siderable effort that must be put into defining and verifying
mappings and their semantics. We will argue that we can ill af-
ford to re-create mappings from scratch as schemas change but
should instead reuse previous mappings. Furthermore, map-
ping creation, although aided tremendously by modern tools
that create mappings [31], still requires input from human ex-
perts. It is the semantic decisions input by these experts that
we will especially try to manage and preserve in order to save
the most precious administrative resource, human time.

Data integration. In data integration, a unified, virtual, view
is used to query a set of heterogeneous data sources [18]. The
process of creating this view is called schema (or view) inte-
gration. Numerous algorithms and tools have been proposed
to automate or semi-automate schema integration ([33] and
others). However, at its core, schema integration is a schema
design problem. Some integration choices will necessarily be
subjective and different users or designers may wish to make
different choices or alter a heuristic choice made by a tool.
Some tools anticipate this and for a limited set of alternative de-
signs will still produce a correct mapping between the source
schemas and the selected integrated schema [33]. Others will
permit users to use a set of composable schema transforma-
tion operators to produce an integrated (transformed) schema
(with a composed mapping) [11]. However, these approaches
in general do not permit arbitrary changes to the integrated
schema. Even a simple horizontal decomposition of an inte-
grated table based on a user-defined predicate will typically
require the designer to manually edit the mapping. Further-
more, changes in the source schema (even modest ones) are
not supported. Such changes require the schema integration
algorithm to be rerun.

Data exchange. In data exchange, mappings are used to trans-
form an instance of a source schema into an instance of a dif-
ferent target schema [9]. The source and target schemas may
be inconsistent, so for a given source instance there may be
no target instance that represents the same information. While
we have algorithms for detecting large classes of such incon-
sistencies, designers may wish to modify either the source
or target schema to make them consistent. This may be done
by cleaning inconsistent data in the source and adding a con-
straint to the source schema (or modifying its structure) or
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by modifying the target. Efficiently and effectively adapting
a mapping to such constraint or structure modifications (in
either the source or target) has not yet been considered.

Physical data design. Physical storage wizards, which permit
the customization of physical schemas and storage structures,
must maintain a mapping between the physical and logical
schemas.A common example of such wizards are tools for cus-
tomizing the relational storage of XML data [2]. Such tools
evaluate (or help a designer to evaluate) the relative cost of
different physical relational designs. However, they consider
only a fixed set of physical schemas, each with a built-in map-
ping to the given logical (XML) schema. To permit a designer
to suggest schema designs outside of this limited set, the tool
would have to be able to adapt the XML to relational mapping
to the ad hoc user-proposed schema change.

Other applications that rely on mappings include modeling
of source descriptions [21], modeling of query capabilities
[37], and view management [3,17]. In all of these applications,
mappings provide the main vehicle for data sharing and data
transformation. Yet, current solutions in these areas typically
assume that the schemas are relatively static.

We advocate a novel framework that maintains the consis-
tency of mappings under schema changes by finding rewritings
that try to preserve as much as possible the semantics of the
mappings. The semantics of a mapping is the relationship it
establishes between instances of one schema and instances of
another schema. This semantics is effected by the parts of the
schema it uses (i.e., the elements, tables, attributes, etc.) and
by the way it uses them (i.e., the join paths or selection condi-
tions). We call this problem mapping adaptation to differen-
tiate it from view adaptation [13], view synchronization [20],
and view maintenance [39]

One way to approach this problem is to have a predefined
finite set of interesting changes. Indeed, this is the approach
used in several of the application areas that we have mentioned,
including in physical design tools. For each such change, a
modified mapping is stored (“hard-coded” if you will). The
advantage of this approach is that we will know exactly how
to handle each change. The disadvantage is that the way in
which the schema can evolve is restricted to a set of prede-
fined schemas, though if the set is rich enough, it may embrace
all the possible schemas that are important for a specific appli-
cation. A second alternative is to allow schemas to evolve and
then find the changes that took place by comparing the modi-
fied schema (S′) to the original version (S). For example, we
could use a matching tool to find corresponding portions of
the two schema versions [32] and then use a mapping creation
tool to add semantics to these correspondences [31]. This will
produce a mapping from S′ to S that can be composed with
the original mapping. Such an approach is complementary to
the approach we consider here.

Our approach is to use a mapping adaptation tool in which
a designer can change and evolve schemas. The tool detects
mappings that are made inconsistent by a schema change and
incrementally modifies the mappings in response. The term
incrementally means that only the mappings and, more specif-
ically, the parts of the mappings that are affected by a schema
change are modified while the rest remain unaffected. This
approach has the advantage that we can track semantic deci-
sions made by a designer either in creating the mapping or in

earlier modification decisions. These semantic decisions are
needed because schemas are often ambiguous (or semantically
impoverished) and may not contain sufficient information to
make all mapping choices. We can then reuse these decisions
when appropriate.

Our main contributions are the following.

1. We motivate the problem of adapting mappings to schema
changes and we present a simple and powerful model for
representing schema changes.

2. We consider changes not only to the structure of schemas
(which may make the mapping syntactically incorrect [3])
but also to the schema semantics that may make mappings
semantically incorrect.

3. We develop an algorithm for enumerating possible rewrit-
ings for mappings that have become invalid or inconsistent.
The generated rewritings are consistent not only with the
structure but also with the semantics of the schema.

4. We define a metric for the semantic similarity between two
mappings that is used to rank the candidate rewritings.

5. We consider changes not only in the source schemas but
also in the target. This is equivalent to adapting map-
pings to reflect changes in both their interface and the base
schema.

6. We support changes not only on atomic elements but also
on more complex structures including relational tables or
complex (nested) XML structures.

7. We present a mapping adaptation algorithm that efficiently
computes rewritings by exploiting knowledge about user
decisions that is embodied in the existing mappings.

2 Related work

Schema evolution is a broad research area
that includes problems related to schema changes. It has

been studied in different contexts and under different assump-
tions.

In object-oriented database management systems
(OODBMS) the main problem studied is how to mini-
mize the cost of updating the instance data when the schema
has been modified. Banerjee et al. [4] give a taxonomy of
the changes that may occur in OODBMS and provide an
implementation for each one of them. Those changes are
local to a single type, e.g., renaming an attribute or changing
the position of a class in the class hierarchy. Lerner [19]
extends the above work to include complex changes that
span multiple classes and provides templates for the most
common changes. None of this work investigates how views
are affected when the schema is modified. Incremental view
maintenance [7,28] is a related problem that deals with the
methods for efficiently updating materialized views when the
base schema data are updated. View adaptation [13,23] is
a variant of view maintenance that investigates methods of
keeping the data in a materialized view up to date in response
to changes in the view definition itself. View adaptation may
be required after mapping adaptation; hence we view this
work as complementary to ours. View adaptation is a part
of a broader problem called view management that includes
any issue related to the creation and manipulation of views,
e.g., reusing views to optimize query answering or data
storage in cases of materialization [16]. View management is
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a long-standing problem in the commercial database system
community where there is a need for detecting views (mate-
rialized or not) that become invalid due to schema changes in
the base tables [3].

A different approach in schema evolution has been fol-
lowed by McBrien and Poulovassilis [27], who combine
schema evolution and schema integration in one unified frame-
work. By using a series of primitive schema transformations
one can map a local schema to a global schema. Each trans-
formation must be accompanied by a query that describes its
semantics. This query has to be manually specified by the user.
Their approach enables easy composition of the transforma-
tions and permits optimization. In our approach, the user does
not need to manually specify such queries. The EVE [20] sys-
tem investigated the view synchronization problem, that is,
how a view definition has to be updated when the base rela-
tional schema is modified. This work is very close to ours.
However, in EVE, a user who defines a view is required to
specify how the system should behave under changes. Fur-
thermore, the supported changes are restricted to only deletion
and renaming. Changes such as moving and copying attributes
as well as constraint changes are not considered.

Our work can be seen within a general framework of model
management in which schemas and views or mappings be-
tween them are considered and manipulated as first-class citi-
zens. Schema matching [32] is a common first step that gener-
ates a set of syntactic correspondences between portions of two
schemas. Notice that matchers do not create mappings that as-
sociate instances of schemas. However, schema mapping tools
like Clio [25,31] can use these correspondences and (by using
the semantics embedded in the schemas) generate mappings
that associate instances. We take the mappings generated by
a mapping tool or defined by a user and adapt them when
schemas are changed in order to preserve the mapping consis-
tency. Bernstein and Rahm [5] propose a different approach
for dealing with schema changes. For each modified schema,
they propose independently generating a mapping from the old
version to the new one. This mapping is composed with the
existing ones to generate the adapted mappings between the
modified schemas [29]. This composition can be aided by the
recent results reported in [24,10]. However, the resulting map-
pings need to be checked by an expert user to select only those
that most accurately reflect the semantics of the transforma-
tion. Furthermore, it has been suggested in [24] and formally
proven in [10] that the composition of conjunctive mappings
cannot always be expressed as a conjunctive mapping. The
advantage of our incremental approach is that it allows us to
more easily detect the mappings that most accurately describe
the transformation to the new version of the schema by reusing
semantic choices made by the user that are embedded in the
original mappings. Furthermore, our approach is guaranteed
to always produce conjunctive rewritings of conjunctive map-
pings.

3 Mapping system

We consider a very general form of mapping that subsumes
a large class of mappings used in a variety of applications.
A mapping m from a schema S (called the source schema)
to schema T (called the target schema) is an assertion of the

form: QS � QT , where QS is a query over S and QT is a
query over T [18]. Most commonly the queries are restricted
to (type-compatible) queries that return sets of tuples and the
relation � is the subset-or-equals relation ⊆; such mappings
are called sound mappings [18]. Potential type incompatibil-
ities can be resolved through type transformation functions.
The queries QS and QT are conjunctive nested queries. They
can be seen as tuple-generated dependencies from schema S to
schema T [9]. Note that, although the queries are restricted to
return sets of tuples, the schemas may be nested schemas and
may contain complex or abstract types. This form of mapping
is very general and includes as special cases the GAV (global-
as-view) [25] and LAV (local-as-view) [21] views used in
data integration systems or the GLAV (global-and-local-as-
view) mappings used in transforming data between indepen-
dent schemas [31], in peer-to-peer query answering [24], and
in data exchange [9].

