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ABSTRACT
We demonstrate a prototype of the relational data mapping module
of MIQIS, a formal framework for investigating information flow
in peer-to-peer database management systems. Data maps consti-
tute effective mappings between structured data sources. These
mappings are the ‘glue’ for facilitating large scale ad-hoc infor-
mation sharing between autonomous peers, and automating their
discovery is one of the fundamental unsolved challenges for infor-
mation interoperability and sharing. Our approach to automating
data map discovery utilizes heuristic search within a space delin-
eated by basic relational transformation operators. A novelty of our
approach is that these operators include data to metadata transfor-
mations (and vice versa). This approach leverages new perspectives
on the data mapping problem, and generalizes previous approaches
such as token-based schema matching.

1. INTRODUCTION
The vision of peer-to-peer database management systems (P2P-

DBMS) brings promise of ad-hoc dynamic information sharing,
with support for richer semantics than the current breed of sim-
ple file-sharing peer-to-peer systems [7, 10]. The complementary
vision of the Semantic Web also holds promise for intelligent com-
plex information exchange on the Web [2, 7]. It is important to
note that these systems cannot and should not be built from scratch.
A significant portion of data on the Web resides in non-Semantic-
Web-enabled structured sources [4, 7]. The participation of these
sources in P2PDBMS information sharing scenarios requires new
enabling technologies which respect source autonomy.

A fundamental unsolved challenge in information sharing is the
Data Mapping Problem: automating the discovery of effective map-
pings between structured representations of data. These mappings
are the basic ‘glue’ for facilitating ad-hoc information exchange
between autonomous peers [7]. This central problem is encoun-
tered in many information management settings. Consequently,
many variants of the problem have been identified and investigated:
schema mapping [17], schema matching [5, 18], and data transla-
tion [19] during data integration [12], ontology mapping [8] on the
Semantic Web, and model matching [15], to name a few.
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We are investigating the data mapping problem in theModu-
lar Integration of Queryable Information Sources(MIQIS) project
at Indiana University [21], a formal framework for investigating
many aspects of information flow in P2PDBMS. Among the dis-
tinguishing features of MIQIS are its generality and focus on the
modular nature of information systems. This approach naturally
encompasses XML, relational, text, deep web [4], and other data
sources. The framework fully respects the autonomy of peers to
manage locally their schemata and concepts. On the Semantic Web
and P2PDBMS, global consensus and monolithic architectures are
infeasible. MIQIS fully accommodates this heterogeneity of data
sources in large scale ad-hoc information sharing scenarios.

2. RELATIONAL DATA MAPPING
Can the discovery of data mappings be (semi) automated? That

is, can the discovery of an appropriate mapping between data struc-
tured under two distinct schemas be facilitated with minimal user
input? A very general statement of theData Mapping Problemis
as follows:

DEFINITION 1 (DATA MAPPING PROBLEM). Given source
schemaS, target schemaT , and query languageL, find a trans-
formationτ ∈ L (if it exists) such that for any instances of S and
corresponding instancet of T , s

τ7−→ t.

Note that in this most general problem statement, we do not assume
S andT are schemas of the same data model. It is not immediately
clear how to automate a solution to this problem. In this demonstra-
tion we report on a prototype implementation of the MIQIS module
to generateτ whenS andT are bothrelationalschemas.

EXAMPLE 1. Suppose that peers contain student grade infor-
mation within a larger ‘e-learning’ network for managing student
information. In this example, suppose there are three schools man-
aging separate relational databases for this data as illustrated in
Figure 1. As shown, there are many natural ways to organize even
the simplest datasets such as these. Note that to move between these
representations of student data, data↔ metadata transformations
must be performed. We will use this setting as our running example
in this demonstration.

