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Abstract

Current microarray databases use different terminologies and structures and thereby
limit the sharing of data and collating of results between laboratories. Consequently, an
effective integrated microarray data model is required. One important process to
develop such an integrated database is schema matching. In this paper, we propose
an effective schema matching approach called MDSM, to syntactically and semantically
map attributes of different microarray schemas. The contribution from this work will be
used later to create microarray global schemas. Since microarray data is complex, we
use microarray ontology to improve the measuring accuracy of the similarity between
attributes. The similarity relations can be represented as weighted bipartite graphs.
We determine the best schema matching by computing the optimal matching in a bipar-
tite graph using the Hungarian optimisation method. Experimental results show that
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our schema matching approach is effective and flexible to use in different kinds of data-
base models such as; database schema, XML schema, and web site map. Finally, a case
study on an existing public microarray schema is carried out using the proposed
method.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Microarray database schema; Schema matching; Hungarian method; Similarity funct-
ion
1. Introduction

Traditionally, molecular biology experiments were based on one gene at a
time; this was a limitation in obtaining the total picture of a gene function.
With the advent of DNA microarray technology, researchers are able to gain
a better understanding of the interactions among thousands of genes simulta-
neously. Such technological innovation has led to new insights into fundamen-
tal biological problems such as; gene discovery, gene regulation, disease
diagnosis, drug discovery, and toxicology [9–11,23,24].

However, a biological experiment, typically, requires tens or hundreds of
microarray, where a single microarray generates between 100,000 and a million
fragments of data [9–11]. The organisation of such a huge-volume of data, pro-
duced by microarray techniques, is one of the biggest challenges that scientists
in bioinformatics are facing. Only a limited number of efficient and public data-
bases are available to store microarray data (http://www.cbil.upenn.edu/
RAD2, http://genex.sourceforge.net/, http://staffa.wi.mit.edu/chipdb/public/,
http://www.ebi.ac.uk/arrayexpress/, http://genome-www5.stanford.edu/); how-
ever, existing public microarray databases have their own distinct storage
structures and implementations, and different hardware platforms, DBMS,
data models and data languages. In addition, these databases are created by
different developers; unavoidably they might use different definitions and terms
to describe the same domain or concept. Even though there are efforts to
develop microarray data resources that correspond to the standard Microarray
Gene Expression Data (MGED) ontology (http://www.cbil.upenn.edu/Ontol-
ogy/MGED_ontology.html), their databases are still not in final shape. As a
result, this hampers the sharing of data with other laboratories and the collat-
ing of experimental results. Fortunately, these limitations have been previously
addressed in fields outside the life sciences, particularly in the realm of com-
mercial business. One successful approach to elucidate these limitations is data-
base integration.

An integrated microarray database has been proposed in our previous work
[16]. One important task in our integrated architecture is to create global
microarray schema. This can be done by taking schemas as input to produce

http://www.cbil.upenn.edu/RAD2
http://www.cbil.upenn.edu/RAD2
http://genex.sourceforge.net/
http://staffa.wi.mit.edu/chipdb/public/
http://www.ebi.ac.uk/arrayexpress/
http://genomewww5.stanford.edu/
http://www.cbil.upenn.edu/Ontology/MGED_ontology.html
http://www.cbil.upenn.edu/Ontology/MGED_ontology.html
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a map between schema elements that correspond semantically to each other;
this process is simply called schema matching. Schema matching has been
investigated by many researchers [1,3–5,7,8,12,15,17,19,25]. Currently,
schema matching is typically performed manually, which is a tedious, time-
consuming, error-prone, and expensive process. This aggravates the problem
since databases and applications are becoming more complex. That is, the lar-
ger the schemas are, the more the number of matches to be performed
increases. Therefore, a faster and less labor-intensive integration approach is
desirable.