Other types of mappings include complete (QS ⊇ QT )
and exact (QS=QT ) mappings. Exact LAV mappings have
been considered by Abiteboul and Duscha [1], while Grahne
and Mendelzon [12] consider exact, sound, and also complete
LAV mappings. These mappings have been considered mostly
in the context of query answering. Since mapping adaptation
does not perform any query evaluation over a database in-
stance, the methods presented in this paper can be easily ex-
tended to include the case of exact or complete mappings. In
addition to the nested conjunctive queries that we consider,
there has been some work on query answering over mappings
containing queries that include comparisons and negations [1]
or recursion, which we do not consider here. Finally, there has
been some work on query answering over mappings of the
form QS⊆QT , where QS and QT may contain predicates
ranging over both the source and target schemas [14]. How-
ever, this work is very preliminary and it is not clear that such
general mappings can be used in practice. Understanding when
such mappings are useful and how they can be maintained is
a topic of our future work.

Definition 1 A mapping system is a triple <S, T , M>
where S and T are source and target schemas and M is a
set of mappings between S and T .

Before defining mappings and schemas formally, we give
an example to show how mappings may determine or constrain
the placement of source data in the target.

Example 1 Consider the mapping system of Fig. 1. The
schemas are shown in a nested relational representation that is
used as a common data model. The specific model can support
recursive data structures, allows efficient manipulation of the
schemas and mappings, and has standard formal semantics.
The left-hand schema S represents a source XML Schema
with information about projects, grants, contacts, companies,
and persons. Each project has a specific grant. Each grant has a
nonempty set of sponsors that are either private individuals or
government sponsors. Companies have an owner and a CEO.
Relationships between different schema elements are specified
via foreign keys (shown with solid lines in the figure). Foreign
keys or in general referential constraints are considered part of
the input. They can be found by looking at the schema defini-
tion, i.e., by querying the catalog tables of a relational schema
or by referring to its DDL statements. Alternatively, foreign



Y. Velegrakis et al.: Preserving mapping consistency under schema changes 277

contacts: Set of Rcd

holder

privProject: Rcd
privProjects: Set of Rcd

T: Rcd

sponsor
recipient
amount
gid

grants: Set of Rcd
source
budget
code

project: Rcd
projects: Set of Rcd

grant: Rcd

S: Rcd

f1

sponsor: Choice of

government
private

f3
f2

persons: Set of Rcd
person: Rcd

SSN
name

companies: Set of Rcd

owner
CEO

company: Rcd
cname

f5

f4

code

phone
email
cid

contact: Rcd cname
leader

company: Rcd
companies: Set of Rcd

phone
name

entry: Rcd
catalog: Set of Rcd

f6
sponsors: Set [1..    ] of Rcd

m1: foreach S.projects p, S.grants g, S.contacts c,
g.grant.sponsors n, n.sponsor.private r

where p.project.source=g.grant.gid and
r=c.contact.cid

exists T.privProjects i, T.companies o
where o.company.cname=i.privProject.holder

with i.privProject.code=p.project.code and
i.privProject.sponsor=c.contact.email

m2:foreach S.companies c, S.persons p
where p.person.SSN=c.company.owner

exists T.companies o
with o.company.cname=c.company.cname and

o.company.leader=p.person.name

m3:foreach S.contacts c, S.persons p
where p.person.SSN=c.contact.cid

exists T.catalog e
with e.entry.name=p.person.name and

e.entry.phone=c.contact.phone

Fig. 1. A mapping system with three mappings

keys may be specified by a user or discovered using a de-
pendency miner [15]. The right-hand schema T is a relational
schema that also contains information about projects and com-
panies. However, it contains only projects with private funds
and associates each project with the company in charge of the
project. Three mappings (m1, m2, and m3) have been defined
fromS toT . They are expressed in a nested relational represen-
tation (defined formally below) that can easily be transformed
to other representations [31], e.g., XQuery. Each mapping has
the form QS�QT . These mappings specify a containment
assertion (⊆): for each tuple returned by QS , there must ex-
ist a corresponding tuple in QT . In our notation, the foreach
clause defines QS while the exists clause defines QT . We use
the with clause to make explicit how the source and target el-
ements relate to each other. The “foreach A exists A′” part
of the mapping is then a shorthand for the “foreach select *
from A exists select* from A′”. For example, mapping m2
in Fig. 1 is a compact representation of:

m2: foreach
select *
from S.companies c, S.persons p
where p.person.SSN=c.company.owner

exists
select *
from T.companies o

with o.company.cname=c.company.cname and
o.company.leader=p.person.name

The precise meaning of the ∗ symbol in the select clause
will be explained later but, informally, it represents all atomic
elements contained in the elements specified in the from
clause.

Mapping m2 is a mapping that specifies how to populate
the target with companies consisting of the company name
from the source and the name of the company owner as the
leader. Mapping m1 is a mapping that populates the target with
projects that have private sponsors. Note that the holder of
a project is asserted to be equal to a company name cname.
However, the with clause does not relate any source elements
to either of those two target elements. So m1 constrains the
target but does not completely specify a target instance. The
third mapping m3 generates catalog entries in the target by
joining persons and contacts in the source. ��

Schemas and instances.We use a nested relational data model
as a common platform to represent both relational and XML
Schemas. The model is based on the well-studied relational
model with extensions to support the nested structures and
constraints that appear in XML Schemas [36]. Let Atomic
represent a basic set of atomic data types such as String or
Integer. A type τ is defined by the grammar: τ ::= Atomic |
Set of τ | Rcd[l1:τ1, . . . , ln:τn] | Choice[l1:τ1, . . . , ln:τn]. A
Set is a collection type. A value of type Set of τ is an un-
ordered set of values of type τ . Types Rcd and Choice are
complex types. A value of type Rcd[l1:τ1, . . . , ln:τn] is an un-
ordered tuple of pairs [l1:v1, . . . , ln:vn], where vi is a value of
type τi with 1≤i≤n.A value of type Choice[l1:τ1, . . . , ln:τn],
on the other hand, is a pair li:vi, where vi is a value of type τi

with 1≤i≤n. The symbols l1. . .ln are referred to as labels or
attributes. With respect to XML Schema, we use Set to model
repeatable elements (or repeatable groups of elements), while
Rcd and Choice are used to represent the “all” and “choice”
model groups [38], respectively. We do not consider order. A
Set type represents an unordered set. An XML Schema “se-
quence” is modeled the same way “all” is modeled.

A schema is a set of labels (called roots), each with an
associated type. For example, S and T in Fig. 1 are such roots
for the source and target schema, respectively. An instance of
a schema is a set of label-value pairs li:vi (at most one for
each schema root), where value vi is of the type τi associated
to the schema root li.

For queries, we adopt a select-from-where syntax en-
hanced with choice type selections. An expression e is de-
fined by the grammar e ::= S|x|e.l, where x is a variable, S
a schema root, l a record label, and e.l a record projection.
The type of a schema root S is the type associated to label
S. The type of expression e.l is τ , where e must be an ex-
pression of type Rcd[. . . , l:τ, . . .]. Queries have the following
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form, where ei, ci, and c′
i are expressions formed with bound

variables in the from clause:

select e0, e1, ..., em

from P0 x0, P1 x1, ... Pn xn

where c0=c′
0 and c1=c′

1 and ... and ck=c′
k

Each Pi in the from clause is either an expression e with type
Set of τ or an expression e.l, where e is an expression with
a type Choice[. . . , l:τ, . . .] representing the selection of at-
tribute l. In the former case, the variable xi will bind to the
individual values of type τ in the set. In the latter case, the
variable xi will bind to the values of type τ under the choice
l of e. The query is well formed if the variable xk (if any)
used in Pi has k<i. The conditions in the where clause are
optional. The ‘*’ symbol can be used in the select clause to
denote all possible valid atomic type expressions. The specific
form of queries is generic and can represent the core of SQL
and XQuery.

We will use queries to represent elements within schemas.
A schema element is identified with the query that can be used
to retrieve all the instance values of that element.

Definition 2 A schema element is a query

select en+1 from P0 x0, P1 x1 , ... Pn xn

where each Pk with k≥1 uses variable xk−1, P0 starts at a
schema root, and expression en+1 uses variable xn. If the from
clause is empty, en+1 starts at a schema root. When the details
of the from clause are unimportant, the schema element can
be noted as select e from P . A schema element may also be
defined relative to another schema element select e′ from P ′.
In that case, P0 starts at expression e′ instead of the schema
root.

Example 2 For the source schema in Fig. 1, the schema ele-
ments amount and private under grant are formally de-
fined, respectively, by the following two queries:

a1: select g.grant.amount from S.grants g
a2: select s from S.grants g, g.grant.sponsors n,

n.sponsor.private s

Notice that since expression S.grants is of type
Set of Rcd[grant : Rcd[. . .]], variable g in query
a1 is bound to the record type values of the set (i.e.,
Rcd[grant : Rcd[. . .]]); hence, in order to get element
amount, variable g has to be first record projected on grant
and then on amount. On the other hand, since expression
n.sponsor.private is a choice selection, variable s in query
a2 is bound to the atomic type values described by expression
n.sponsor.private; hence, variable s is used in the select
clause as is. ��

For schema constraints we consider a very general form of
referential constraints called nested referential integrity con-
straints (NRIs) [31] extended to support choice types. NRIs
capture naturally relational foreign-key constraints as well as
the more general XML Schema keyref constraints. The sim-
plest form of NRI relates two schema elements and represents
an inclusion constraint between them.

Definition 3 Given two schema elements select e1 from P1
and select e2 fromP2, both defined relative to schema element
select e0 from P0, an NRI constraint is an expression of the
form

foreach P0 [foreach P1 exists P2, with C]
where C is the equality e1=e2. The element select e0 from
P0 is referred to as the context element of the constraint.

We can naturally extend this definition to associate multiple
elements.An NRI foreach X exists Y with C can associate
a list X of n atomic elements with a list Y of n atomic ele-
ments. The with clause will be a conjunction of n equalities.
Note that the elements of Y may be denoted relative to some
variable of X .

Example 3 The foreign key f2 on the source schema of Fig. 1
is expressed as follows:

f2: foreach S.grants g, g.grant.sponsors n,
n.sponsor.private r

exists S.contacts c
with c.contact.cid=r ��

4 Semantically valid mappings

When a schema changes, we need to rewrite the affected map-
pings. Our goal is to find rewritings that are consistent with the
semantics of the new schema and with the current semantics
of the mapping. To achieve the former (consistency with the
new schema), we use an extension of the Clio mapping cre-
ation framework [31] in which mappings are created based on
the semantics of the schemas. While Sect. 5 will give the algo-
rithms necessary for adapting such mappings when schemas
change, in this section we describe in detail the mappings that
we consider.

We define the notion of association to describe a set of
associated atomic type schema elements. Intuitively, an as-
sociation is a query that returns all the atomic type elements
mentioned in a query.

