
ToMAS: A System for Adapting Mappings while Schemas Evolve

Yannis Velegrakis† Renée J. Miller† Lucian Popa‡ John Mylopoulos†

†University of Toronto
{velgias,miller,jm}@cs.toronto.edu

‡IBM Almaden Research Center
lucian@almaden.ibm.com

1. Problem Description
A broad variety of data is available on the Web in dis-

tinct heterogeneous sources, stored under different for-
mats: database formats (relational), document formats
(SGML/XML), browser formats (HTML), scientific data,
etc. Merging and coalescing data from such sources con-
tinues to be an important problem for modern information
systems and e-commerce applications. Such merging is of-
ten achieved through a set of mappings that specify how
data instances of one or more source schemas corre-
spond to instances of a target schema. Mappings are often
specified in a declarative way, e.g., as queries or view defini-
tions from the source schema(s) to the target schema.

In most existing data exchange and integration systems
schemas are considered to be relatively static. However, in
highly dynamic environments with no centralized authority,
such as the Web, sources may evolve without prior notice.
This evolution may involve not only their content but also
their schemas and their query capabilities. When this hap-
pens, mappings that depend on these schemas may become
invalid or inconsistent and will have to be adapted to con-
form to the new schema structures and semantics. For small
schemas, browsing a short list of simple mappings to perform
the required changes is a feasible option, but as the structure
of the data and the schemas become more complex, the effort
involved in that task is considerable, since it requires rewrit-
ing of large complex transformation queries and programs.
To ensure that mappings remain correct and consistent, auto-
matic tool support is required.

In this showcase, we demonstrate the Toronto Mapping
Adaptation System (ToMAS) [5], a tool for automatically
detecting and adapting mappings that have become invalid
or inconsistent due to changes in either data semantics or
schemas. It differs from other approaches in multiple ways:

1. ToMAS considers changes not only to the structure of
the schemas but also to the schema semantics. ToMAS
detects mappings that are affected by a schema con-
straint change even if the change does not make any of
the mappings syntactically incorrect.

2. ToMAS generates rewritings that are guaranteed to con-
form to the modified schema structure and constraints.

3. ToMAS supports changes to either the source or the tar-
get schemas. This is analogous to adapting views after

changes to the base table definitions or the view inter-
face.

4. To generate the right rewritings, ToMAS exploits
knowledge about user choices that is embodied in
the existing mappings. Hence, the generated rewrit-
ings are consistent with the semantics of the original
mapping.

5. The supported changes are not restricted to atomic type
schema elements but can be applied to more complex
schema structures such as relational tables or complex
type XML-Schema elements.

6. The supported changes are not restricted to one schema
element but may span elements located in different
places in the schema. Such changes include copying and
moving complex structures. These two changes cannot
be simulated by element deletions and creations since
the moved/copied elements need to carry with them
constraints and mappings that were previously defined
on them.

Due to its modular architecture and its stand-alone nature,
ToMAS can easily be applied to numerous scenarios and can
interoperate with many other tools. A list of the areas where a
tool like ToMAS can be used includes (but is not limited to):
Data Integration [3], Modeling Source Descriptions through
Local-As-View mappings [3], Data Exchange [4], Physical
Data Design [2], Model Management [1]. To the best of our
knowledge, no other tool can correctly maintain the consis-
tency of the mappings under schema changes at the level of
complexity supported by ToMAS.

References
[1] P. Bernstein, A. Levy, and R. Pottinger. A Vision for Manage-

ment of Complex Models. SIGMOD Record, 29(4):55–63, De-
cember 2000.

[2] P. Bohannon, J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and
J. Siméon. LegoDB: Customizing Relational Storage for XML
Documents, System Demonstration. In VLDB, 2002.

[3] M. Lenzerini. Data Integration: A Theoretical Perspective. In
PODS, pages 233–246, 2002.

[4] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez, and
R. Fagin. Translating Web Data. In VLDB, pages 598–609,
August 2002.

[5] Y. Velegrakis, R. J. Miller, and L. Popa. Mapping Adaptation
Under Evolving Schemas. In VLDB, pages 584–595, Septem-
ber 2003.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04) 
1063-6382/04 $ 20.00 © 2004 IEEE 