Moreover, most existing systems are not generic as they support a limited
number of data models and applications. For example, LSD [4] is limited to
XML, and DIKE [11] is limited to ER sources. Schema matching is expected
to be applied to many different data models and applications, such as database
schema, XML schema, UML model, and website map [7].

The goal of this paper is to develop an effective Microarray Database
Schema Matching (MDSM), using a combinatorial optimisation called Hun-
garian method [22,13]. To address this complex problem and deal with the
large variety of microarray data models and applications, MDSM is designed
to (1) be a fast and semi-automatic approach, (2) reconcile the structures and
terminologies of the two microarray schemas, and (3) support generic models
and applications. A case study of public microarray schemas RAD (http://
www.cbil.upenn.edu/RAD2) and GeneX (http://genex.sourceforge.net/) is
undertaken to prove that our approach is flexible and pragmatic. To our
knowledge, this work is the first application of combinatorial optimisation to
schema matching.

The structure of this paper is organised as follows. An overview of MDSM
is described in Section 2. Section 3 describes the formalisation of problem. Sec-
tion 4 explains how the Hungarian computes optimal matching. Section 5
describes experiments with MDSM on real microarray schemas. Section 6 pre-
sents the experimental evaluation and comparative discussion on MDSM with
other systems. Finally, Section 7 concludes this paper.
2. Overall approach

This section provides an overview of the MDSM approach. MDSM consists
of two main parts: Attribute–attribute scoring, and Schema–schema scoring.

Each part is explained below.

2.1. Attribute–attribute scoring

A specific domain in our study is microarray database schema, which is
much more complex than business domain—not only in the types of data

http://www.cbil.upenn.edu/RAD2
http://www.cbil.upenn.edu/RAD2
http://genex.sourceforge.net/
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stored, but also in terms of richness and the constraints working upon relation-
ships between those data. Because of its complex nature, additional informa-
tion is desirable to specify the similarity of attributes between two different
schemas. In our domain, MGED microarray ontology is used as supplemen-
tary knowledge.

To guarantee that MDSM can be applied to different kinds of data models,
we define that a schema is simply a finite set of attributes, for instance, schema
X = {x1,x2, . . . ,xm} and schema Y = {y1,y2, . . . ,yn}.

The mapping results that can be denoted as Ox ¼ fox1
; ox2

; . . . ; oxmg and
Oy ¼ foy1

; oy2
; . . . ; oyn

g, and are a number of ontological elements that seman-
tically correspond to a number of attributes in schema X and Y, respectively.
Each element of Ox links every element of Oy, with individual scores, and vice
versa. In other words, each attribute of X links every attribute of Y, with
unique scores. These mapping results can be represented as a weighted bipartite
graph, in which elements of Ox and Oy correspond to nodes, links between Ox

and Oy correspond to edges and individual scores correspond to weights (wij).
Fig. 1 demonstrates the mapping results in a weighted bipartite graph.

2.2. Schema–schema scoring

The schema–schema matching score identifies how well two schemas corre-
spond to each other. The score is calculated by the sum of every best attribute–
attribute matching score in those two schemas.

By repeating this procedure on every pair-wise schema of two different data-
bases, we can achieve similarity matrix, M that contains the similarity scores
between different schemas. This similarity matrix, M will be beneficial for inte-
grating schemas to subsequently develop a microarray global schema. Note
that in this investigation, we only target the schema matching approach.
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Fig. 1. A weighted bipartite graph that represents the mapping results.
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3. Formalisation of problem

Based on the approach discussed in Section 2, problems can be characterised
by obtaining the individual attribute–attribute matching scores and finding the
best attribute–attribute matching candidates. The following two major issues
are discussed in this section:

• the similarity function (to produce the attribute–attribute matching score),
• optimal matching (to find the best attribute–attribute matching).