Definition 4 An association is a query

select * from P1 x1, P2 x2, ... Pn xn

where e1=e′
1 and e2=e′

2 and ... and en=e′
n

Example 4 The following query defines an association con-
taining the elements private, gid, amount, and recipient
of Schema S in Fig. 1.

A2: select * from S.grants g, g.grant.sponsors n,
n.sponsor.private s ��

Definition 5 The union of two associations A and B (denoted
as A�B) is an association with its select, from, and where
clause consisting of the contents of the respective clauses of
A and B.

If C is a set of equalities e=e′, we will abuse the notation
and we will use A�C to denote the association A with the
equalities in C appended in its where clause.

Mappings are very general interschema constraints be-
tween a source and a target association.
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Definition 6 A mapping is a constraint foreach AS

exists AT with C, where AS is an association on a source
schema S, AT is an association on a target schema T , and C
is a nonempty conjunction of equalities relating atomic type
expressions over AS with atomic type expressions over AT .

While our techniques are designed to manage very general
mappings of this form, we will make use of two important
special classes of mappings. The first is the class of corre-
spondences and the second is the class of semantically valid
mappings considered in detail in the next section, in the con-
text of schema evolution.

Correspondences are primitive forms of mappings used to
describe how the value of an atomic target schema element is
generated from a source schema element. The advantage of
the correspondences is that they can be easily defined by a
user [25] or they can be automatically generated by schema-
matching tools [22].

Definition 7 A correspondence from a source element
select eS from PS to a target element select eT from PT

is a mapping
foreach PS exists PT with eS=eT .

Example 5 Correspondences are depicted in Fig. 1 with the
dotted arrows between the schemas. The correspondence be-
tween the name in the source schema and the leader in the
target is represented as

v: foreach S.persons e
exists T.companies c
with c.company.leader=e.person.name ��

To understand and reason about mappings and rewritings
of mappings, we must understand (and be able to represent)
relationships between associations. We use renamings (1-1
functions) to express a form of query subsumption between
associations.

Definition 8 An association A is dominated by association
B (denoted A

.
�B) if there is a renaming (1-1 function) h from

the variables of A to the variables of B such that the from and
where clauses of h(A) are subsets, respectively, of the from
and where clauses of B.

Domination can naturally extend to mappings as follows. Map-
ping m1: foreach AS

1 exists AT
1 with C1 is dominated

by mapping m2: foreach AS
2 exists AT

2 with C2 (denoted
m1

.
�m2) if AS

1

.
�AS

2 , AT
1

.
�AT

2 and for every equality e=e′ in
C1, h1(e) = h2(e′) is in C2 (or implied by C2), where h1 and
h2 are the renaming functions from AS

1 to AT
1 and from AS

2
to AT

2 , respectively.

Definition 9 A correspondence v: foreach PS exists PT

with D is covered by the pair of associations <AS , AT > if
PS

.
�AS and PT

.
�AT . The correspondence is also covered by

mapping m if v
.
�m.

Given a mapping m between two schemas it is always
possible to extract the correspondences that are covered by
that mapping.

To test whether a schema element plays any role in a con-
straint, we need to check whether there is a renaming from the

P S
1 : select * from S.projects p

P S
2 : select * from S.grants g, g.grant.sponsors n,

n.sponsor.private r
P S

3 : select * from S.grants g, g.grant.sponsors n,
n.sponsor.government m

P S
4 : select * from S.contacts a

P S
5 : select * from S.companies c

P S
6 : select * from S.persons i

P T
1 : select * from T.privProjects p

P T
2 : select * from T.companies p

P T
3 : select * from T.catalog c

Fig. 2. Source and target structural associations

variables of the element to the variables of the constraint and
whether the renaming of its select clause expression is used
in any of the expressions of the constraint. Recall that map-
pings are constraints and correspondences are special forms
of mappings.

Definition 10 An element e: select en+1 from P0 x0, P1 x1,
..., Pn xn is used (or participates) in an association A if
there is a renaming function h from the variables of e to the
variables of A and expression h(en+1) is used to form any of
the expressions in the from or where clause of A. The element
e is used in constraint F : foreach X exists Y with C if it
is used in association X�Y �C.

There are three ways in which semantic relationships be-
tween schema elements can be encoded. The first is through
the structure of the schema. Elements may be related by their
placement in the same record type or more generally through
the nesting structure of the schema. This structure encodes
semantic relationships between elements that the schema de-
signer chose to explicitly model through the schema. An as-
sociation containing elements that are related only through
the schema structure is referred to as a structural association.
Structural associations correspond to the primary paths used
in [31], where it is shown that they can be computed by one
time traversal over the schema.

Definition 11 A structural association is an association
select * from P1 x1, P2 x2 , ... Pn xn with no where clause,
expression P1 starting at a schema root, and every expression
Pk, k>0 starting with variable xk−1.

Semantic relationships within a schema may also be mod-
eled using schema constraints. Chasing is a classical relational
method [26] that can be used to assemble elements that are
semantically related through constraints. A chase is a series
of chase steps. A chase step of association R with an NRI
F : foreach X exists Y with C can be applied if, by defi-
nition, the association R contains (a renaming of) X but does
not satisfy the constraint. The result of the chase step is as-
sociation R with the Y clause and the C conditions (under
the respective renaming) added to it. The chase can be used to
enumerate logical join paths, based on the set of dependencies
in a schema. We use an extension of a nested chase [30] that
can handle choice types and NRIs [35].
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A1: select *
from S.projects p,S.grants g,g.grant.sponsors n,

n.sponsor.private r, S.contacts c
where c.cid=r and g.gid=p.source

A2: select *
from S.projects p,S.grants g,g.grant.sponsors n,

n.sponsor.government r, S.contacts c
where c.cid=r and g.gid=p.source

A3: select *
from S.grants g,S.contacts c,g.grant.sponsors n,

n.sponsor.private r,
where c.cid=r

A4: select *
from S.grants g,S.contacts c,g.grant.sponsors n,

n.sponsor.government r
where c.cid=r

A5: select * from S.contacts c
A6: select *

from S.companies c, S.persons p, S.persons w
where c.company.CEO=p.person.SSN and

c.company.owner=w.person.SSN
A7: select * from S.persons c
A8: select *

from S.contacts c, S.persons p,
where p.contact.cid=p.person.SSN

B1: select *
from T.privProjects p, T.companies c
where p.privProject.holder=c.company.cname

B2: select * from T.companies c
B3: select * from T.catalog c

Fig. 3. Logical associations for schemas S and T

Definition 12 A logical association R is the result1

chaseX (P ) of chasing an association P with the set X of
all the NRIs of the schema.

Example 6 The fact that name, CEO, and owner are all under
the company element indicates that they are semantically as-
sociated since they all refer to the same company. These three
elements form the structural association PS

5 of Fig. 2. This
figure gives all the structural associations of the two schemas
in Fig. 1. As another example of structural association, PS

2
and PS

3 represent the associations that exist between a grant
and the two kinds of sponsors. The cardinality constraint on
the sponsors (i.e., Set[1 . . .∞]) has been used to infer that
there cannot be a structural association containing grants but
no sponsors. The foreign key f5 on the source schema indi-
cates that a person and a company can be associated through an
owner relationship. Similarly, the foreign key f4 indicates that
they can also be related through the CEO. Chasing structural
relation PS

5 with constraints f5 and f4 results in the logical
association A6 of Fig. 3. Logical associations A1 to A7 and
B1 to B3 in the same Fig. 3 are the logical associations that
resulted from the chase of the structural associations of Fig. 2
with all the constraints defined on the two schemas. ��

The result of the chase of the structural associations rep-
resents semantic relationships between schema elements that

1 In general, the chase may produce multiple logical associations,
in which case chaseX (P ) is a set.

are explicitly encoded in the schema by the schema designer.
However, there may be hidden semantic relationships that
were not encoded in the schema. Some of these relationships
may be exposed by the set of mappings that are provided by
the user or by a mapping tool. If an association used in a map-
ping is chased with the schema constraints and the result is not
among the results of the chase of the structural associations
of the schema, then that association provides some semantics
that are not encoded in the schema and is referred as a user
association.

Definition 13 Let S be the set of structural associations of
a schema S. An association A of schema S that is used
in a mapping m is a user association if chaseF (A) 
⊆
{B | B∈chaseF (X) ∧ X∈S}, where F is the set of con-
straints in schema S.

Example 7 Mapping m3 joinscontacts andpersons based
on the SSN and cid, which indicates that a person can be
associated with contact information through the SSN. This
gives the source schema association

A8: select *
from S.contacts c, S.persons p,
where c.contact.cid=p.person.SSN

Chasing the specific association with the set of schema con-
straints does not add any new elements. It can also be noticed
that this association is not among the associations A1 to A7 of
Fig. 3 that resulted from chasing the source schema structural
associations. Thus, A8 is a user association and the result of
its chase (which is itself) is also added in the set of logical
associations of Fig. 3. ��

In a similar way, one can extract user associations from
queries in query workload descriptions or queries used in view
definitions.

For the remainder of the paper, we will consider as logical
associations only those that have been generated by the chase
of a structural or a user association.

We now give a formal definition of a semantically valid
mapping.

Definition 14 Let S and T be a pair of source and target
schemas and M a set of mappings between them. Consider C
to be the set of correspondences covered by the mappings in
M. A semantically valid mapping is a mapping foreach AS

existsAT withD, whereAS andAT are logical associations
in the source and the target schema, respectively, and D is the
conjunction of the conditions of the correspondences in C that
are covered by the pair <AS , AT > (provided that at least one
such correspondence exists).

Example 8 The two correspondences of the mapping m2 are
covered by the pair <A6, B2> in two ways. Each one gener-
ated a different semantically valid mapping. The first gives

mu: foreach S.companies c, S.persons p, S.persons p′

where c.company.CEO=p.person.SSN and
c.company.owner=p′.person.SSN

exists T.companies o
with o.company.cname=c.company.cname and

o.company.leader=p.person.name
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which after join minimization step becomes:

mo: foreach S.companies c, S.persons p
where c.company.CEO=p.person.SSN

exists T.companies o
with o.company.cname=c.company.cname and

o.company.leader=p.person.name

The second way of covering the correspondences gives map-
ping m2 of Fig. 1. The difference between mo and m2 is that
mo uses the CEO as the leader of the company while m2 uses
the owner. This example shows how our approach captures
different join paths in the schema to produce semantically dif-
ferent mappings. ��

We have to note here that the set of semantically valid
mappings includes the mappings produced by the mapping
generation tool Clio [31] with the addition of those based on
user choices and those including choice types. This set will
be our search space when looking for possible rewritings as a
result of a schema evolution.