2.1 Data Mapping as Search
We view the data mapping problem as asearch problem. A key

component of our solution is theRosetta Stone Principle: user pro-
vided small ‘canonical’ instances ofS andT can be effectively
used to guide the discovery ofτ in a transformation space. These
instances are elicited in a manner similar to the interactive building
of extraction patterns in the Lixto visual wrapper system [6]. In our
approach, we also explicitly consider the full data mapping prob-
lem space for relational DBs: we consider both schema matchings
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G1
Grades:
Name Assignment Percentage

Saori Assignment1 94
Saori Assignment2 97
Yukie Assignment1 88
Yukie Assignment2 89

↘↖

↓↑

G3
Assignment1:
Name Percentage

Saori 94
Yukie 88

Assignment2:
Name Percentage

Saori 97
Yukie 89

G2
Grades:
Student Assignment1 Assignment2

Saori 94 97
Yukie 88 89

↗↙

Figure 1: Mappings between student grade databases.

(ie, traditional metadata↔ metadata mappings between schema
elements) and data↔ metadata mappings where data elements in
one structure serve as metadata components in the other (or vice
versa) [11, 16]. It is important to note that consideration of the
full mapping space blurs the distinction between schema matching
[18] and schema mapping [17]. Data-metadata ‘matching’ encom-
passes schema matching as a special case; when metadata itself is
seen as data, the entirety of schema matching and schema mapping
is encompassed indata mapping. The output of our relational data
mapping module is a data-to-data transformation that is parameter-
ized by schema information.

2.2 Tuple Normal Form
Another key technical component of our approach is a normal

form for relational data,Tuple Normal Form(TNF), first introduced
by Litwin et al. [13]. This standardized format for representing
relational data allows us to seamlessly manipulate metadata along-
side data using standard SQL. Furthermore, multiple input relations
are represented in a single TNF relation; thus TNF enables data
mappings where the source and/or target information may be split
over more than one relation (such as the transformations involving
databaseG3 in Figure 1).

For a given relation,r, we compute TNF ofr (denotedr∗) as
follows. First, every tuple in the relation is given a unique identifier.
Then,r∗ is a four-column relation with attributesTID, REL, ATT,
VALUE containing the data inr in a piecemeal fashion. For an
input databased, d∗ is simply the union ofr∗ for all r ∈ d.

EXAMPLE 2. We illustrate this with the TNF of databaseG3.
G3∗ :
TID REL ATT VALUE
t1 Assignment1 Name Saori
t1 Assignment1 Percentage 94
t2 Assignment1 Name Yukie
t2 Assignment1 Percentage 88
t3 Assignment2 Name Saori
t3 Assignment2 Percentage 97
t4 Assignment2 Name Yukie
t4 Assignment2 Percentage 89

Note that TNF of a database can be computed in SQL with access
to system tables.

2.3 Relational Transformation Space
Ideally we would like our mapping languageL to be practical.

In the context of relational data sources, this means mappings must

Operation Effect

↓ (R)
Demote Metadata. Cartesian product of relation
R with binary table containing the metadata ofR.

→ (R, A, B)
Dereference Column A on B. ∀t ∈ R, append a
new columnB with valuet[t[A]].

↑ (R, A, B)
Promote Column A to Metadata. ∀t ∈ R, append
a new columnt[A] with valuet[B].

℘(R, A)
Partition on Column A. ∀v ∈ πA(R), create a
new relation namedv, wheret ∈ v iff t ∈ R and
t[A] = v.

π(R, A) Drop columnA from relationR.

⊕(R, A) Merge tuples in relationR based on compatible
values in columnA.

ρ(R, R′, A, A′) RenamerelationR to R′ and columnA to A′.

Table 1: Basic transformations defining relational search space.

be SQL compatible queries so that we can maximize the use of un-
derlying RDBMS technology. In our solution, we consider a fixed
set of simple SQL compatible transformations on data in TNF (Ta-
ble 1). This allows us to consider data mapping discovery as an
exploration of the transformation space of these operators on the
input Rosetta Stone source instance. Search terminates when the
TNF representation of the source instance becomes a superset of
the TNF representation of the input Rosetta Stone target instance.
At this point, the transformational path is translated to a parameter-
ized map between instances of the source schema and instances of
the target schema.

In the approach, we make no assumption of common domains,
global schema, underlying generative ontology, or other simplifi-
cations. We treat data simply as opaque objects; the search pro-
cess is purely syntactically and structurally driven [3, 9]. As per
the Rosetta Stone Principle, the user-provided canonical source and
target instances provide the initial matches which drive the search
process.