3.1. Similarity function

The similarity function assigns real values to every link between elements of
ontology Ox and Oy (or actually, between attributes of schema X and Y). Those
values indicate how well two attributes relate to each other. Our attribute–
attribute matching score is the average of syntactic and semantic similarities
between two elements as shown in Eq. (1):

Simða; bÞ ¼ Simsynða; bÞ þ Simsemða; bÞ
2

ð1Þ

where Simsyn(a,b) and Simsem(a,b) are the syntactic and semantic similarities,
respectively.

Simsyn(a,b) is a function that determines a probability for the syntactic sim-
ilarities between elements on the basis of their name [6,16,20]. Here, we have
used the n-grams based string matching technique to measure this syntactic
possibility. The text strings are decomposed into n-grams, which are the con-
tiguous characters of text strings. For example, Di-grams represent two
characters in length and Tri-grams represent three characters. Basically, the
probability of similarity between two strings is a proportion of the number
of similar n-grams and the total number of unique n-grams in the strings. Con-
sequently, a syntactic similarity Simsyn(a,b) can be defined as

Simsynða; bÞ ¼
j2�

P
t2n-gramsðaÞ\n-gramsðbÞ log P ðtÞj

j
P

t2n-gramsðaÞ log P ðtÞj þ j
P

t2n-gramsðbÞ log P ðtÞj ð2Þ

where n-grams(a) and n-grams(b) are the set of n-grams in a and b, respectively.
P(t) is the probability of a n-grams occurring in a word.

Simsem(a,b) is a similarity measurement which computes the semantic dis-
tance between elements within a single ontology [6,14,20,21]. A single ontology
can be represented as a graph-based model in which the elements are the nodes
and the links between two elements are the edges. The semantic distance
between two elements is the shortest linking path between them. We define
the semantic similarity Simsem(a,b) as
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Simsemða; bÞ ¼
2� N 3

N 1 þ N 2 þ 2� N 3

ð3Þ

where N1 and N2 are the numbers of links from a and b, respectively, to their
most specific common superclass C; and N3 is a number of links from C to the
root of the ontology (‘‘MGEDOntology’’ in our case). Fig. 2 is a fragment of
microarray ontology. The hierarchical illustration shows 20 classes (repre-
sented in rectangular shape) and six individuals (represented in oval shape).

Example. The similarity score for two elements, namely, Organism and
NCBI_taxon_id, can be obtained as follows. Typically, a comparison of two
elements must be performed on the elements with the same type. In this
situation, types of Organism and NCBI_taxon_id are different: one is class and
another is individual. If the first element (Organism) is a base, the second
element (NCBI_taxon_id) must refer to the class which it belongs to. Since
NCBI_taxon_id individual is an instance of Organism class, it is self-
comparison between Organism classes.

Tri-grams (Organism) is {Org, rga,gan,ani,nis, ism}. Using Eq. (2), the syn-
tactic similarity between Organism and NCBI_taxon_id (Simsyn(Organ-

ism,NCBI_taxon_id)) evaluates to 1.

Simsyn Organism;NCBI taxon idð Þ ¼
2� 6� log 1

6

�
�

�
�

6� log 1
6

�
�

�
�þ 6� log 1

6

�
�

�
� ¼ 1 ð4Þ
Fig. 2. A partial microarray ontology and a root ‘‘MGEDOntology’’.
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From Eq. (3), the semantic similarity between Organism and NCBI_taxo-

n_id can be obtained:

SimsemðOrganism;NCBI taxon idÞ ¼ 2� 4

1þ 1þ 2� 4
¼ 0:8 ð5Þ

where N3 (= 4) is a number of links from BioMaterialOntologyEntry to
MGEDOntology, N1 (= 1) is a number of links from Organism to BioMaterial-

OntologyEntry and N2 (= 1) is a number of links from Organism (a class that
NCBI_taxon_id belongs to) to BioMaterialOntologyEntry.