Definition 15 Given a source and a target schema S and T ,
along with a set of mappings M from S to T , a mapping
universeUM

S,T is the set of all the semantically valid mappings.

5 Handling schema evolution

Schemas usually evolve to adapt to new data requirements and
semantics. When a schema changes, we need to rewrite the af-
fected mappings in a way that is consistent with the semantics
of the new schema and with the semantics of the existing map-
pings. To achieve the former we exploit information provided
by the schema structure and semantics (constraints) by extend-
ing the algorithm presented in [31]. We provide algorithms to
efficiently compute the schema semantics incrementally when
a change to the schema structure or constraints occurs. For the
latter, we present new techniques for modeling and reusing the
semantics embedded within a mapping. When the semantics
of a mapping must change, we make the minimum changes
necessary to achieve a mapping that is consistent with the new
schema.

Our algorithm accepts as arguments a mapping system,
i.e, a pair of schemas S, T and a set of mappings M from
S to T . It consists of two phases. The first is a preprocess-
ing step in which the mappings are analyzed and turned into
semantically valid mappings (if they are not). In particular,
the set C of correspondences covered by the mappings in M
is first extracted and then the mappings in M are analyzed.
For each mapping m∈M of the form foreach AS exists
AT with D, associations AS and AT are taken apart and are
chased with the schema constraints to produce new associa-
tions AS

1 , ..., AS
n and AT

1 , ..., AT
l , respectively. For each pair

<AS
i , AT

j > a new mapping mij of the form foreach AS
i

exists AT
j with D′ is created, where D′ includes the condi-

tions D, plus the conditions of all the correspondences that are
covered by the pair of associations <AS

i , AT
j > but were not

covered by the pair <AS , AT >. This is because associations
AS and AT are always dominated by associations AS

i and AT
j ,

respectively. Note that the set of all those semantically valid

mappings mij is a subset of the mapping universe UM
S,T . Any

existing user association is also identified during this process.
The second phase of the algorithm takes the set of se-

mantically valid mappings generated during the first phase
and maintains them through schema changes. In particular,
for each kind of change that occurs in the source or the tar-
get schema, each mapping is modified as appropriate. This is
done for each mapping in turn. Note that mappings generated
in the first phase are potentially more complete than those en-
tered by a user. Hence, we use the generated mappings within
the adaptation algorithm since they extend the user mappings
with the semantics embedded in the schema structure and
constraints. In the following subsections, we present the al-
gorithms that adapt the mappings for each kind of change that
may occur on the schemas. Each algorithm accepts as input
a set of semantically valid mappings M and returns the set
of adapted semantically valid mappings M′. We have iden-
tified a number of primitive schema changes and categorized
them into three categories. The first one contains operations
that change the schema semantics by adding or removing con-
straints, the second includes modifications to the schema struc-
ture by adding or removing elements, while the third category
includes changes that reshape the schema structure by moving,
copying, or renaming elements. To make the presentation less
verbose, we will often assume that the schema changes occur
in the source schema. However, the algorithms apply equally
in the case where the changes occur in the target schema.

5.1 Constraint modifications

Adding constraints: Adding a new constraint on a schema
does not make any of the existing mappings invalid, i.e., syn-
tactically incorrect. However, it may make some of the map-
pings inconsistent, in the sense that they will no longer reflect
the semantics of the schema. More precisely, a mapping may
fall out of the mapping universe (recall Definition 15) as a
result of adding a constraint. Let <S, T , M> be a mapping
system and C be the set of correspondences dominated by all
the mappings in M (which can always be extracted from the
set of mappings M as mentioned in previous section). As-
sume that a new constraint F : foreach X exists Y with C
is added in the source schema.

We first detect the mappings that are affected by the
change, that is, mappings that are not semantically valid any
more according to the new constraint.

A mapping m: foreach AS exists AT with D, with
m∈M of a mapping system <S, T , M>, needs to be adapted
after the addition of a source constraint foreach X exists Y

with C if X is dominated by AS (X
.
�AS), with a renaming

h, but there is no extension of h to a renaming from Y �C to
AS . In other words, the addition of the new constraint caused
AS not to be closed under the chase, i.e., AS is no longer a
logical association.

If mapping m: foreach AS exists AT with D, with
m∈M of the mapping system <S, T , M>, needs to be
adapted, the association AS is chased with the set of the old
schema constraints enhanced with the new constraint F . Note
that it is not enough to chase only with F . After applying a
chase step with F , additional chasing may be possible with
existing constraints. The result is a set of new logical associa-
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tions. For each such association A, a new mapping is generated
in the form mc: foreach A exists AT with D′. The set D′

consists of the conditions derived from the with clause of the
correspondences in C that are covered by the pair <A, AT >.
Since AS is always dominated by A, naturally, D⊆D′. Each
mapping mc generated by the above procedure, for which
m

.
�mc, is added to M and mapping m is removed. Algo-

rithm 1 gives a brief description of the steps taken when a new
constraint is added.

Algorithm 1 – Constraint addition

Input:
Set of mappingsM from schema S to schema T
New constraint F : foreach X exists Y with C on S

Body:
X ← constraints in S, M′←∅
C ← compute correspondences fromM
For every m←(foreach AS exists AT with D) ∈M

if (X
.
�AS with renaming h and h(Y � C)�

.
�AS)

For every A∈chaseX∪{F}(AS)
For every coverage of <A, AT > by D′⊆C

mr← foreach A exists AT with D′

if (m
.
�mr) M′←M′ ∪ {mr}

else M′←M′ ∪ {m}
Output:

New set of mappingsM′

Example 9 Assume that the following new constraint is added
in the source schema of Fig. 1:

f7: foreach S.grants g
exists S.companies c
with c.company.cname = g.grant.recipient

allowing each grant to specify the company that receives
the grant. Mappings m2 and m3 will not be affected since
the foreach part of the constraint is not dominated by the
foreach part of those mappings. Indeed, the fact that we can
now determine the company that receives each grant has noth-
ing to do with those two mappings since they deal with com-
panies and persons only. On the flip side, this change greatly
affects mapping m1. Remember that the specific mapping was
populating the target schema with projects receiving private
funds and the associated companies, but the information of
what company is related to each project was not available in
the source schema. After the addition of the new constraint,
this information becomes available, so mapping m1 may need
to be adapted to the new schema semantics. We detect this by
verifying that the foreach clause of the constraint is domi-
nated by (contained in) association A1 used in mapping m1
through a renaming h, but there is no extension of h such
that the union of the exists and with clauses of the mapping
is also dominated by association A1 through that extension.
When chased with the new set of constraints that includes F ,
association A1 gives a new logical association:

A1a: select *
from S.projects p, S.grants g, g.grant.sponsors n,

n.sponsor.private r, S.contacts c,
S.companies o, S.persons e, S.persons e′

where p.project.source=g.grant.gid and

r=c.contact.cid and
g.grant.recipient=o.company.cname and
o.company.CEO=e.person.SSN and
o.company.owner=e′.person.SSN

This association generates, in turn, two rewritings for m1,
depending on how theleader element in the target is mapped:
as the name of the CEO of a company or as the name of the
owner of the company. (In Algorithm 1 terms, we say that
there are two ways to cover the correspondence from person
name to company leader by the pair <A1a, B1>). The first
rewriting (after join minimization2) is

m′
1a: foreach S.projects p, S.grants g, g.grant.sponsors n,

n.sponsor.private r, S.contacts c,
S.companies o, S.persons e

where p.project.source=g.grant.gid and
r=c.contact.cid and
g.grant.recipient=o.company.cname and
o.company.CEO=e.person.SSN

exists T.privProjects j, T.companies m
where j.privProject.holder=m.company.cname

with m.company.cname=o.company.cname and
m.company.leader=e.person.name and
j.privProject.code=p.project.code and
j.privProject.sponsor=c.contact.email

while the second mapping m′
1b is the same as m′

1a ex-
cept for the last condition in the first foreach where
clause that is o.company.owner=e.person.SSN instead of
o.company.CEO=e.person.SSN. This means that the first
mapping populates the target schema with private projects and
companies, using the CEO as the leader of the company while
the second uses the owner. ��

As the above example indicates, mapping adaptation may
produce rewritings with different (maybe conflicting) seman-
tics. In the absence of any additional information, it may not
be possible to choose one mapping rewriting in favor of an-
other. All the generated rewritings are consistent with the new
schema and are as semantically close as possible to previously
defined mappings (i.e., they are valid members of the new map-
ping universe). To accept or to reject some of them requires
human intervention. In Sect. 6 we describe a methodology
for ranking the generated rewritings based on their semantic
closeness to the previous mappings. This ranking can be used
to assist the user in such a decision.

A special, yet interesting, case is when the chase does not
introduce any new schema elements in the association but only
extra conditions. These conditions indicate new ways (join
paths actually) to relate the elements in the association. This
enhances the mapping universe with new semantically valid
mappings; however, none of the existing mappings is adapted.
The intuition behind this is that there is no indication (from
existing mappings or from schema structure and constraints)
that these new mappings are preferred over those that already
exist. Since our goal is to maintain the semantics of exist-
ing mappings as much as possible, we perform no adaptation
unless necessary.

2 We perform join minimization on both the source and target
queries.
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Example 10 Assume that a new foreign-key constraint is
added in the source schema of Fig. 1 from the element budget
to the element amount. Mappings m2 and m3 are not affected
by this change. Chasing association A1 with the schema con-
straints introduces a new join path through which a project
and a grant can be associated. However, there is no reason to
assume that mapping m1 needs to be adapted since the initial
way of joining projects and grants (through the foreign key
f1) is still valid. ��

Removing constraints: As with the addition of a constraint,
the removal of a constraint has no effect on the validity of
the existing mappings but may affect the consistency of their
semantics. The reason is that mappings may have used as-
sumptions that were based on the constraint that is about to
be removed. As before, we assume that a source constraint
is removed. (The same reasoning applies for the target case.)
We consider a mapping to be affected if its source association
uses some join condition(s) based on the constraint being re-
moved. More precisely, a mapping m: foreach AS exists
AT with D, with m∈M of a mapping system <S, T , M>,
needs to be adapted after the removal of a source constraint
F : foreach X exists Y with C if X�Y �C

.
� AS .