All structural transformations between student databases in Fig-
ure 1 can be performed using compositions of the simple, compo-
sitional, invertible transformations shown in Table 1. These oper-
ators mimic algebraic operators developed elsewhere for federated
relational systems [20]. These operators are easily implemented in
SQL on the TNF representations of relational databases.

EXAMPLE 3. Consider the basic transformations involved in
restructuring the information inG1 into the format ofG2.

R1 :=↑ (G1∗, Assignment , Percentage )
Promote assignments to metadata.

R2 := π(R1, Assignment )
Drop columnAssignment .

R3 := π(R2, Percentage )
Drop columnPercentage .

R4 := ρ(R3, , Name, Student )
Rename columnNameto Student .

R5 := ⊕(R4, Student )
Merge assignment grades for students.

The output TNF relationR5 is exactlyG2∗.

Note that the user is responsible for providing post-filters such
as “Drop all students with grades less than 70”, if desired. The
operators presented focus on bulk structural transformations rather
than selections. In fact, selection conditions cannot in general be
uniquely determined [10].
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Figure 2: The search for relational data mappings.

Approaching the data mapping problem as discovery of a trans-
formation from TNF to TNF database representations in a rela-
tional search space delineated by basic transformations allows us to
leverage existing artificial intelligence search techniques [14]. The
search is depicted in Figure 2. The branching factor of the search
must take into account the active domain in the Rosetta Stone in-
stances, which means the (unoptimized) branching factor is pro-
portional to|s| + |t|. In spite of this daunting search space size,
our initial experiments have shown that the search performs well in
practice. In particular, metadata to metadata mappings (i.e., token-
based schema matching [18]) are possible for hitherto unrealized
scenarios, such as multi-relation mappings between wide source
and target instances.

3. RELATED WORK
Due to space constraints, we omit a comprehensive discussion

of related work. Most closely related to our data mapping solution
are the works of Bilke et al. [3] on using duplicate values to guide
schema matching, Barbançon et al. [1] and Doan et al. [5] on lever-
aging machine learning techniques for schema integration, Kang
et al. [9] on treating data as opaque objects during schema match-
ing, and the Clio project [17] on semi-automating the discovery of
schema mappings. Our work complements and extends these works
with a new perspective on the data mapping problem and a novel
solution to this problem for the complete transformation space for
relational sources.

4. DEMONSTRATION
A prototype semi-automatic search module for relational data

mappings has been fully implemented in Scheme. The search rou-
tine takes as input Rosetta Stone source and target instances, trans-
lates them into TNF, and performs the search for a transformation
from the source to the target as outlined above. The purpose of
the demonstration is to illustrate the approach on a variety of real
and synthetic input databases for schema matching and full data-
metadata mapping.

In particular, we will compare two search procedures and three
heuristic measures governing the search process in the demonstra-
tion. First, a comparison between betweenA* andIterative Deep-
ening A*(IDA*) search methods [14] will be illustrated. Although
IDA* does redundant work, it has performance asymptotic to A*

with significantly less memory usage and hence performs well in
practice.

A comparison between three search heuristics will also be given.
Each of the three measures gives an idea of the relative “contain-
ment” of the target database in the current search database. Search
is terminated when the target is fully contained in the transformed
input instance. The path taken is then “backed up” to produce the
generating transformations. For a given search statex and target
statet, heuristich1 measures the number of relation, column, and
data values in the target statet which are missing in statex, heuris-
tic h2 measures the minimum number of promotions (↑) and de-
motions (↓) needed to transformx into targett, and heuristich3 is
simplymax{h1(x), h2(x)}.

During the demonstration, we will allow participants to graph-
ically select search method, heuristic measure, and source/target
inputs from a large body of examples. We will then illustrate the
progress of the search in real time.
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[16] Miller, Reńee J. Using Schematically Heterogeneous Structures, in
Proc. ACM SIGMOD, pp. 189-200, Seattle, WA, USA, 1998.
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