The similarity score between Organism class and NCBI_taxon_id individual
can be calculated as follows:

SimðOrganism;NCBI taxon idÞ ¼ 0:8þ 1

2
¼ 0:9 ð6Þ
3.2. Optimal matching

As illustrated in Fig. 1, the element ox1
links to elements oy1

, oy2
and oy3

, with
score w11, w12, and w13. The best pair-wise match for element ox1

is the element
oyi

such that w1i is maximum. In other words, the attribute x1 relates to attri-
bute yi more than the others, with score w1i.

The existing microarray databases are made up of a large number of sche-
mas, for example, GeneX consists of 30 schemas in their database model. It
would be error-prone and laborious to match those schema elements manually.
Enumerating all possible matching does not scale well with the size of the
bipartite graph, as the number of candidate matchings is exponential in the
number of vertices of the bipartite graph. In Section 4, we review different
approaches to the bipartite graph matching problem and show that the method
known as the Hungarian method presents a number of advantages.
4. Maximal weight matching

Given a bipartite graph, G = (Ox,Oy,Ox · Oy) where Ox and Oy are a finite
set of nodes and Ox · Oy is a set of unordered pairs of nodes called edges. A
matching in a graph G is a set of edges, where no two of which are incident
to the same node. A maximum matching is a matching such that the sum of
the weights of its edges is maximum.

A quick way to build a matching is to start with an empty set of edge M and
incrementally add the largest edge e to M that leaves M [ {e} a matching. This
greedy approach is fast and simple, but unfortunately does not guarantee the
return of a maximum matching.

The following theorem [1, p. 286], based on work by Egervary done in 1931,
relates the matching problem to linear programming. Let A be the vertex–edge
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incidence matrix of the graph G. Let w be the weight vector and x the charac-
teristic vector of the matching. That is, xi = 1 if the ith edge belongs to the
matching (otherwise xi = 0).

Theorem (Egervary). The optima in the linear duality programming duality

equation

maxfwTxjx P 0;Ax 6 1g ¼ minfyT1jy P 0; yTA P wTg
are attained by integer vector x and y.

In other words, if one has access to an optimisation library that contains a
linear program solver, the maximum weighted matching can be solved by find-
ing the solution in x to the optimisation problem max{wTxjx P 0,Ax 6 1}.

The particular form of the matrix A (binary matrix with exactly two ones
per column), means that the optimisation problem max{wTxjx P 0,Ax 6 1}
can be solved using a purely combinatorial method. This algorithm is known
as The Hungarian method. The proof of the validity of this algorithm is based
on the Egervary theorem. The interested reader is referred to Schrijver’s text
[22] for the full theoretical derivation. Here, we simply explain the predominant
ideas behind the algorithm. Firstly, we consider the special case where the
weights are binary values, then we will consider the general case (weights take
any non-negative values).

4.1. Binary valued weights case

In this case, the construction of a maximum matching can be done incre-
mentally by searching for augmenting paths. Whenever an augmenting path
is found, we can improve the current matching. Let M be a matching, and P
be a path in a graph G. A path P is said to be an augmenting path if, and only
if;

(1) The beginning and end nodes of P are not in M, and
(2) P is a sequence of edges alternately not in M and in M.

An example of an augmenting path is shown in Fig. 3.
edge not in M

edge in M

node not in M

node in M

Fig. 3. An augmenting path.
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Given a matching M and an augmenting path P, a better matching
M 0 = (M � P) [ (P �M) can be constructed. It is easy to show that M 0 has
one more edge than M. That is, jM 0j = jMj + 1. In other words, if M is a max-
imum matching, no augmenting path exists. The reciprocal is also true.

Theorem 1. M is a maximum matching in a graph if, and only if, augmenting
path exists.
4.2. General case

The algorithm for the general case (non-negative weights) is an extension of
the augmenting path trick. We start with a matching M = ;. Given a matching
M, we build an auxiliary graph DM that will allow us to derive from M, a new
matching M 0 with a larger total weight.

Let DM be the directed graph obtained from G, by orienting each edge e in G

according to the following rules:

• If e 2M, then set the length le of e in DM to le = we.
• If e 62M, then set the length le of e in DM to le = �we.