Once we detect that a mapping m needs to be adapted,
we apply the following steps. (Algorithm 2 provides a suc-
cinct description of these steps.) The intuition of Algorithm 2
is to take the maximal independent sets of semantically as-
sociated schema elements of each affected association used
by the mapping. We start by breaking apart the source asso-
ciation AS into its set P of structural and user associations,
that is, we enumerate all the structural and user associations of
the source schema that are dominated by AS . We then chase
them by considering the set of schema constraints without F .
The result is a set of new logical associations. Some of them
may include choices (due to the existence of choice types)
that were not part of the original association AS . We elimi-
nate such associations. The criterion is based on dominance,
again: we only keep those new logical associations that are
dominated by AS . Let us call this set of resulting associations
A′. By construction, the logical associations in A′ will contain
only elements and equalities between them that were also in
AS ; hence they will not represent any additional semantics.
For every member Aa in A′ and for every way Aa can be
dominated by association AS (i.e., for every renaming func-
tion h:Aa →AS), a new mapping ma is generated of the form
foreach Aa exists AT with D′. The set D′ consists of those
correspondences that are covered by the pair <Aa, AT > and
such that their renaming h is included in D or implied by it.
In other words, D′ consists of the correspondences of D that
are covered by <Aa, AT > and <AS , AT > in the same way.
Let us call M∗ the set of mappings ma. From the mappings in
M∗ we need to keep only those that are as close as possible to
the initial mapping m. This is achieved by eliminating every
mapping in M∗ that is dominated by another mapping in M∗,
so we keep only the one that has the maximum number of
elements. The following example illustrates the algorithm.

Example 11 Consider the mappings m′
1a, m′

1b, m2, and m3
in example 9 and let us remove the constraint f7 we added
there. It is easy to see that mappings m2 and m3 are not af-
fected because they do not include a join between S.grants

Algorithm 2 – Constraint Removal

Input:
Set of semantically valid mappingsM
Constraint F : foreach X exists Y with C of schema S

Body:
X ← constraints in S, M′ ← ∅
For every m←(foreach AS exists AT with D) ∈M

If (X � Y � C
.
� AS) {

P←{P | P structural or user association ∧ P
.
� AS}

A′←{A | A∈chaseX−{F}(P ) ∧ P∈P ∧ A
.
�AS}

M∗ ← ∅
For every Aa∈A′ and every renaming h:Aa→AS

D′← {e1=e2 | e1 (e2) well-defined expressions over
Aa (AT ) ∧ “h(e1)=e2” in or implied by D }

ma← (foreach Aa exists AT with D′)
M∗ ←M∗ ∪ {ma}
M∗∗ ← {m′ |m′∈M∗ ∧ � ∃m′′∈M∗: m′ .

�m′′}
M′ ←M′ ∪M∗∗

else include m inM′

Output:
New set of mappingsM′

and S.companies. However, both m′
1a and m′

1b are affected.
Consider the mapping m′

1a (the other is handled in a similar
way). Its source association, A1a of example 9, is broken apart
into the structural associations (recall Fig. 2): PS

1 , PS
2 , PS

4 ,
PS

5 , and PS
6 . Those structural associations are chased and re-

sult in a set of logical associations. PS
1 results in (recall Fig. 3)

A1 and A2, but the latter is eliminated since it is not dominated
by the original association A1a, which requires the existence
of a private sponsor independently of the existence of a
government sponsor. The chase of PS

2 , PS
4 , PS

5 , and PS
6

will result in associations A3, A5, A6, and A7 respectively.
Each of the resulting associations will be used to form a new
mapping. Association A1 generates mapping m1 (which is the
one we started with in example 9). Association A6 generates
mappings (recall example 8) mo and m2. However, mo cov-
ers the correspondence on the leader through a join on the
CEO, while m2 does it through a join on the owner. Since the
initial mapping m′

1a covers the leader through a join on the
owner, mapping mo is eliminated. The mappings generated
by A3 and A5 are dominated by mapping m1, while the one
generated by A7 is dominated by m2. Hence, those mappings
are also eliminated and the final result of the algorithm, for
the case of m′

1a, consists of the mappings m1 and m2. The
algorithm will give similar results for the case of m′

1b, while
mappings m2 and m3 will not be affected by the removal of
constraint f7 and will not be modified. ��

5.2 Schema pruning or expansion

Among the most common changes used in schema evolution
systems are those that add or remove parts of the schema struc-
ture, for example, adding a new attribute on a relational table
or removing an XML Schema element.

When a new structure is added to a schema, it may intro-
duce some new structural associations. Those structural asso-
ciations can be chased and generate new logical associations.
Using those associations new semantically valid mappings can
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be generated, and hence the mapping universe is expanded.
However, they are not added to the set of existing mappings.
The reason is that there is no indication of whether they de-
scribe any of the intended semantics of the mapping system.
This can be explained by the fact that there is no correspon-
dence covered by any of the new mappings that is not covered
by any of those that already exist. On the other hand, since the
structure and constraints used by the existing mappings are
not affected, there is no reason for adapting any of them.

Example 12 Consider the case in which the source schema
of Fig. 1 is modified so that each company has nested within
its structure the set of laboratories that the company operates.
This introduces some new mappings in the mapping universe,
for example, a mapping that populates the target schema only
with companies that have laboratories. Whether this mapping
should be used is something that cannot be determined either
from the schemas or from the existing mappings. On the other
hand, mapping m2 that populates the target with companies,
independently of whether they have labs, remains valid and
consistent. ��

In many practical cases, a part of the schema is removed
either because the owner of the data source does not want to
store that information or because she may want to stop pub-
lishing it. The removal of an element forces all the mappings
that are using that element to be adapted. We consider first the
removal of atomic type elements.

When atomic element e is removed, each constraint F in
which e is used is removed by following the procedure de-
scribed in Sect. 5.1. If the atomic element e to be removed
is used in a correspondence V , then every mapping m that is
covering V has to be adapted. More specifically, the equal-
ity in the with clause of the mapping that corresponds to V
is removed from the mapping. If mapping m was covering
only V , then the with clause of m becomes empty; thus m
can be removed. If the atomic element e is used neither in a
correspondence nor in a constraint, it can be removed from
the schema without affecting any of the existing mappings.
Algorithm 3 describes the steps followed to remove an atomic
element. To remove an element that is not atomic, its whole
structure is visited in a bottom-up fashion starting from the
leaves and removing one element at a time following the pro-
cedure described in Algorithm 3. A complex type element can
be removed if all its attributes (children) have been removed.

Algorithm 3 – Atomic element deletion

Input:
Mapping system <S, T ,M>
Atomic element e

Body:
While exists constraint F that uses e

remove F
∀m←(foreach AS exists AT with D) ∈M

D ← {q | c is correspondence covered by m ∧
c is not using e ∧
q is the with clause of c }

if D=∅ remove m from M
Output:

The updated set M
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Fig. 4. Updating a constraint after an element move

Example 13 In the mapping system of Fig. 1, removing ele-
ment budget from project will not affect any mappings
since it is used neither in either a constraint nor a corre-
spondence. On the other hand, removing code will invali-
date mapping m1, which populates the target with project
codes and the sponsor of privately funded projects. After
the removal of code, the element projects does not con-
tribute to the population of the target schema. However, ac-
cording to our algorithm the only modification that will take
place in mapping m1 will be the removal of the equal-
ity i.privProject.code=p.project.code from the with
clause. This reflects the basic principle of our approach to
preserve the semantics of the initial mappings by performing
the minimum required changes during the adaptation process.

��

Another common operation in schema evolution is updat-
ing the type of an element e to a new type t. This case will
not be considered separately since it is easy to show that it is
equivalent to removing element e and then adding a new one
of type t and with the same name to e.

5.3 Schema restructuring

One way a schema may evolve is by changing its structure
without removing or adding elements. There are three com-
mon operations of this kind of evolution that we consider:
rename, move, and copy. The first renames a schema element,
and it is mainly a syntactic change. It requires visiting all
the mappings and updating every reference to the renamed
element with its new name. The second operation moves a
schema element to a different location, while the third does
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the same but moves a replica of the element instead of the
element itself. When an element is copied or moved, it car-
ries with it design choices and semantics it had in its original
location, i.e., schema constraints. Mapping selections and de-
cisions that were used in the original location should also apply
in the new location.

5.3.1 Adapting schema constraints

Assume that a schema element e is to be moved to a new loca-
tion. Due to this move, constraints that are using the element
e may become invalid and must be adapted. Recall that the
constraints we consider are NRIs (Definition 3) that naturally
include the constraints of relational and XML Schemas. An
NRI constraint F is of the form foreach P0 [foreach P1
exists P2 with C], where the P1 and P2 start from the last
variable of the P0, which represents the context element, and
C is of the form e1=e2, where e1 and e2 are expressions de-
pending on the last variable of P1, respectively, P2. To realize
how a constraint F is affected by the change, we have to con-
sider the relative position in the schema of element e with
respect to the context element of F in the schema structure.
Figure 4 provides a graphical explanation of how F is adapted
to the move of element e. In the figure, for constraint F , we
use c, o, and d to denote, respectively (both before and after
the move), the context element, the element identified by the
query select e1 from P0, P1 (also called the origin element),
and the element identified by the query select e2 from P0, P2
(also called the destination element). If element e is an ances-
tor of the context node c, then the nodes c, o, and d move rigidly
with e. The modified constraint will have the form foreach P ′

0
[ foreach P ′

1 exists P ′
2 with C ], where P ′

0 is from the query
determining the new context node c. The expression P ′

1 is the
same as P1 except that the starting expression is updated so
that it corresponds to the new location of the context node (a
similar change applies to P ′

2 as well). If the context node is an
ancestor of e, then e is used in either P1 or P2. Assume that e
is used in P1 (the other case is symmetric). This case is shown
in the second part of Fig. 4. Node o moves rigidly with e to a
new location, while d remains in the same position. We then
compute a new context node as the lowest common ancestor
between the new location of o and d. The resulting constraint
is then foreach P ′

0 [foreach P ′
1 exists P ′

2 with C ′], where
P ′

0 determines the new context node and P ′
1 and P ′

2 are relative
to query P ′

0 and determine the new location of o and d. The
C ′ is the result of changing C so that it uses the end points of
paths P ′

1 and P ′
2.