Let us call Fx the nodes of Ox not incident to any edge of M. Similarly, Fy

denotes the nodes of Oy not incident to any edge of M. If there exists a path in
DM from Fx to Fy, we determine P to be the shortest such path, then reset the
current matching to M 0 = (M � P) [ (P �M). We repeat this process of
building the auxiliary graph DM, searching for the shortest path P from Fx

to Fy, resetting M if the search is successful and continue to do so until no such
path P can be found. At that point, we are guaranteed to have an optimal
match.

According to [1], the time complexity of this algorithm is O(n(m + n logn)),
where n is the number of vertices and m is the number of edges of G.
5. An example of using MDSM on existing microarray database schema

This section provides an example of using MDSM on the fragment schemas
from public microarray databases, such as GeneX and RAD. Assume that
attributes from two example schemas correspond to ontological elements in
Fig. 4, and that they link to each other with scores in Table 1. Consider the
problem in a weighted bipartite graph G = (Ox,Oy,Ox · Oy). The ontological
elements of GeneX attributes are a set of nodes Ox, ontological elements of
RAD attributes are a set of nodes Oy nodes, links between those nodes are
edges, and weights of edges are scores.
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Table 1
An example of similarity scores that show how well two elements correspond to each other

Bio-
Material
package

NCBI_
taxon_id

Develop-
mental
stage

Physical
charac-
teristics

Age Descrip-
tion

Person Organi-
sation

BioMaterial
package

0.9 0.14 0.14 0.33 0.33 0.125 0.165 0.165

Organism 0.14 0.9 0.4 0.1 0.1 0.27 0.1 0.1
Development_

stage
0.33 0.1 0.47 0.4 0.4 0.1 0.18 0.18

Physical
characteristics

0.33 0.1 0.21 0.9 0.4 0.1 0.18 0.18

Age 0.33 0.1 0.21 0.4 0.9 0.1 0.18 0.18
Biopsy 0.33 0.1 0.21 0.4 0.4 0.1 0.18 0.18
Contact 0.2 0.125 0.175 0.18 0.18 0.11 0.3 0.3
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Fig. 4 represents the initial graph. A matching M is illustrated in Fig. 5(c).
Only nodes that are not incident to any matched edges will be added to a
matching M. It can be seen from Fig. 5(c), node Biopsy is not in a matching
M. Node Biopsy cannot be matched to node Physical Characteristics or node
Age because both nodes have already matched with the others. M is not a max-
imum matching; therefore, searching for an augmenting path is the next step.
However, when no augmenting path that corresponds to M is found, the dual
variables ui and vj must be changed. Dual variables will be modified four times.
Here, we only show the final new values of variables ui and vj as depicted in
Fig. 5(d). One rebuilds the auxiliary graph GA by using new values of ui and
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vj. The new edge {biopsy,organisation} is discovered. Fig. 5(e) shows a new
matching M in GA. Node Biopsy is now in a matching M. Every node in Ox

is placed in M; therefore, M is a maximum matching. The sum of all weights
in a matching M is optimal total weight, which is 4.55. This implies that two
fragment schemas of GeneX and RAD correspond to each other with score
4.55.
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6. Experimental evaluation

6.1. Test data

Data for this experiment was taken from the real-world schemas of five
different microarray resources (http://www.cbil.upenn.edu/RAD2, http://
genex.sourceforge.net/, http://staffa.wi.mit.edu/chipdb/public/, http://www.
ebi.ac.uk/arrayexpress/, http://genome-www5.stanford.edu/). Five relations
were extracted and mapped into the MGED microarray ontology which is used
as an additional dictionary. The matching between the possible combinations
of those five relations was performed.

6.2. Performance measures

Here, the word ‘‘performance’’ is defined as a set of correct mapping to pairs
of schema attributes. In order to measure the MDSM performance, we used
three common measures, precision, recall, and overall based on the bounded
area A, B, C and D as shown in Fig. 6.

• precision ¼ jCj
jBjþjCj specifies the ratio of real correspondences among derived

matches discovered by the matching algorithm.
• recall ¼ jCj

jAjþjCj specifies the ratio of real correspondences among true

matches based on manual matching.
• overall ¼ recall � ð2� 1

precisionÞ measures the overall quality of the matching
algorithm as functions of both precision and recall. Unlike precision and

recall, overall value can be negative if precision < 0.5, or the number of false

positives is more than the number of True.

6.3. Analysis of results

Fig. 7 shows the Match Quality of the MDSM algorithm. The measures
were determined for both single match experiments and the entire evaluation;
Fig. 6. A or False Negatives are matches needed but not automatically discovered, B or false

positives are matches not needed but discovered by matching algorithm, C or true positives are
matches discovered by both manual matching and the matching algorithm, and D or True

Negatives are false matches.

http://www.cbil.upenn.edu/RAD2
http://genex.sourceforge.net/
http://genex.sourceforge.net/
http://staffa.wi.mit.edu/chipdb/public/
http://www.ebi.ac.uk/arrayexpress/
http://www.ebi.ac.uk/arrayexpress/
http://genome-www5.stanford.edu/
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the false/true negatives and positives were counted over all match tasks. The
quality measures for each single match experiment allow us to evaluate
the actual performance of the matching algorithm and to directly compare
the effectiveness of the system to other positives [3,6].

We tested MDSM with five existing microarray schemas, each of the five
data sources were first manually matched to MGED ontology (an additional
dictionary). Matches among data sources were then automatically performed,
resulting in 10 match tasks altogether. Like other matching systems, the tested
schema sizes were rather small; our source schemas consisted of elements
between 34 and 47.

It is clear that MDSM performed very well. For single match evaluation,
we achieved the highest match accuracy in match task 2, 4, 5, 6, 7, 9, and
10. Similarly, for the entire evaluation we achieved quite high precision
(0.74) and recall (0.74). The precision value specifies that 74% of matches
derived from MDSM correspond to manual matches derived from the user.
Similarly, the recall value has identified that 74% of matches that were based
on manual matching correspond to matches derived from MDSM. We
achieved the Overall value of 0.481. Overall quality can also be determined
by jCj�jBjjAjþjCj. That is, the overall value can be minimised depending on the number

of derived matches discovered by the algorithm which are not in manual
matches.

The interesting results are in match task 1, 3, and 8. We further studied the
impact on these match quality values. One hypothesis was drawn from [2].
They expressed that match quality would degrade with bigger schemas. How-
ever, the results from our experiment did not support their assumption. The
schema size of match task 6, used for this experiment, was smaller than that
of match task 1 and 3; however, the match quality was found to be higher than
that of match task 1 and 3.
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The above contradiction inspired us to thoroughly investigate the related
factors that affect our match quality. The factors are as follows:

(1) The manual matches derived from one user might be different from
another user. The scenario is similar as the algorithm is created by one
person, while the manual matches are performed by another. Of course,
there are a number of mismatches among manual and derived matches.

(2) Without considering other maximum similarities, MDSM tried to match
the first element of schema X to an element of schema Y, based on its
maximal similarity. This may also cause the mismatches between manual
and derived matches. Consider the following scenario that shows the mis-
match results among manual and discovered matching. The results based
on manual matching show that element x1 matches to y3, x2 to y2, and x3

to y1. Whereas, the matching based on MDSM discovers that element x1

matches to y2, x2 to y3, and x3 to y1.
The manual matching from user The derived matching from MDSM