Example 14 Assume that the designer of schemaS in the map-
ping system of Fig. 1 has decided to store grants nested within
each company so that each company contains the set of its
grants. This translates to a move of the element grants under
the element company. Consider the constraint f2 of example 3
specifying that each grant having a private sponsor refers to its
contact information. Once the grants are moved, this constraint
becomes inconsistent since there are no grant elements under
the schema root S. To adapt the constraint, we use the previ-
ously described algorithm: we are in the second case shown in
Fig. 4, in which the element that moves is between the context
element c (the root, in this case) and o. The element grants
in its new location is

select a.company.grants from S.companies a

The variable binding of a does not exist in f2 so it is appended
to it, and every reference to expression S.grants is replaced
by the expression a.company.grants. The final form of the
adapted constraint f2 is shown below. (The exists clause need
not be changed since the new context element continues to be
the root.)

foreach S.companies a, a.company.grants g,
g.grant.sponsors n, n.sponsor.private p

exists S.contacts c
with c.contact.cid=p ��

5.3.2 Adapting mappings

When an element is moved to a new location, some of the exist-
ing logical associations that were using it become invalid and
new ones have to be generated. To avoid redundant recomputa-
tion by regenerating every association, we exploit information
given by existing mappings and computation that has already
been performed. In particular, we first identify the mappings
that need to be adapted by checking whether the element that
is moved is used in any of the two associations on which the
mapping is based. Let A be an association that is using the
element e that is about to move, and let t be the element in
its new location. More precisely, assume that e and t have the
following forms:

e : select en+1 from e0 x0, e1 x1, ..., en xn

t : select tm+1 from t0 y0, t1 y1, ..., tm ym

We first identify and isolate the element e from association A
by finding the appropriate renaming from the from clause of e
to A. For simplicity, assume that this renaming is the identity
function, that is, A contains literally the from clause of e. In
the next step, the from clause of t is inserted in the front of
the from clause of A. We then find all usages of en+1 within
A and replace them with tm+1. After these replacements, it
may be the case that some (or all) of the variables x0, . . . , xn

have become redundant (i.e., not used) in the association. We
eliminate all such redundant variables. Let us denote by A′

the resulting association.
Since the element t in the new location may participate

in its own relationships (based on constraints) with other ele-
ments, those elements have to be included as well in the new
adapted version of association A′. We do this by chasing A′

with the schema constraints. The chase may produce multi-
ple associations A′

1, . . . , A
′
k (due to the choice types). Finally,

any mapping using the old association A, say, foreach A
exists B with D, is removed from the list of mappings and
replaced with a number of mappings mi: foreach A′

i exists
B with D′, one for each association A′

i. The conditions D′

correspond to the correspondences in D plus any additional
correspondences that may be covered by the pair <A′

i, B>
(but not by the original pair < A, B >).

As an important consequence of our algorithm, all the joins
that were used by the original mapping and were not affected
by the schema change will be used, unchanged, by the new,
adapted mapping. Hence, we preserve any design choices that
might have been made by a human user based on the orig-
inal schemas. We illustrate the adaption algorithm with the
following example.
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Fig. 5. Introducing a new constraint after an element copy

Example 15 Assume that in the mapping system of Fig. 1
grants are moved under company as in example 14. This
change affects neither mapping m3 nor mapping m2. [Re-
call from Sect. 5.2 that just the addition of a new struc-
ture (grants, in this case) for m2 does not require m2
to be adapted]. However, mapping m1, based on the logi-
cal association A1 (Fig. 3), is affected. First, schema con-
straints are adapted as described in example 14. Then we
run the mapping adaption algorithm, described above, for e:
select S.grants from and t: select o.company.grants
fromS.companieso (denote here by the empty from clause).
The clause “S.companies o” is added to the from clause
of A1. Next, all occurrences of S.grants are replaced by
o.company.grants. After this, the resulting association is
chased with the source schema constraints. The (adapted) con-
straints f1, f2, and f3 are already satisfied and hence not appli-
cable. However, f4 and f5 will be applied. The chase ensures
coverage of the two correspondences on cname and name, the
last one in two different ways. Hence, two new mappings are
generated. The first is:

m′
1a: foreach S.companies o, S.projects p,

o.company.grants g, g.grant.sponsors n,
n.sponsor.private r,
S.contacts c, S.persons e

where p.project.source=g.grant.gid and
r=c.contact.cid and
o.company.CEO=e.person.SSN

exists T.privProjects j, T.companies m
where j.privProject.holder=m.company.cname

with m.company.cname=o.company.cname and
m.company.leader=e.person.name and
j.privProject.code=p.project.code and
j.privProject.sponsor=c.contact.email

while the second is the one that considers the owner of the com-
pany as the leader instead of the CEO. Note how the algorithm
preserved the choice made in mapping m1 to consider private
projects and how the initial relationships between projects
and grants as well as grants and contacts in mapping
m1 were also preserved in the new mapping. ��

In the above analysis, we considered the case of moving
an element from one place in the schema to another. In the
case where the element is copied instead of being moved, the
same reasoning is used and the same steps are executed. The
only difference is that the original mappings and constraints
are not removed from the mapping system as in the case of
a move. Schema constraints and mapping choices that have
been made continue to hold unaffected after a structure in the
schema is copied. Figure 5 demonstrates how a new constraint
is introduced when an element is copied.

6 A ranking mechanism for rewritings

In the previous sections, we presented a methodology for
adapting mappings that are affected by a change in the schema
structure or constraints. The specific methodology detects the
mappings that are affected by the change and generates a num-
ber of semantically valid rewritings. All those rewritings are
consistent with the semantics of the schemas, the structure,
and the user choices that have been made in the past and are
encoded in the existing mappings. An affected mapping can
be replaced with one, two, or even all of its generated rewrit-
ings. The existence of more than one candidate is natural since
the new modified schema has new semantics. However, there
are cases in which not all of the generated mappings describe
the semantics of the intended data transformation between the
two schemas. Selecting only those that do requires human
intervention. In order to assist the user in this selection, we
developed a model for systematically ranking the rewritings.
A number of approaches in the literature [6,23] have used the
cost of updating a materialized target as a measurement of the
importance of the mapping. Although the maintenance cost is
important, in our context, and since our main goal is to pre-
serve, as much as possible, the semantics of the mapping that
is to be adapted, we believe that a different criterion is more
appropriate. For that, we introduce a new model for measuring
the similarity of two mappings.

The similarity measure is based on the observation that
two mappings are semantically similar if they use common
schema elements. The more schema elements and equalities
they have in common, the more (semantically) similar they are.
Conversely, the more schema elements in which they differ,
the less (semantically) similar they are.

Definition 16 Let |m| represent the sum of the number of
schema elements used in a mapping m and the number
of equalities between these elements in that mapping. The
relative similarity of mapping m1 to mapping m2 (denoted
S(m1, m2)) is defined as the weighted sum

S(m1, m2) = ρ1
|m1∩m2|

|m2|
+ ρ2

|m1 − m2|
|m1|

(1)

where |m1∩m2| is the number of elements and equalities that
are used in both mappings m1 and m2, and |m1 − m2| is the
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number of elements and equalities that are used in m1 but are
not used in m2. The quantities ρ1 and ρ2 are constant values
for which ρ1+ρ2=1.

Intuitively, the first fraction of the relative similarity
S(m1, m2) measures how many elements mapping m1 has in
common with mapping m2, while the second measures how
many surplus elements mapping m1 has compared to map-
ping m2. This is similar to the notion of recall and precision
in information retrieval. The first fraction measures the recall
and the second the precision. Factors ρ1 and ρ2 determine the
importance of the two fractions in the relative similarity. Note
that relative similarity is not a symmetric relationship.

In some cases, the relative similarity is not enough to deter-
mine if one mapping is more preferable than another. Consider,
for example, the case where a new constraint is added in one
of the schemas. A mapping mo needs to be rewritten since one
of its associations is affected by this change. The association
is chased and results in a set of new associations, each one
of which is used to form a new candidate rewriting. To rank
the rewritings, the relative similarity of each one them with
mapping mo is calculated. From the way the rewritings were
generated, they will all contain the elements and conditions of
the mapping mo. Thus, deciding which one is more preferable
depends on the number of surplus elements and conditions. For
two or more mappings, that number may be the same, making
the relative similarity of these mappings the same. In order to
be able to select one over another, we introduce a new quantity
called the support level. Intuitively, the support level utilizes
knowledge of the remaining existing mappings to guess which
of the rewritings that have the same relative similarity is more
likely closer to the semantics that the user has in mind, and it
does so by computing the relative similarities of the rewriting
with every other existing mapping.

Definition 17 Let M be a set of mappings. The support level
of mapping m from the set M is defined as

LM (m) =
Σm′∈MS(m, m′)

|M | (2)

Example 16 Consider the two mappings m′
1a and m′

1b in ex-
ample 9, which were generated as a result of the addition of a
new constraint. Recall that the difference between those two
mappings is that the first one considers the CEO as the leader
of the company while the second considers the owner. The rel-
ative similarity of those mappings to mapping m1 is the same.
However, one can observe that the existing mapping m2 con-
siders the owner of the company as the company leader. Based
on that, the rewriting mapping m′

1b seems to be more appro-
priate than m′

1a. Indeed, the support level of mapping m′
1b is

higher than the support level of mapping m′
1a. ��

It has to be noted that the ranking mechanism is not used
to eliminate any of the rewritings. All the mappings gener-
ated by the algorithms presented in the previous sections are
semantically valid mappings and valid rewritings. The rank-
ing mechanism is used to rank these mappings according to
what the system judges to be the most likely (based on the
schema structure, the semantics, and, most of all, the existing
mappings).

7 Performance analysis

A main performance feature of the presented approach is the
incremental maintenance of the mappings, which leads to less
computation than required by a mapping tool if the map-
pings were regenerated from scratch after modification of the
schemas. In the latter case, the mapping tool would have first
generated all the mappings in the mapping universe and then
an expert user would have to select only those that describe the
intended semantics of the transformation.A great deal of these
semantic user choices are embodied in the existing mappings.
Our algorithms use that knowledge to avoid computation of
mappings that would be anyway rejected by the user and also
computations that will give results that are already available
in the existing mappings. For example, when a new constraint
is added and an association of a mapping needs to be updated,
the chase does not start from the structural associations, as a
mapping tool like Clio [31] would have done, but from the
existing association in the mapping.

To determine what mappings are affected by a schema
change, the algorithms check for dominance. Dominance is
checked by looking for one-to-one renaming functions be-
tween the variables of two queries. Finding such a renaming
in the general case requires time exponential in the size of
the queries. However, the NRI constraints and the schema
elements are based on linear paths for which a renaming one-
to-one function can be found (if it exists) in linear time. Fur-
thermore, the problem of finding whether an association A is
dominated by association B, when either A or B has an empty
where clause, can be reduced to the problem of finding a sub-
tree isomorphism, which requires O((k1.5/ log k)n) [34].

Another operation used in the algorithms is the chase. In
general, the chase may not terminate. However, if we restrict
the class of schemas to those with acyclic constraints and non-
recursive types, the chase always terminates in time polyno-
mial in the size of the schema and the constraints [31]. This is
a natural restriction since we can still capture the majority of
the constraints met in real systems (including XML Schema
key references) and also we avoid having an infinite number
of rewritings generated by the existence of recursive types or
cyclic constraints.

8 Mapping adaptation experience

To evaluate the effectiveness and usefulness of our approach,
we have implemented a prototype tool called ToMAS3 and we
have applied it to a variety of real application scenarios. In this
section, we describe ToMAS and report our experience using
it to adapt mappings between real schemas. The results of the
experiments indicate that indeed it is worth using a mapping
adaptation system like ToMAS to automatically maintain the
mappings between schemas. Specifically, we show that (i) the
time needed for incrementally updating the mappings under
schema changes is negligible and (ii) this incremental adapta-
tion requires much less effort than a “from-scratch” rebuilding
of the mappings. At the end, we highlight the benefits of using
a mapping adaptation tool in concert with a physical design
tool that manipulates schemas. In particular, we show how our

3 ToMAS stands for Toronto Mapping Adaptation System
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tool can facilitate the selection of a good relational schema for
storing XML data.

8.1 Architecture

ToMAS follows a modular architecture, as can be seen in
Fig. 6. At the heart of ToMAS is the evolution engine that
contains implementations for each of the evolution operators
we described earlier. ToMAS manages a mapping system (a
pair of schemas and a set of mappings between them). As
the schemas evolve, ToMAS detects mappings that may need
to be updated, and based on the schema constraints and the
user associations it creates a set of potential rewritings that
are consistent with the modified schemas.

To update the mappings, apart from the schema and con-
straint information, the evolution engine has to know the user
associations that are contained in the mappings. This informa-
tion is provided by the Mapping Analyzer. The Mapping Ana-
lyzer constructs all the structural associations of the schemas
and chases them to generate the set AS of logical associations
that are based on the schema structure and constraints. Each
association A used in an existing mapping is then chased to be-
come a logical association so that the mapping will become a
semantically valid mapping. If the resulting logical association
is not in the set AS , then the association A that the mapping
was using represents a choice that has been explicitly stated
by the user; thus, it is a user association. The set of user as-
sociations found, along with the semantically valid mappings,
is provided to the Evolution Engine. This step is performed
once at the beginning of the evolution process, right after the
schemas are loaded.

The system is equipped with a set of pluggable schema
wrappers used to import schemas and mappings from dif-
ferent data models into the internal nested relational repre-
sentation. Currently, relational and XML wrappers have been
implemented.

The schemas and the mappings are presented to the user
through a graphical user interface (Fig. 7). Through this inter-
face, the user may also modify the schemas. For each modifi-
cation, the schemas, the requested modification, and the exist-
ing mappings are provided to the evolution engine that updates
both the mappings and the schemas. The results are returned
back to the interface for presentation to the user and further
modifications.

The last component of ToMAS is the mapping ranker.
Its role is to rank the candidate rewritings generated by the

Fig. 7. ToMAS user interface

evolution engine according to the ranking criterion that was
presented in Sect. 6 before sending them to the Interface.

8.2 Performance

We now investigate the efficiency of our proposed incremen-
tal mapping adaptation algorithms. We conducted a series of
experiments on some schemas, both relational and XML, that
vary in terms of size and complexity. Their characteristics are
summarized in Table 1. The size is shown in terms of atomic
schema elements, and within the brackets is the number of
schema constraints. We used two versions of each schema to
generate mappings from the first version to the second. Either
the different versions of each schema were available on the
Web (representing two different evolutions of the same origi-
nal schema), or, whenever a second version was not available,
it was manually created. Using the Clio mapping generation
tool a number of correspondences were used to generate a set

Table 1. Test schema characteristics

Schema Size Corresp/ces Mappings

ProjectGrants 16 [6] 6 7
DBLP 88 [0] 6 12
TPC-H 51 [10] 10 9
Mondial 159 [15] 15 60
GeneX 88 [9] 33 2
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of semantically meaningful mappings (the last two columns
of Table 1 indicate their exact numbers). From them, two map-
pings were selected as those representing the intended seman-
tics of the correspondences. These mappings were the map-
pings we had to maintain through schema changes.

A random sequence of schema changes was generated and
applied to each schema. Even for only two mappings, due to
the large size of the schemas, it was hard for a user to under-
stand how the mappings were affected by the changes and how
they should be adapted. We considered two alternative adap-
tation techniques. The first was to perform all the necessary
modifications on the schemas and at the end use a mapping
generation tool (e.g., Clio) to regenerate the mappings. Due to
the fact that the names of the attributes might have changed and
elements might have moved to different places in the schema,
it was hard to use schema matching tools to reinfer the cor-
respondences. This means that the correspondences had to be
entered manually by the user. Once this was done, the map-
ping generation tool produced the complete set of semantically
valid mappings and the user had to browse through all of them
to find those that were describing the intended semantics. The
second alternative was to perform the schema changes and let
ToMAS maintain the mappings. ToMAS returned only a small
number of mappings since it utilized knowledge about choices
embedded in the initial set of mappings. At the end, the user
had to go through only the small number of adapted mappings
(ranked according to our ranking criterion) and verify their
correctness. We performed and compared both techniques ex-
perimentally.

8.2.1 Time performance

For each change, we measured the time needed for the schema
to be updated and the mappings to be adapted. Figure 8 sum-
marizes the results of this experiment. The time indicated for
each operator is the average time of this kind of operator in the
mapping system. What we noticed was that the time of each
operator depends not only on the nature of the schemas and
the mappings but also on the sequence of changes that have
taken place before. The reason is that operators have differ-
ent tasks to perform depending on the schema on which they
are applied. We calculated the average time of completion for
each operator, and we present it in Fig. 8.

Creation of new elements in the schema does not require
any updates on the mappings. However, the inserted structure
has to be type-checked for consistency before being inserted
into the schema. This checking means the “create element”
operation takes slightly more time compared to renaming.

Copying and moving of an element are mostly syntactic
modifications. They require deletion of the elements to be
moved (copied) in a mapping or in a constraint. At the end of
the move (copy), some chasing takes place at the new location.
This chasing accounts for the time difference between these
two restructuring operators and element renaming or creation.
TPC–H is the schema with the largest number of constraints
(compared to the size of the schema), which makes chasing
take longer than in any other schema. On the other hand, if
we exclude the ProjectGrant schema that is really small, the
shortest adaptation time is given by DBLP, which is the only
schema with no constraints.

Fig. 8. Average mapping adaptation times

Addition or removal of constraints, as expected, are expen-
sive operations since they involve chasing. Adding a new con-
straint requires chasing an affected association, while removal
involves the reconstruction of a number of structural associa-
tions, their chase, and the checking of whether the results of
the chase are subsumed by the affected association. All those
operations make mapping adaptation under constraint removal
more expensive than adaptation under constraint addition. The
surprising result is the DBLP schema, in which in every test
we have conducted the constraint removal outperformed the
constraint addition. This may be happening because DBLP is
the only schema that has initially no constraints. Constraints
that are removed are those that have been generated through
an “addConstraint” operation and are not creating long chains
of consecutive constraints. As a consequence, the chase never
had more than one chase step. Furthermore, DBLP is very shal-
low, so the time required for the construction of the structural
associations was almost negligible.An interesting observation
is the performance of the GeneX schema under constraint re-
moval, which is the only one that took more than 1 s, even
though there was only one mapping that had to be updated.
The reason is that the mapping was really large, involving 29
joins; hence the corresponding association had 29 variables.
Finding one-to-one renamings was the expensive operator for
such a complex mapping.

Deletion of an element requires first the removal of the
correspondences and the constraints that are using the specific
element. This means that the cost of an element deletion is at
least as much as the constraint removal. On the other hand, if
the element is not used by any constraint, it can be removed in
time that is almost equal to the time of renaming. On average,
the first kind of removal operation is balanced by the low cost
of the second kind; hence the average performance is as shown
in Fig. 8.

The above analysis shows that, despite the size and com-
plexity of the schemas, the time for mapping adaptation is
short enough to permit its use both in interactive applications
and automatic mapping adaptation.
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Fig. 9. The benefit of ToMAS for different schemas as a function of the number of changes

8.2.2 Benefit

We compared the user effort required in the two approaches.
In the first approach, where mappings have to be regenerated
from scratch, the effort of the user was measured as the number
of correspondences that have to be respecified, plus the number
of mappings that the mapping generation tool produces and
which the user has to browse to select those that describe the
intended semantics of the correspondences. On the flip side,
if ToMAS is used, the effort required is just the browsing
and verification of the adapted mappings. As a comparison
measurement we used the following quantity, which specifies
the advantage of ToMAS against the “from-scratch” approach.
A value of 0.7, for example, means that ToMAS saves 70% of
the effort required in the “from-scratch” alternative.

1 − mappings generated by ToMAS

mappings generated by the mapping tool + correspondences

Figure 9 provides a graphical representation of how the above
quantity changes as a function of the number of changes for the
various schemas. As the number of changes becomes larger,
and the modified schemas become very different than their
original version, the advantage of ToMAS is reduced, but the
rate of reduction is small. Notice, for example, the line that
corresponds to the ProjectGrants example used in the paper.
After eight changes, ToMAS has lost almost half of its advan-
tage. The reason is that the schema is small and after eight
changes it has been completely restructured, describing new
data semantics. In such a case, it makes no sense to try to
preserve the transformation described by the initial mappings
(as ToMAS does) while schemas continue to evolve. On the
flip side, for the larger Mondial and GeneX schemas it can be
noticed that even after 17 changes, ToMAS still has an advan-
tage. The reason is that even after the 17 changes the schemas
have not changed that much and keep describing the semantics
of the data that they were describing initially, in which case
it makes sense to try to preserve the initial transformation.
Fortunately, practice has shown that schemas do not change
radically. The new evolved schemas are not dramatically dif-
ferent from their original version, and in these cases, ToMAS
is the right tool to use.

An interesting alternative to investigate is how the ToMAS
approach compares to the solution suggested in Rondo [29].