Schema Y

y1 y2 y3

x1 0:5 0:8 0:7

Schema X x2 0:4 0:9 0:2

x3 0:9 0:7 0:6

Schema Y

y1 y2 y3

x1 0:5 0:8 0:7

Schema X x2 0:4 0:9 0:2

x3 0:9 0:7 0:6
6.4. Comparative discussion

In this section, we briefly compare MDSM with two other schema matching
approaches, namely, Cupid and SemMa. The reason why we selected these sys-
tems is that Cupid has been a widely studied matching approach and SemMa is
the most recent work produced within the literature. To compare those match-
ing algorithms, we use a schema matching benchmark as summarised in [2,18].
Table 2 shows a summary of the key aspects and evaluations of Cupid, SemMa
and MDSM. Since MDSM test problem came from a domain that is com-
pletely different from that of both Cupid and SemMa systems, it is difficult
to compare their results.

While MDSM was tested with five different data models and applications
were taken from different microarray data sources for performance, Cupid
and SemMa was tested with only one data model. The capability of the last
two algorithms to serve as generic schema matching, has thus been brought
to scrutiny. Currently, the SemMa program does not support schema formats



Table 2
Summary of characteristics and evaluations of Cupid, SemMa, and MDSM

Cupid SemMa MDSM

References [8] [25] –

Test problems

Tested schema types XML Relational XML, UML,
relational, ER

#Tested schemas/
#Match tasks

2/1 2/2 5/10

Min/Max/Avg
schema similarity

– – 0.1/0.9/0.5

Match performance

Metadata representation Extended ER Relational Graph
Schema-level match

Name-based Name equality;
synonyms; homonyms;
hypernyms; abbreviations

Name, token equality,
synonyms, hyponyms,
abbreviations

Name equality;
synonyms;
homonyms;
hypernyms;
abbreviations

Constraint-based Data type and domain
compability, referential
constraints

Data type and
referential constraints

Is-a (inclusion);
Relationship

Structure matching Matching subtrees,
weighted by leaves

Table and
field similarity

–

Reuse/auxiliary
information used

Thesauri, glossaries Database
thesauras and
WordNet

MGED
microarray
ontology

Combination of matchers Hybrid Hybrid Hybrid
matchers

Application area Data translation, but
intended to be generic

Schema
integration

Schema
integration

Match result representation

Matches Element and structure
level correspondence
with similarity value
in range [0,1]

Element and
structure level
correspondence
with similarity
value in range [0,1]

Element and
linguistic level
with auxiliary
information
correspondence
with similarity
value in
range [0,1]

Output format Links with
similarity values

Links with
similarity values

Links show
the matching
nodes
(attributes)

Local/global
cardinality

1:1/n:1 1:1 1:1

(continued on next page)
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Table 2 (continued)

Cupid SemMa MDSM

Quality measure and test methodology

Employed quality
measures

By looking
correspondences
elements

Recall, precision,
and overall

Precision, recall,
overall

Subjectivity 1 user
Pre-match effort Specifying

domain
synonyms

Specifying field
name, structure
and data type

Specifying
domains
synonyms,
homonyms and
abbreviations

Best average match quality

Precision – �0.81 to �0.875 �0.74
Recall – �0.315 to �0.845 �0.74
Overall – �0.23 to �0.655 �0.481

Implementation

Programming
language

VB C++ Matlab

Remarks

Tree matching – Algorithms to
generate all
possible mapping
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other than BizTalk (http://msdn.microsoft.com/library/enus/bts_2002/htm/
lat_xmltools_editor_intro_cyvg.asp) formatted XML schema. Like Cupid (ele-
ments ranging from 40 to 54) and SemMa (elements ranging from 40 to 47), the
tested schema size of MDSM was rather small, ranging from 34 to 47 elements.
In MDSM, the average similarity between the schemas was around 0.5; this
implies that the schemas are much different even though they are from the same
domain (microarray databases).

All of those systems initially determine the similarity of attributes from two
schemas in a pair-wise fashion, based on element and structure level. With the
availability of auxiliary information, the match quality can greatly improve.
The similarity values are in the range of [0,1]. The independent schemas were
matched directly to each other in Cupid and MDSM, but not in SemMa. In
SemMa, the independent schemas were matched to a single global schema.
In all systems, the match result consists of attribute correspondence of 1:1 local
and global cardinality.