TABLE Show
ShowId,
type,
title,
year,
boxOffice,
videoSales,
seasons,
description

TABLE Review
ReviewsId,
tilde,
reviews,
parentShow

TABLE Episode
EpisodeId,
name,
parentShow

TABLE Show1
ShowPart1Id,
type,
title,
year,
boxOffice,
videoSales

TABLE Show2
ShowPart2Id,
type,
title,
year,
seasons,
description

TABLE NYTRev
ReviewsId,
review,
parentShow

TABLE Reviews
ReviewsId,
review,
parentShow

TABLE Episode
EpisodeId,
name,
parentShow

a b

Fig. 10. Two relational designs for the IMDB DTD

In particular, according to this approach, when a schema is
modified, a new mapping must be generated between the old
and the new version of the schema describing how exactly the
schema has changed. This mapping is combined with the old
mapping using the “compose” operator of model management
to form the new adapted mapping. The drawback of this ap-
proach is that, when the mapping between the old and the new
schema is formulated, the existing mappings are not taken into
consideration. As a result, and as our preliminary experiments
have shown, this may produce more rewritings than ToMAS
would have produced. On the flip side, the advantage of the
mapping composition approach is that it works even when the
difference between the old and the new schema is large and
is not given as a list of incremental changes but by an arbi-
trary set of mappings. It is part of our future plans to further
investigate this issue in order to identify and have a clear un-
derstanding of the cases in which ToMAS is more preferable
than the Rondo approach and vice versa.

8.3 Case study: ToMAS in physical design

We present our experience using ToMAS within one impor-
tant application: physical data design. In the last few years,
there has been a growing interest in storing XML data in
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<imdb>
FOR $x0 IN $doc/DB/Review, $x1 IN $doc/DB/Show
WHERE $x0/ReviewsId/text() = $x1/ShowId/text()
RETURN

<Show>
<type> $x1/type/text() </type>
<title> $x1/title/text() </title>
<year> $x1/year/text() </year>
FOR $x0L1 IN $doc/DB/Review, $x1L1 IN $doc/DB/Show
WHERE

$x0L1/ReviewsId/text() = $x1L1/ShowId/text() AND
$x1/videoSales/text() = $x1L1/videoSales/text() AND $x1/boxOffice/text() = $x1L1/boxOffice/text() AND
$x1/type/text() = $x1L1/type/text() AND $x1/title/text() = $x1L1/title/text() AND
$x1/year/text() = $x1L1/year/text()

RETURN
<review> $x0L1/reviews/text() </review>

<boxOffice> $x1/boxOffice/text() </boxOffice>
<videoSales> $x1/videoSales/text() </videoSales>

</Show>
FOR $x0 IN $doc/DB/Episode, $x1 IN $doc/DB/Show, $x2 IN $doc/DB/Review
WHERE $x0/EpisodeId/text() = $x1/ShowId/text() AND $x2/ReviewsId/text() = $x1/ShowId/text()
RETURN

<Show>
<type> $x1/type/text() </type>
<title> $x1/title/text() </title>
<year> $x1/year/text() </year>
FOR $x0L1 IN $doc/DB/Episode, $x1L1 IN $doc/DB/Show, $x2L1 IN $doc/DB/Review
WHERE

$x0L1/EpisodeId/text() = $x1L1/ShowId/text() AND $x2L1/ReviewsId/text() = $x1L1/ShowId/text() AND
$x1/seasons/text() = $x1L1/seasons/text() AND $x1/description/text() = $x1L1/description/text() AND
$x1/type/text() = $x1L1/type/text() AND $x1/title/text() = $x1L1/title/text() AND
$x1/year/text() = $x1L1/year/text()

RETURN
<review> $x2L1/reviews/text() </review>

<seasons> $x1/seasons/text() </seasons>
<description> $x1/description/text() </description>
FOR $x0L1 IN $doc/DB/Episode, $x1L1 IN $doc/DB/Show, $x2L1 IN $doc/DB/Review
WHERE

$x0L1/EpisodeId/text() = $x1L1/ShowId/text() AND $x2L1/ReviewsId/text() = $x1L1/ShowId/text() AND
$x1/seasons/text() = $x1L1/seasons/text() AND $x1/description/text() = $x1L1/description/text() AND
$x1/type/text() = $x1L1/type/text() AND $x1/title/text() = $x1L1/title/text() AND
$x1/year/text() = $x1L1/year/text()

RETURN
<episode> $x0L1/name/text() </episode>

</Show>
</imdb>

Fig. 11. An initial mapping for the IMDB

relational database systems in order to be able to reuse their
well-developed features (e.g., concurrency control, query pro-
cessing, etc.). A number of approaches have been proposed to
tackle the mismatch between the nested semistructured nature
of the XML data and the relational model [8]. Unfortunately,
no approach is universally accepted since none has been
found to perform well in all cases. LegoDB [2] is a physical
database design tool for designing (optimized) relational
storage structures for XML data. LegoDB helps a user to
evaluate some of the many XML-to-relational “shredding”
options [8]. Since different XML-to-relational translations
are best for different work loads and data characteristics,
LegoDB provides an automated wizard for finding good
relational designs. For this case study, we use the Internet
movie database DTD example described in [2].

<!ELEMENT imdb (show*, director*, actor*)>
<!ELEMENT show (title, year, reviews*,

((boxOffice, videoSales) |
(seasons, description, episode*)))>

The two relational schemas of Fig. 10 represent two differ-
ent shredding methods for the above DTD. Mappings between
each of these two schemas and the DTD might be output by
a design tool or might be created with a mapping tool like
Clio. Although this is a very simple example, it is important
to note that the mappings from the schema in Fig. 10a to the
DTD are complicated enough. Figure 11 indicates the specific
mapping in XQuery form and indicates the complexity of the
mapping that has eight joins between the three participating
tables of the source schema and a nesting depth of two. So
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even for this simple example, generating the correct mapping
is clearly hard if it is to be done manually.

In tools like LegoDB, each shredding method is accompa-
nied by the corresponding mapping. For the second shredding
method of Fig. 10b, for example, the mapping to the DTD
has to be generated in advance and hard-wired in the LegoDB
cost engine. Manual generation of such mapping, or gener-
ation through a mapping tool, can be avoided with the use
of ToMAS. Using ToMAS, one can take the DTD, the first
shredding method, and the generated mapping of Fig. 11 and
start modifying the schema to bring it in the form of Fig. 10b.
Throughout this process, ToMAS will be maintaining the map-
pings, and at the end it will be able to provide automatically
the mapping from the relational tables of the new shredding
method to the DTD.

We have performed the above test. After most operations,
the mappings could be automatically updated without user
intervention, but for some operations there was a choice of
what semantics to use. During the entire evolution, the ToMAS
user had to make very few choices and we were able to verify
that the resulting mapping is the one we would have created if
it had been done manually, or using a mapping tool like Clio.

Notice that our approach permits design tools like LegoDB
to explore new storage schemes that might not be part of their
(predefined) search space of designs for efficiency reasons. For
example, using ToMAS we can permit a designer to suggest
a different, ad hoc, vertical or horizontal decomposition of
the relations (one not suggested by the workload). If the cost-
based engine of LegoDB selects such a user provided design,
ToMAS can generate the mapping needed to use the original
XML Schema as a view over this design.

Additionally, our ability to transform the relational schema
of Fig. 10a to the one of Fig. 10b indicates the kind of transfor-
mations we are supporting. We do not consider only simple
structural changes that take place locally on a table or on a
class. We can have complex schema modifications involving
many schema structures (in the specific example, relations)
like copying an attribute from one table to another. In short,
we have found that with our small set of primitive operators,
we can support the majority of compound schema changes
that exist in the literature [19].

9 Conclusion

In this paper, we identified the problem of mapping adap-
tation in dynamic environments with evolving schemas. We
motivated the need for an automated system to adapt map-
pings and we described several areas in which our solutions
can be applied. We presented a novel framework and tool that
automatically maintains the consistency of the mappings as
schemas evolve. Our approach is unique in many ways. We
consider and manage a very general class of mappings includ-
ing GLAV [18] mappings. We consider changes not only on
the schema structure but also on the schema semantics (i.e.,
schema constraints) either in the source or in the target. Finally,
we support schema changes that involve multiple schema el-
ements (e.g., moving an attribute or subtree from one type to
another).

We described the implementation of a mapping manage-
ment and adaptation tool based on the above. We measured its

performance and presented its application in two different do-
mains, schema mapping and physical data design. A part that
requires further investigation is the ranking mechanism, where
an extensive experimentation is required with real users to in-
vestigate whether the rewritings getting the highest ranking are
indeed those that the user would choose. The effectiveness of
the ToMAS system can be extended by considering more com-
plicated mappings like those that include “group by” clauses
and aggregation functions, i.e., min, max, etc. Our long-term
goal is to integrate the functionality of ToMAS with Clio and
continue extending them in order to build an integrated meta-
data management tool. The development of such a tool will
support data administrators by enabling the management of
large complicated schemas and mappings with far less human
supervision.
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(2002) LegoDB: Customizing relational storage for XML doc-
uments. In: VLDB, pp 1091–1094

3. Bertino E, Haas LM, Lindsay BG (1983) View management in
distributed data base systems. In: VLDB, pp 376–378

4. Banerjee J, Kim W, Kim H, Korth HF (1987) Semantics and im-
plementation of schema evolution in object-oriented databases.
In: SIGMOD, pp 311–322

5. Bernstein P, Rahm E (2003) Data warehouse scenarios for model
management. In: ER, pp 1–15

6. Claypool KT, Jin J, Rundensteiner EA (1998) SERF: Schema
evolution through an extensible re-usable and flexible FRAME-
WORK. In: CIKM, pp 314–321

7. Ceri S, Widom J (1991) Deriving production rules for incre-
mental view maintenance. In: VLDB, pp 277–289

8. Florescu D, Kossmann D (1999) Storing and querying XML
data using an RDMBS. IEEE Data Eng Bull 22(3):27–34

9. Fagin R, Kolaitis PG, Miller RJ, Popa L (2003) Data exchange:
semantics and query answering. In: ICDT, pp 207–224

10. Fagin R, Kolaitis P, Popa L, Tan W (2004) Composing schema
mappings: second-order dependencies to the rescue. In: PODS

11. Gyssens M, Lakshmanam L, Subramanian IN (1995) Tables as a
paradigm for querying and restructuring. In: PODS, pp 93–103

12. Grahne G, Mendelzon AO (1999) Tableau techniques for query-
ing information sources through global schemas. In: ICDT,
pp 332–347

13. GuptaA, Mumick I, Ross K (1995)Adapting materialized views
after redefinition. In: SIGMOD, pp 211–222

14. HalevyA, Ives Z, Suciu D, Tatarinov I (2003) Schema mediation
in peer data management systems. In: ICDE, pp 505–517

15. Kantola M, Mannila H, Räihä K-J, Siirtola H (1992) Dis-
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