To assess the automatic effort of the matching algorithm, both the pre-match
and post-match effort should be taken into account. Cupid and MDSM systems
require specifying domains, synonyms, homonyms and abbreviations before
matchers can perform their tasks, whereas SemMa requires the specifying of

http://msdn.microsoft.com/library/enus/bts_2002/htm/lat_xmltools_editor_intro_cyvg.asp
http://msdn.microsoft.com/library/enus/bts_2002/htm/lat_xmltools_editor_intro_cyvg.asp
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field name, structure and data type. The post-match efforts have so far not been
taken into consideration when evaluating the match quality of systems.

Cupid is the only one system that did not provide a computed quality mea-
sure, it measures the matching accuracy by looking at correspondences
between elements. SemMa and MDSM used three measures to test match qual-
ity: precision, recall, and overall. Even though match quality of SemMa seems
to be higher than that of MDSM, SemMa used only two sample relational
schemas to test the match quality. Besides, the match quality of SemMa varies
according to the scale of schemas, similar to the assumption of Do et al. [2].
Contrary to the assumption, the match quality of MDSM is affected by the fac-
tors discussed in Section 6.3. MDSM is able to handle the scalability of sche-
mas because it employed the Hungarian method for performing matches. The
Hungarian method uses combinatorial optimisation, which is capable of solv-
ing the NP-problem. Even though the speed of performing matches with
MDSM was not a concern in this study, we found that less than 1.5 s is taken
to match 100 elements. This excludes pre-match effort time.
7. Conclusion and future work

The schema matching approach, MDSM, is an important process and is used
in our proposed integrated microarray database. The formalisation problem of
MDSM can be divided into two main issues: scoring function and optimal
matching. The similarities between attributes are scored with respect to their
syntactic and semantic data structure. These similarity results can be represented
as a weighted bipartite graph; therefore, the Hungarian method is used to find an
optimal matching between attributes from different schemas. These matching
results are subsequently used for constructing the microarray global schemas.

The significant findings and contributions in this work are as follows:

• The fast and semi-automatic matching method, MDSM, is an effective and
practical approach. The key capabilities of MDSM include (1) the reconcil-
iation of structures and terminologies of two microarray schemas and (2)
serving as generic data models and applications.

• Based on the experimental evaluation of existing public microarray schemas,
it is found that MDSM performs very well. The match quality is computed
for both single match experiments and entire match tasks of the evaluations.
Our results show that performance exceeds 70% (measured as the precison,
recall, and overall of schema matching process).

• Contrary to the assumption of Do et al. [2], the larger schema does not lead
to lower match quality. MDSM can cope with the larger schemas without
the loss of match quality. However, the match quality of MDSM is
impacted upon by the following factors:
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– Given the same input schemas, the match quality varies from user to user
and from application to application.

– The configuration and algorithm of the match.
In regard to future research, we will focus on the following issues:

• The similarity function. Even though the similarity results that were
obtained from the combination of two similarity measures are effective,
some situations might be ambiguous and complicated. This is due to our
similarity measure that relies heavily on the development of MGED micro-
array ontology.

• The larger and more complex schema will be employed to evaluate match
quality of the proposed matching approach.

• The pre-match and post-match effort will be taken into account. In this
research work, the manual effort was required to determine similarity values.
The machine learning methods will be used to reduce the amount of manual
work required in future work.

• The speed of MDSM will be investigated to guarantee that MDSM is fast
enough to obtain results in real-world communication.

Even though attempts are made to develop microarray data resources which
correspond to MGED ontology, development on these databases has not
reached its completion. Furthermore, some existing microarray repositories
do not provide the structure of schemas or schemaless. This problem will be
considered to enhance our matching method in the future.
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